Text Indexing: Lecture 7

Simon Gog – gog@kit.edu
The LCP-Interval Tree

Definition of an LCP-interval ([1])

An interval \([i, j]\), where \(0 \leq i \leq n - 1\) is called LCP-interval of LCP value \(\ell\) (denoted by \(\ell - [i, j]\)) if

- \(LCP[i] < \ell\) or \(i = 0\)
- \(LCP[k] \geq \ell\) for all \(k \in [i + 1, j]\)
- \(LCP[k] = \ell\) for at least one \(k \in [i + 1, j]\)
- \(LCP[j + 1] < \ell\)

Every index \(k\) with \(i < k \leq j\) and \(LCP[k] = \ell\) is called \(\ell\)-index. There are at most \(\sigma - 1\) \(\ell\)-indices in an LCP-interval.

Note: Each LCP-interval corresponds to a node in the suffix tree.
The LCP-Interval Tree – Example

<table>
<thead>
<tr>
<th>i</th>
<th>SA</th>
<th>LCP</th>
<th>$T[SA[i], n - 1]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11</td>
<td>0</td>
<td>$$</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>0</td>
<td>i$</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>1</td>
<td>ippi$</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>issippi$</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>4</td>
<td>ississippi$</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>mississippi$</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>0</td>
<td>pi$</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>1</td>
<td>ppi$</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>0</td>
<td>sippi$</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>2</td>
<td>sissippi$</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>1</td>
<td>ssippi$</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>3</td>
<td>ssissippi$</td>
</tr>
</tbody>
</table>

- Singleton intervals $\ell - [i, i]$ are omitted
Properties of the LCP-Interval Tree [4]

Overlapping

Two Lcp-intervals $\ell - [i, j] \neq m - [p, q]$ cannot overlap, i.e. one of the following cases must hold:

- $[i, j]$ is a subinterval of $[p, q]$, i.e. $p \leq i < j \leq q$.
- $[p, q]$ is a subinterval of $[i, j]$, i.e. $i \leq p < q \leq j$.
- $[i, j]$ and $[p, q]$ are disjoint, i.e. $j < p$ or $q < i$.
Properties of the LCP-Interval Tree [4]

Child interval

An \(m \)-interval \(m \cdot [p, q] \) is said to be embedded in an \(\ell \)-interval \([i, j] \) if it is a subinterval of \([i, j] \) and \(m > \ell \). The \(\ell \)-interval is then called the interval enclosing \([p, q] \). If \([i, j] \) encloses \([p, q] \) and there is no other interval embedded in \([i, j] \) that also encloses \([p, q] \), then \([p, q] \) is called a child interval of \([i, j] \) (vice versa, \([i, j] \) is called parent interval of \([p, q] \)).

Navigation: child operation

Let \([i, j] \) be an \(\ell \)-interval. If \(i_1 < i_2 < \ldots < i_k \) are the \(\ell \)-indices in ascending order, then the child intervals of \([i..j] \) are \([i, i_1 - 1], [i_1, i_2 - 1], \ldots [i_k, j] \).
Previous/Next Smaller Value Queries
Let A be an array of length n. For $i \in [1, n - 1]$ the previous smaller value function is defined as:

$$psv(i, A) = \max\{j \mid 0 \leq j < i \land A[j] < A[i]\}$$

Analogously we define the next smaller value function:

$$nsv(i, A) = \min\{j \mid i < j < n \land A[j] < A[i]\}$$

We omit A in psv / nsv if it is clear from the context.
Properties of the LCP-Interval Tree [4]

Navigation: parent operation

Exercise
With $n \log n$ bits of space the psv or nsv function can be precomputed and answered in constant time. Devise a linear time algorithm to compute the table.
Let $0 < k < n$ and $LCP[k] = \ell$. Then $[psv(k), nsv(k) - 1]$ is an lcp-interval of LCP-value ℓ.

