
Engineering Succinct Predecessor Data
Structures

Master Thesis of

Jan Benedikt Schwarz

at the Department of Informatics

Institute of Theoretical Informatics, Algorithm Engineering

Reviewer: Prof. Dr. Peter Sanders

Second reviewer:

Advisor: M.Sc. Hand-Peter Lehmann

Second advisor: Dr. Florian Kurpicz

12.01.2023 – 12.07.2023

I declare that I have developed and written the enclosed thesis completely by myself. I have

submitted neither parts of nor the complete thesis as an examination elsewhere. I have not

used any other than the aids that I have mentioned. I have marked all parts of the thesis that

I have included from referenced literature, either in their original wording or paraphrasing

their contents. This also applies to �gures, sketches, images and similar depictions, as well as

sources from the internet.

Ort: Karlsruhe, Datum:

. .

(Jan Benedikt Schwarz)

Abstract
We implement and modify the predecessor data structure of Sarel Co-

hen et al. to allow predecessor queries using $ (logF/;>6F =) probes with no

restrictions on = in $ (log=) time using 1% additional memory. These modi-

�cations include building a tree with W-Nodes as inner nodes. Furthermore,

we implement a portion of the predecessor data structure described in the

attachment of “Optimal lower and upper bounds for representing sequences”

by Belazzougui et al. and provide insight on the problems of the original

de�nition.

To evaluate our implementations we conduct experiments with di�erent

values for F and compare their performance with other, more established,

predecessor data structures. Our experiments show that for the currently

common 64-Bit architectures W-Nodes are only bene�cial if accessing data is

a major time bottleneck.

Zusammenfassung
Wir implementieren und modi�zieren die Vorgänger Datenstruktur von

Sarel Cohen et al, was uns erlaubt Vorgängeranfragen mit $ (logF/;>6F =)
Zugri�en auf den Speicher in $ (log=) Zeit zu beantworten, ohne die maxi-

male Anzahl an Elementen einschränken zu müssen. Dies wird durch den

Aufbau eines Baumes mithilfe von W-Knoten erreicht. Der für diese Daten-

struktur erforderliche Speicher kann weniger als 1% des Speichers, der für

die ursprünglichen Daten erfordert wird, betragen.

Des Weiteren werden Teile des Anhangs aus “Optimal lower and upper

bounds for representing sequences” von Belazzougui et al. implementiert,

sowie auf die Probleme dieser Datenstruktur eingegangen.

Um unsere Implementationen zu beurteilen wird mit verschiedenen Werten

fürF experimentiert und die Performance mit bereits etabliert Datenstruktu-

ren verglichen. Unsere Experimente zeigen, dass W-Knoten bei den momentan

gängigen 64 Bit Betriebssystemen nur von Vorteil sind, wenn der Zugri� auf

den Speicher zeitlich stark eingeschränkt ist.

1

Contents

1 Introduction 3

2 Preliminaries 4

3 RelatedWork 5
3.1 Fusion Trees . 5

3.2 Van Embde Boas Trees . 7

3.3 W-Nodes . 8

3.3.1 Blind Search . 8

3.3.2 Benes Networks . 10

3.3.3 Bit Selector . 11

3.4 Belazzougui and Navarro’s Approach . 16

3.5 PGM-Index . 16

4 W -Node Implementation 17
4.1 Bit Selector . 17

4.2 Modi�ed Blind Search . 18

4.2.1 Search Range Reduction . 19

4.2.2 Smaller / . 19

4.2.3 Smaller Benes Networks . 19

4.2.4 Optimizations for large word sizes . 19

4.3 W-Tree . 20

4.3.1 Cuto� . 21

4.3.2 Node structure . 22

5 Analyzing Belazzougui and Navarros Approach 23

6 Other Implementations 26
6.1 Fusion Trees . 26

6.2 Rank Select . 26

7 Results 27
7.1 Setup . 27

7.2 Implementations . 28

7.3 Experiments . 28

8 Conclusion and Future Work 33

Bibliography 34

2

1 Introduction

The predecessor problem is an easy to understand problem that involves �nding the largest

element in a set that is equal or less than a given query element. While binary search provides

a straightforward solution, the problem is well researched as there are a lot of space-time

trade-o�s possible. Space consumption is an important aspect for any such data structure.

If the additional space a data structure is allowed to allocate is sublinear in the space of the

overall data, only a handful of data structures remain.

The current trend is to collect and store more and more data, resulting in an increased

memory usage, which can become pricey. If the used index requires linear or worse space

compared to the data, such costs would increase even more. Because of this, using an index

with sublinear space is a great alternative. The logical correctness and space requirements

of multiple such indices have been proven in theory. However, in practice, few have been

implemented. It is therefore necessary to implement, test and compare more of these indices

to allow for faster predecessor queries using less space.

The succinct data structure by Sarel et al.[3] can solve predecessor queries on a set of

size
F

log
2
F

in $ (logF) time using $ (1) probes. While impressive in theory, in practice 64-bit

architectures are the most common and for F = 64 the data structure only supports up to

8 elements. This in turn makes the constant factor omitted by the big-$-notation far more

important.

Our results show that a tree with nodes based on the structure by Sarel et al.[3] can be

bene�cial if a low number of data accesses is important. In this case, for 128 bit words, such a

tree is twice as fast as binary search while using less than 1% additional memory. If accessing

data is not a signi�cant time constrain, the structure demonstrates much slower performances

than its alternatives. We also show that the data structure in the attachment of “Optimal lower

and upper bounds for representing sequences” [2] is highly situational as the �rst step in it

can reduce the search range to a near constant factor if the distribution of the data is uniform,

or ine�cacious if the distribution is highly concentrated around a few values. Should the

distribution be uniform the described rank select data structure on its own, paired with a

binary search, performs remarkably while occupying little memory. The reduced asymptotic

space of the van Emde Boas tree in the second step is often ine�ective because of large constant

factors if the universe is not densely populated.

3

2 Preliminaries

Given a universe U, a set (⊂ U and an element 4 ∈ U, the predecessor of 4 in (is

pred(4) = max{G ∈ (|G ≤ 4}. For the static predecessor problem, (is provided at the

start and does not change over the course of time. In the dynamic case, insert and delete

operations have to be provided to allow for the addition and removal of elements in (during

runtime.

The predecessor problem can be solved optimally in the comparison model by using a binary

search tree, however it is more complex in RAM models, in which all elements ofU can be

represented using a binary string of �nite length F . In these models the possible solutions

can vary in speed, occupied space, usage of randomization or multiplication and more. Should

space be disregarded, one can simply store the answer for every element in the �nite universe

of the model. If a data structure performs predecessor queries in Ω(log |(|) time, in most cases,

it can be replaced with a binary search to reduce the memory consumption.

In this thesis we assume that a universeU is a collection of integer numbers starting at 0

and ending at |U| − 1. The word sizeF = dlog
2
|U|e indicates how many bits are needed to

represent the elements of U. Given G ∈ U, the bit of G at index 8 is G8 , with G0 as the least

signi�cant bit and GF−1 as the most signi�cant bit. Given a list of indices � , G [�] is a element

that uses |� | bits with G [�]8 = G� [|� |−8] .
In general, the used memory can be split into two categories. In the �rst category are the

bits necessary to store the data itself without compression �(|(|, |U|) = dlog
2

(|(|
|U|

)
e. The

additional memory '(|(|, |U|) needed for the index will be labeled the redundant part. If used

correctly, '(|(|, |U|) can be used to reduce the time the index needs for operations. An index

with '(|(|, |U|) ∈ > (�(|(|, |U|)) is called succinct.