Proof:

- $LCP[psv(k)] < \ell$ (by definition of $psv(k)$)
- $LCP[m] \geq \ell$ for all $m \in [psv(k) + 1, nsv(k) - 1]$
- $LCP[k] = \ell$ (note that $psv(k) + 1 \leq k \leq nsv(k) - 1$)
- $LCP[nsv(k)) < \ell$ (by definition of $nsv(k)$)
Properties of the LCP-Interval Tree [4]

Navigation: parent operation

Let $[i, j] \neq [0, n - 1]$ be an lcp-interval with $LCP[i] = p$ and $LCP[j + 1] = q$

- case $p = q$: $p-[psv(i), nsv(j) - 1]$ is parent of $[i, j]$
- case $p > q$: $p-[psv(i), j]$ is parent of $[i, j]$
- case $p < q$: $q-[i, nsv(i)]$ is parent of $[i, j]$
Overview

We have already seen how to represent the CSA and LCP part of a suffix tree (ST) space-efficiently. Now we present different solutions to represent the tree topology/navigational part of the ST. We will concentrate on two representations:

- Balanced Parentheses Sequence (BPS) of the ST
- BPS of the Super-Cartesian Tree of the LCP Array

The suffix tree of a text T of length n consists of at most $2n - 1$ nodes, with n leaves. Pointer representation would take $\mathcal{O}(n \log n)$ bits.
BPS Representation of ST

- Given a traversable tree representation
- Traverse tree in depth first order
- Initialize empty sequence BPS_{dfs}
- Append opening parenthesis to BPS_{dfs} when visiting a node the first time
- Append closing parenthesis to BPS_{dfs} when all nodes of the node’s subtree were visited
- Identify each node with the position of its opening parenthesis in BPS_{dfs}
BPS Representation of ST

\[\text{BPS}_{dfs} = (())(())(())(())(())(())(())(())(())(())(())(()) \]
BPS Representation of ST

BPS_{dfs} = ((()())())()()()()()()())()()())()()()())()()())()()())()()())()()())}
BPS Representation of ST

BPS_{dfs} = (((()))(())(()())())())())(()()()()())())())())())())())()()())())())()())()())())()())())()())()())())()())())()())()})
BPS Representation of ST

\[\text{BPS}_{dfs} = (())()(()())(())(()(()()))(()())(()(()()))(()(()))(()(()))(()(()))(()(()))(()(()))() \]
BPS Representation of ST

BPS_{dfs} = (())
BPS Representation of ST

BPS_{dfs} = ((()))((()))((()))((())((())))((())((())((()))((()))))
BPS Representation of ST

BPS_{dfs} = (())((())(()(())))((())())((())())((())())
BPS Representation of ST

BPS_{dfs} = (())((())
BPS Representation of ST

BPS_{dfs} = (())(()())(())((())())()((())())(()())((())())(())()}
BPS Representation of ST

BPS_{dfs} = (())(()())((())((())(())))((())(()))(()())()()()}
BPS Representation of ST

\[
\text{BPS}_{dfs} = (0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)(0)
\]
BPS Representation of ST

Space usage: at most $4n$ bits

$BPS_{dfs} = ((()))(())((())((())())())()())(()())((())())()())$
BPS Representation of ST
Efficient Navigation

- Represent BPS_{dfs} as bitvector:
- Opening parenthesis represented as „1”
- Closing parenthesis represented as „0”
- Leaves are represented by bitpattern „10”

We can support rank/select on bitpatterns „0”, „1”, „10” by adding $o(n)$ bits. Exercise: Implement the following operations in constant time:
- Get root of tree.
- Select the i-th leaf (numbered from left to right).
- Test if a node v is a leaf.
- Left bound of node v’s interval.
Support more complex tree operation
Given nodes v, w.

- Get size (=number of leaves) of subtree rooted at v.
- Get right bound of v’s interval ($rb(v)$).
- Get parent of v ($parent(v)$).
- Lowest common ancestor of v and w ($lca(v, w)$).
- (Right) Sibling of v ($ sibling(v)$).
Support the following basic operations on a bitvector b

- $excess(i)$: # of 1 bits minus # of 0-bits in $b[0..i]$
- $find_close(i) = \min\{j \mid j > i \land excess(j) = excess(i) - 1\}$
- $find_open(i) = \max\{j \mid j < i \land excess(j) = excess(i) + 1 \land B[j] = 1\}$
- $enclose(i) = \max\{j \mid j < i \land find_close(j) > find_close(i)\}$
- $double_enclose(i, j) = \max\{k \mid k < i \land find_close(k) > find_close(j)\}$
- $rr_enclose(i, j) = \min\{k \mid k \in [find_close(i)+1, j-1] \land find_close(k) > find_close(j)\}$

Operation $find_close(i), enclose(i)$ can be used to solve $parent(v)$, operation $double_enclose(i, j)$ to solve $lca(v, w)$.
For a balanced parentheses sequence of length n the presented operations can be supported in constant time and $o(n)$ additional space.