Multiple lower bounds for '(|(|, |U|) in relation to the time predecessor queries take are

shown by Mihai Pătraşcu and Mikkel Thorup in “Time-space trade-o�s for predecessor search”

[13].

The predecessor problem can also be reduced to a rank and select operation by storing

(as a bit array 0 of length |U| where 08 = 1 ⇐⇒ 8 ∈ (. A rank select data structure

provides two operations. rank1 (0, G) is the number of bits set to 1 ∈ {0, 1} in 0 up to index 8

and select1 (0, G) is the index of the Gth bit set to 1 in 0. The predecessor of G is pred(4) =
select1(0, rank1(0, 4) − 1). While select1 (0, G) and rank1 (0, G) can be computed in constant

time, in many cases (is much smaller thanU while 0 requiresU bits, making them impractical

for predecessor searches unless the bit array is compressed [11].

4

3 RelatedWork

3.1 Fusion Trees

One data structure that solves the predecessor problem is the fusion tree [7, 6]. Fusion trees

are very similar to B-Trees, but they have a branching factor of : = F4 |4 ∈ (0, 1). A node in

the fusion tree uses one word for every child it has to determine in which child a predecessor

search should continue. Because of the high branching factor, a specially designed compression

called sketching has to be used on each word to �nd the correct child in constant time.

To create the sketch, �rst de�ne a set (of : words. (is responsible for one node of the fusion

tree and contains one word for every child the node has. The words in (are then combined in

a trie. Such a trie will have k branches, with branches occurring at the levels 11, 12, ...1A |A ≤ :
of the trie. The perfect sketch of a wordF can be build using sketch(F)8 = F18 |8 ∈ [1, A], with

each sketch only using A bits. It is possible to distinguish all words in (from each other by

only using their sketches. In addition, sketches preserve order inside the set of words used to

build them ∀?, @ ∈ (: sketch(?) < sketch(@) ⇐⇒ ? < @.

The di�culty of creating sketches is that there is no obvious way for extracting the bits

F11,F12, ...F1A and storing them in a compact block in $ (1) time. A non-perfect sketch is a

sketch that contains more than A bits, these additional bits are not used for anything but can

allow a faster calculation of a sketch. Fredman and Willard showed a method for non-perfect

sketches in the special case of : = F
1

5 . They �rst prove that for any combination of the integers

11, 12, ...1A , a sequence of integers<1,<2, ...<A exists such that:

<1 + 11 < <2 + 12... < <A + 1A , (3.1)

<8 + 1 9 is distinct ∀8, 9 ∈ [1, A] (3.2)

(<A + 1A) − (<1 + 11) = $ (F
4

5) (3.3)

Calculating this sequence is slow. However, it only has to be calculated once, when the fusion

tree is built.

To create a sketch of F , the unimportant bits from F are �rst removed using an AND

operation with ΣA8=12
18

, the result is multiplied with ΣA8=12
<8

. This shifts the important bits

closer together. To remove the unwanted bits created by the multiplication, another AND

operation, this time with ΣA8=12
<8+18

, is needed. Finally, everything is shifted to the right by

<1 + 11 bits and the sketch is the �rst<A + 1A −<1 + 11 bits.

A node D in a fusion tree stores the bit arrays ΣA8=12
<8

and ΣA8=12
<8+18

to create a sketch for

any word it is given. In addition, the sketch of every element ([8] in (is stored together as

one sequence sketch(D), separating each sketch(([8]) is a bit set to one.

sketch(D) = 1, sketch(([0]), 1, sketch(([1]), ..., 1, sketch(([: − 1]) (3.4)

5

Because a sketch has length $ (F 4

5) bits and there are $ (F 1

5) sketches, sketch(D) has a total

length of $ (F) bits. Given word @ and the number of bits a sketch of an element occupies 3 , a

node does the following calculation to compare the sketch of every child of D with @ in $ (1):

diff = (sketch(D) − sketch(@) · ΣF
1

5 −1
8=0 2

8 (3+1)) AND ΣF
1

5

8=12
8 (3+1)

(3.5)

Note that the two sums are part of the preprocessing and not calculated at runtime. For any

any index 8 ∈ [0, |(|), sketch(([8]) < sketch(@) implies that diff at index (|(| − 8) · (3 + 1)
is zero. Because of the mask applied to di�, the �rst child with a sketch bigger or equal the

sketch of @ can be found by searching the most signi�cant bit with a value of one in diff.