- We present the solution for operation $\text{find_close}(i)$
- First, techniques from Jacobson’s $O(n)$ extra space solution [3]
- Then Geary et al.’s improvement to $o(n)$ extra space [2]
BPS Representation of ST

Efficient Navigation

excess:
parentheses:
block numbers of matching parentheses
of pioneers:

block 0
block 1
block \(b - 2 \)
block \(b - 1 \)

matches for far parentheses

block 0
block 1
block \(b - 2 \)
block \(b - 1 \)
BPS Representation of ST
Efficient Navigation

- Given a BPS of size \(n \).
- Partition BPS into \(N \) blocks of size \(L = \frac{1}{2} \log n \)
- Let \(\mu(i) = \begin{cases} \text{find _close}(i) & \text{if } i \text{ represents an opening parenthesis} \\ \text{find _open}(i) & \text{otherwise} \end{cases} \)
- Let \(\beta(i) = \frac{i}{L} \) be the block ID of the \(i \)-th parenthesis
- We call a parenthesis a far parenthesis if \(\beta(i) \neq \beta(\mu(i)) \)
- A far parenthesis \(i \) is called a pioneer if there is no other parenthesis \(j < i \) with \(\beta(j) = \beta(i) \) and \(\beta(\mu(j)) = \beta(\mu(i)) \). \(\mu(i) \) is also called pioneer.
- Upper bound for pioneers is \(4N - 6 = \frac{8n}{\log n} - 6 = \mathcal{O}\left(\frac{n}{\log n}\right) \)
- Blocks are nodes in the pioneer graph \(G \). Each pioneer \(i \) adds an edge \((\beta(i), \beta(\mu(i))) \).
- \(G \) is outerplanar. Maximal edges in outerplanar graph: \(2N - 3 \).
Components:

- Bitvector PB which marks the pioneers + rank + select. Space: $n + o(n)$ bits.
- For each pioneer store the matching block in an array $M[0, N - 1]$. Space: $\mathcal{O}(\frac{n}{\log n} \log(n)) = \mathcal{O}(n)$.
- Rank structure for BPS (to get excess values).
- Precomputed table P for in-block queries. Space: $\mathcal{O}(\sqrt{n} \log^2 n)$
BPS Representation of ST

Efficient Navigation - \(O(n) \) space structure for `find_close`

`find_close(i)` in constant time

- Let \(i \) be (the position of) an opening parenthesis.
- If \(i \) is not a far parenthesis: Use \(P \) to get result.
- Use a lookup table to get the largest pioneer \(j \) with \(\beta(j) = \beta(i) \) and \(j \leq i \).
- Go to block \(x = M[\text{rank}(j, 1, PB)] \).
- Determine the first position \(k \) in block \(x \) such that \(\text{excess}(k) = \text{excess}(i) - 1 \).
- Return \(k \).

Note: `find_open(i)` is symmetric.
BPS Representation of ST

Efficient Navigation - $o(n)$ space structure for \textit{find_close}

- \textit{PB} is a sparse uniform bitvector. There is a $O\left(n\frac{\log\log n}{\log n}\right) = o(n)$ representation which also supports rank in constant time.
- The subsequence of pioneers of the original BPS forms again a BPS called BPS’.
- Instead of storing M for the original BPS, we build the linear space \textit{find_close} structure on BPS’.
- This takes $O\left(\frac{n}{\log n}\right)$ bits space.

Exercise

Describe how the \textit{enclose} operation can be solved in constant time with $o(n)$ additional space.
BPS of the Super-Cartesian Tree of the LCP Array

Definition
Let $A[l, r]$ be an array of integers. The Super-Cartesian Tree $C^{sup}(A[l, r])$ of $A[l, r]$ is recursively constructed as follows:

- $C^{sup}(A[l, r])$ is empty, if $l > r$
- otherwise, let $p_0 < p_1 < \ldots < p_{k-1}$ the minima in $A[l, r]$. Create k nodes $v_0, v_1, \ldots, v_{k-1}$ and label each v_j with p_j. For each j with $0 < j < k$, node v_j is the right sibling of node v_{j-1}. Recursively construct $C_0 = C^{sup}(A[l, p_0 - 1]), C_1 = C^{sup}(A[p_0, p_1 - 1]), \ldots, C_{k-1} = C^{sup}(A[p_{k-1}, p_1 - r])$. For each j with $0 \leq j < k$ the left child of v_j is the root of C_j. The right child of v_{k-1} is the root of C_k.

Blackboard: Example for array: 0,0,0,3,0,1,5,2,2,0,0,4,1,2,6,1.
BPS of the Super-Cartesian Tree of the LCP Array

\[
\text{BPS}_{sct} = ((\
\text{LCP} = \begin{array}{cccccccc}
0 & 0 & 0 & 3 & 0 & 1 & 5 & 2 & 2 \\
0 & 0 & 4 & 1 & 2 & 6 & 1 & & \\
\end{array}
))
\]
BPS of the Super-Cartesian Tree of the LCP Array

\[
\text{BPS}_{sct} = () ()
\]

\[
\text{LCP} = \begin{array}{cccccccc}
0 & 0 & 0 & 3 & 0 & 1 & 5 & 2 & 2 \\
0 & 0 & 4 & 1 & 2 & 6 & 1
\end{array}
\]
BPS of the Super-Cartesian Tree of the LCP Array

\[\text{BPS}_{scf} = () () () () \]

\[\text{LCP} = 0 \quad 0 \quad 0 \quad 3 \quad 0 \quad 1 \quad 5 \quad 2 \quad 2 \quad 0 \quad 0 \quad 4 \quad 1 \quad 2 \quad 6 \quad 1 \]
BPS of the Super-Cartesian Tree of the LCP Array

\[\text{BPS}_{sct} = (((())) \]

\[\text{LCP} = \begin{array}{cccccccccc}
0 & 0 & 0 & 3 & 0 & 1 & 5 & 2 & 2 & 0 & 0 & 4 & 1 & 2 & 6 & 1
\end{array} \]
BPS of the Super-Cartesian Tree of the LCP Array

\[\text{BPS}_{sc} = ((())) \]

\[\text{LCP} = \begin{array}{ccccccccc}
0 & 0 & 0 & 3 & 0 & 1 & 5 & 2 & 2 & 0 & 0 & 4 & 1 & 2 & 6 & 1
\end{array} \]
BPS of the Super-Cartesian Tree of the LCP Array

\[BPS_{sc} = (0 0 0 3 0 1 5 2 2 0 0 4 1 2 6 1) \]

\[LCP = 0 0 0 3 0 1 5 2 2 0 0 4 1 2 6 1 \]
BPS of the Super-Cartesian Tree of the LCP Array

\[
\text{BPS}_{sc} = ((()) () ())
\]

\[
\text{LCP} = 0\ 0\ 0\ 3\ 0\ 1\ 5\ 2\ 2\ 0\ 0\ 4\ 1\ 2\ 6\ 1
\]
BPS of the Super-Cartesian Tree of the LCP Array

\[\text{BPS}_{\text{sct}} = ((()) ()) \]

\[\text{LCP} = [0, 0, 0, 3, 0, 1, 5, 2, 2, 0, 0, 4, 1, 2, 6, 1] \]
BPS of the Super-Cartesian Tree of the LCP Array

\[\text{BPS}_{sct} = ((()) (())) \]

\[\text{LCP} = \begin{array}{ccccccccccccc}
0 & 0 & 0 & 3 & 0 & 1 & 5 & 2 & 2 & 0 & 0 & 4 & 1 & 2 & 6 & 1
\end{array} \]
BPS of the Super-Cartesian Tree of the LCP Array

\[\text{BPS}_{sct} = (((())) ((()) (()) (()))] \]

\[\text{LCP} = [0 \ 0 \ 0 \ 3 \ 0 \ 1 \ 5 \ 2 \ 2 \ 0 \ 0 \ 4 \ 1 \ 2 \ 6 \ 1] \]
BPS of the Super-Cartesian Tree of the LCP Array

\[
\text{BPS}_{sct} = \begin{pmatrix}
(& (& (& (&) & (& (&) & (&)
\end{pmatrix}
\]

\[
\text{LCP} = \begin{pmatrix}
0 & 0 & 0 & 3 & 0 & 1 & 5 & 2 & 2 & 0 & 0 & 4 & 1 & 2 & 6 & 1
\end{pmatrix}
\]
BPS of the Super-Cartesian Tree of the LCP Array