To �nd the predecessor of an element G in a fusion node one �rst searches the predecessor

of sketch(G). Using parallel comparison, one �nds an index 8 for which sketch(([8]) ≤
sketch(G) ≤ sketch(([8 + 1]) in constant time. Let ~ be either ([8] or ([8 + 1], whichever

shares a longer pre�x with G . ~ is not guaranteed to be the predecessor of G , but it shares the

longest common pre�x (LCP) with G out of all the elements in (. To �nd the predecessor a

second predecessor query on the sketches has to be done. De�ne 9 to be the length of the LCP

between G and ~ and use it to form a new element A :

A = G0, G1..., G 9−1 +
{
0, 1F− 9−1, if G 9 = 1

1, 0F− 9−1, otherwise

(3.6)

Using parallel comparison one can now �nd an index 9 such that sketch(([9]) ≤ sketch(A) ≤
sketch(([9 + 1]). The predecessor of G is either ([9] or ([9 + 1].

The �rst step of building a fusion tree on a sorted set (′ of any size is the creation of fusion

nodes on every : consecutive elements of (′ to create the leaves of the tree. In the second step

the smallest element of every fusion node from the previous step is used to created the next

level of the tree. This is repeated until one fusion node remains, which will be the root of the

tree. To �nd the predecessor of @ in (′, one repeatedly searches for the child of a fusion node

responsible for it, starting at the root.

For example, using F = 20 and (= { 01000000000000000110, 01000000000000000111,

01001000000001000000, 01001000000001000001, 01001000000001000010 }, one can build the

fusion node depicted in Figure 3.1. The sketch of a word only contains the bits at index 15, 1

and 0. Thus the perfect sketches of the elements in (are 010, 011, 100, 101 and 110. The fusion

node would therefore store the word sketch(() = 10101011110011011110. When searching

the predecessor of e.g. 4 = 01100000100001000111, �rst sketch(4) = 011 is computed. The

sketch of 4 is then multiplied sketch(4) · 00010001000100010001 = 00110011001100110011

and subtracted from sketch((), resulting in the word 01101000100110101011. After applying

the mask one gets 00001000100010001000. The �rst bit set to one is at index 15, which is

responsible for ([1]. ([1] and ([1 − 1] share the same LCP of length 2 with 4 . Because the

third most signi�cant bit of 4 is one, @ is 01011111111111111111. After making a sketch of @,

multiplying it and subtracting it from sketch((), one �nds out that after applying the mask all

bits are set to zero. Therefore all elements are smaller than 4 and the biggest element in (is

the predecessor.

6

Figure 3.1: Example for the tree of a fusion node with

(= { 01000000000000000110, 01000000000000000111, 01001000000001000000,

01001000000001000001, 01001000000001000010}.

3.2 Van Embde Boas Trees

Van Embde Boas (vEB) Trees were introduced by Peter van Embde Boas in his paper “Preserving

order in a forest in less than logarithmic time” [4] in 1975.