\[\text{BPS}_{sct} = ((()) (())()) \]

\[\text{LCP} = \begin{array}{cccccccc}
0 & 0 & 0 & 3 & 0 & 1 & 5 & 2 & 2 & 0 & 0 & 4 & 1 & 2 & 6 & 1
\end{array} \]
BPS of the Super-Cartesian Tree of the LCP Array

\[\text{BPS}_{sc} = \begin{pmatrix} (& (& (&) &) & (& (&) & (&) &) &) &) \end{pmatrix} \]

\[LCP = \begin{pmatrix} 0 & 0 & 0 & 3 & 0 & 1 & 5 & 2 & 2 & 0 & 0 & 4 & 1 & 2 & 6 & 1 \end{pmatrix} \]
BPS of the Super-Cartesian Tree of the LCP Array

\[\text{BPS}_{sct} = (((()) ((()) (()))) } \]

\[\text{LCP} = \begin{array}{ccccccccc}
0 & 0 & 0 & 3 & 0 & 1 & 5 & 2 & 2 \\
0 & 0 & 4 & 1 & 2 & 6 & 1 & & \\
\end{array} \]
BPS of the Super-Cartesian Tree of the LCP Array

\[
BPS_{sc} = \begin{array}{cccccccc}
(& (& (& (&) & (& (& (&)) &)
\end{array}
\]

\[
\text{LCP} = [\begin{array}{cccccccc}
0 & 0 & 0 & 3 & 0 & 1 & 5 & 2 & 2 & 0 & 0 & 4 & 1 & 2 & 6 & 1
\end{array}]
\]
BPS of the Super-Cartesian Tree of the LCP Array

$$BPS_{sc} = (((()) (()) (())) (()))$$

LCP = [0, 0, 0, 3, 0, 1, 5, 2, 2, 0, 0, 4, 1, 2, 6, 1]
BPS of the Super-Cartesian Tree of the LCP Array

\[\text{BPS}_{sc} = \quad (\quad (\quad (\quad) \quad) \quad (\quad (\quad) \quad) \quad (\quad (\quad) \quad) \quad) \quad (\quad (\quad) \quad) \quad) \quad] \]

\[\text{LCP} = \quad 0 \quad 0 \quad 0 \quad 3 \quad 0 \quad 1 \quad 5 \quad 2 \quad 2 \quad 0 \quad 0 \quad 4 \quad 1 \quad 2 \quad 6 \quad 1 \]
BPS of the Super-Cartesian Tree of the LCP Array

\[\text{BPS}_{sc} = (((())) (()) (())) (()) \]

\[\text{LCP} = 0 \ 0 \ 0 \ 3 \ 0 \ 1 \ 5 \ 2 \ 2 \ 0 \ 0 \ 4 \ 1 \ 2 \ 6 \ 1 \]
BPS of the Super-Cartesian Tree of the LCP Array

\[
\text{BPS}_{\text{sct}} = (((()) ((()))) ((())))
\]

| LCP= | 0 | 0 | 0 | 3 | 0 | 1 | 5 | 2 | 2 | 0 | 0 | 4 | 1 | 2 | 6 | 1 |
BPS of the Super-Cartesian Tree of the LCP Array

\[BPS_{sc} = (((()) ((()) (())))) ((())) \]

\[\text{LCP} = 0 \quad 0 \quad 0 \quad 3 \quad 0 \quad 1 \quad 5 \quad 2 \quad 2 \quad 0 \quad 0 \quad 4 \quad 1 \quad 2 \quad 6 \quad 1 \]
BPS of the Super-Cartesian Tree of the LCP Array

$$\text{BPS}_{sct} = (((()) (() (())) (() (())))$$

LCP =

| 0 | 0 | 0 | 3 | 0 | 1 | 5 | 2 | 2 | 0 | 0 | 4 | 1 | 2 | 6 | 1 |
BPS of the Super-Cartesian Tree of the LCP Array

\[\text{BPS}_{sct} = ((((()) (()) (()))) (() (())) \]

\[\text{LCP} = \begin{array}{cccccccc}
0 & 0 & 0 & 3 & 0 & 1 & 5 & 2 & 2 \\
0 & 0 & 4 & 1 & 2 & 6 & 1 & &
\end{array} \]
BPS of the Super-Cartesian Tree of the LCP Array