Given a set (∈ U, the root of the vEB tree splits every element G in (into a high and low

part. high contains the
F
2

most signi�cant bits high(G) = GF−1, GF−2, ..., GF/2 and low the
F
2

least signi�cant bits low(G) = GF/2−1, GF/2−2, ..., G0. Elements with the same high part form

clusters together. For every cluster the root has a child which has universe [0, 2F/2) and

contains the low part of all elements in the cluster. In addition, the root has one more child,

called the summary. The summary contains all the di�erent high parts as elements and also

operates on the universe [0, 2F/2). All children of the root repeat this process of splitting

its elements in half on their smaller universe, recursively halving the element size in every

iteration. The predecessor of an element 4 is either in the cluster responsible for high(4) or is

the biggest element in the cluster responsible for the predecessor of high(4) − 1, which can

be found using the summary. A predecessor search �rst searches for the node responsible

for high(4) and, if said node exists and its smallest element is not bigger than 4 , continues

by searching the predecessor of low(4) inside it. Otherwise, it searches the predecessor of

high(4) − 1 in its summary vector, this will return high(pred(4)). To �nd low(pred(4)) one

searches the child responsible for high(pred(4)) for its biggest element. In order for the vEB

tree to achieve $ (logF) time, the nodes have to store the maximum and minimum element

they contain directly. This allows the predecessor searches recursion to not split as it either

continues in the child responsible for high(G) or the summary, but never both.

There are several ways of �nding the position of the child responsible for high(4). While

pointers to all possible children can be stored directly in their parent node, for large universes

7

it is often preferred to use hashing to reduce the redundant space to linear [17]. If hashing is

used, the high part of every non-empty cluster functions as key and the pointer to the node

responsible for said cluster as value. This still allows access times in constant time while

removing the need to reserve space for pointers to empty clusters [13].

The asymptotic time of $ (logF) of the vEB tree can be further reduced to $ (logF

log logF
) with

the modi�cations by Beame and Fich [1], however, this requires quadratic space.

3.3 W -Nodes

W-Nodes were introduced by Sarel Cohen et al. [3] in 2015 as successors to U- and V-Nodes,

which were also presented in the same paper. A W-Node can solve predecessor queries by

employing $ (1) probes in $ (logF) time. However, its capacity is limited to only $ (F
logF
)

elements. To �nd the predecessor of an element G , the W-Node �rst searches the element which

shares the longest common pre�x (LCP) with G amongst all elements within the W-Node. This

search is called a blind search (subsection 3.3.1) by Sarel Cohen et al. [3] and the element found

by the blind search is noted as 1:4~ (G) and is positioned at index 1B (G). To determine ?A43 (G),
an intermediate element I is required. Let 1 represent the bit of G immediately following the

LCP it shares with 1:4~ (G). I is composed of the LCP shared by G and 1:4~ (G) in its most

signi�cant bits, followed by a repetition of 1 to �ll all the remaining less signi�cant bits.

The predecessor of G is either 1:4~ (I) if 1:4~ (I) ≤ G or at index 1B (I) − 1. If 1B (I) = 0 and

1:4~ (I) > G , no predecessor exists. One probe on the elements is required for calculating I,

and another is required for comparing 1:4~ (I) with G . No other probes are required to �nd

the index of the predecessor and therefore the total number of probes is constant. The blind

search can be performed in $ (logF) time and requires $ (F) space (subsection 3.3.1).

Since W-Nodes have a limited capacity of up to $ (F
logF
) elements, Sarel Cohen et al. [3]

propose a strategy of partitioning the bigger sets of elements into blocks. Within each block, aW-

Node is utilized for predecessor searches. To determine the block that contains the predecessor,

a di�erent algorithm can be used. The suggested algorithms for this purpose include fusion

trees [7], y-fast-tries [18] and the optimal structure proposed by Pătraşcu and Thorup[13].

3.3.1 Blind Search

Given a sorted set (of elements ~0 < ~1 < ... < ~: with : < log
2
(F) and an element G , a W-Node

�rst builds a blind trie using the elements of (. A blind trie is a tree with |(| leaves, each

representing one element in (. An internal node D of the trie contains the index 8D of the bit

right after the LCP that all leaves below it share. D has two children, the leaves which are an

ancestor of the left child of D have a zero at index 8D and the leaves which are an ancestor of

the right child of D a one. Let �@@∈[0,:] be the indices of the nodes on the path from the root of

the trie to the leaf representing ~@ . A blind search of G starts by searching the range ! = 0

to ' = : and halves this range in every step by checking if G is smaller than the element at

index @ = ! + b'−!
2
c, the middle of said range. For this it compares G [�@] with ~@ [�@]. If G [�@] is

greater, the range is reduced to [! +@ + 1, '] and if it is less the range is reduced to [!, ! +@− 1].
This pattern is repeated until the two terms are equal, at which point the search ends and the

current index is returned.