\[
\text{BPS}_{sc} = (((((((()))))((()))) ((()))
\]

\[
\text{LCP} = \begin{array}{cccccccc}
0 & 0 & 0 & 3 & 0 & 1 & 5 & 2 & 2 & 0 & 0 & 4 & 1 & 2 & 6 & 1
\end{array}
\]
BPS of the Super-Cartesian Tree of the LCP Array

\[
\text{BPS}_{\text{sct}} = (((() (() ())) (() (()))))
\]

\[
\text{LCP} = \begin{array}{cccccccc}
0 & 0 & 0 & 3 & 0 & 1 & 5 & 2 & 2 & 0 & 0 & 4 & 1 & 2 & 6 & 1
\end{array}
\]
BPS of the Super-Cartesian Tree of the LCP Array

\[
\text{BPS}_{\text{sct}} = (((() (() (()) (() (()) ()))))
\]

\[
\text{LCP} = \begin{array}{cccccccc}
0 & 0 & 0 & 3 & 0 & 1 & 5 & 2 & 2 & 0 & 0 & 4 & 1 & 2 & 6 & 1
\end{array}
\]
BPS of the Super-Cartesian Tree of the LCP Array

\[
BPS_{sct} = \begin{pmatrix}
(& (& (&) &) & (& (&) &) & (&) &) & (&) &) & (& (&) &) &) &)
\end{pmatrix}
\]

\[
LCP = \begin{pmatrix}
0 & 0 & 0 & 3 & 0 & 1 & 5 & 2 & 2 & 0 & 0 & 4 & 1 & 2 & 6 & 1
\end{pmatrix}
\]
BPS of the Super-Cartesian Tree of the LCP Array

\[\text{BPS}_{\text{sc}} = (((() (((())))))) \]

\[\text{LCP} = 0 \quad 0 \quad 0 \quad 3 \quad 0 \quad 1 \quad 5 \quad 2 \quad 2 \quad 0 \quad 0 \quad 4 \quad 1 \quad 2 \quad 6 \quad 1 \]
BPS of the Super-Cartesian Tree of the LCP Array

\[
\text{BPS}_{\text{sct}} = (((()) (()) (()) (()) (()) (()) (()) (())))
\]

\[
\text{LCP} = \begin{array}{cccccccc}
0 & 0 & 0 & 3 & 0 & 1 & 5 & 2 & 2 & 0 & 0 & 4 & 1 & 2 & 6 & 1
\end{array}
\]
BPS of the Super-Cartesian Tree of the LCP Array

\[
\text{BPS}_{sct} = (((()) (() (()) (() (())) (())) (())) (())) (())) (()))
\]

\[
\text{LCP} =
\begin{array}{cccccccc}
0 & 0 & 0 & 3 & 0 & 1 & 5 & 2 & 2 & 0 & 0 & 4 & 1 & 2 & 6 & 1
\end{array}
\]
BPS of the Super-Cartesian Tree of the LCP Array

$$\text{BPS}_{sct} = \left(\right) \right) \right) \right) \right) \right) \right) \right) \right) \right)$$

$$\text{LCP} = \begin{array}{cccccccc}
0 & 0 & 0 & 3 & 0 & 1 & 5 & 2 & 2 & 0 & 0 & 4 & 1 & 2 & 6 & 1
\end{array}$$
BPS of the Super-Cartesian Tree of the LCP Array

\[\text{BPS}_{sct} = ((((((((((((((((((()))))))))))))))))]

| LCP | | | 0 | 0 | 0 | 3 | 0 | 1 | 5 | 2 | 2 | 0 | 0 | 4 | 1 | 2 | 6 | 1 |

Simon Gog:
Text Indexing: Lecture 7

Institute of Theoretical Informatics
Algorithmics
Blackboard: Linear time construction algorithm
BPS of the Super-Cartesian Tree of the LCP Array

Operations:
- Next smaller value \(nsv(i) \): ?
- Previous smaller or equal value : ?
- Previous smaller value \(psv(i) \): ? (add additional bitvector)
- parent operation in the lcp-interval tree can be solved with \(nsv(i) \) and \(psv(i) \)
- Find \(\ell \)-indices: ?
- RMQ: ?

See Chapter 6.3 in [4].