8

Figure 3.2: Example for a trie with (= 00101, 00110, 00111, 10001, 10010, 10011, 11101. The bits

with lower opacity are irrelevant for the structure of the blind trie and not stored

in it.

In each step the blind search has to compute G [�@] and ~@ [�@] in constant time. This is

achieved by splitting both into two parts. The �rst parts, composed of the most signi�cant

bits, can be taken from a previous step. At any point, the path from the root to @ shares its

�rst nodes with the path to ! and ', but it shares longer path with either ! or '. Without

loss of generality, let @ share more inner nodes with !. Both G [�!] and ~! [�!] have been used

in a previous step, thus one can simply copy the �rst bits of both into G [�@] and ~@ [�@], for

the �rst iteration they are precomputed. To know how many bits @ and ! share, a array 9; is

precomputed which stores said information for every element in the W-Node. A similar array

9A which contains the length of the LCPs between the possible @ and ' combinations has to be

stored as well. This also provides a convenient way of checking whether @ shares a longer

path with ! or ' in the trie, as 9; [@] can be compared with 9A [@].
To get the bits at the later indices �̃@ of �@ , which are not shared with ! and ', a di�erent

approach is needed for G [�̃@] and ~@ [�̃@]. For ~@ [�@] the bits are computed for all elements in

(during the preprocessing and stored in a bit array / . To know where the bits of element @

begins, a second array B is used which stores the pre�x sum of the sizes of �̃@ , B@ =
∑8≤@
8=0
|�̃8 | and

therefor ~@ [�̃@] = / [B@−1, B@−1 + 1, ..., B@ − 1].
To get G [�̃@] a bit selector is used on G to create - = G [�̃0, �̃1, ..., �̃:]. - is computed at the

start of the blind search in time $ (logF) using the bit selector by Sarel Cohen et al. [3]

(subsection 3.3.3). To extract G [�̃@] from - the pre�x sum array B is used.

9

By concatenating the bits known from the previous steps with G [�̃@] or ~@ [�̃@] one can

compute G [�@] and ~@ [�@] to compute which of the two is bigger and reduce the search range

accordingly.

An example of a trie is depicted in Figure 3.2. For (=00101, 00110, 00111, 10001, 10010,

10011, 11101 the indices along the left most path are � (00101) = [4, 1] and � (11101) = [4, 3]
along the right most path. The �rst element that the blind search inspects is the median

element @ = 100011 with � (@) = [4, 3, 1]. � (@) shares a longer pre�x with � (11101) than it does

with � (00101). Therefore, the pre�x that � (@) shares with � (11101) is removed to calculate

�̃ (@) = [1] and ~@ [�̃ (@)] = 0.

The bit selector, B and / all require $ (F) space and |(| ∈ $ (F
logF
). However, while imple-

menting the above described W-Node, we noticed that the constant factor obscured by the

big-$-notation is larger than one and thus some values did not �t into one machine word.

To �x this a slightly di�erent method was used which still has the same time complexity but

allows all operations to be handled in one machine word (see chapter 4).

3.3.2 Benes Networks

A Benes network is a communication network composed of a number of switches which have

two inputs (G1, G2) and two outputs (~1 and ~2) [10]. Each individual switch can either connect

G1 to ~1 and G2 to ~2 (direct) or connect G1 to ~2 and G2 to ~1 (crossed).

In the context of Sarel Cohen et al. [3] and this work a Benes network is used to realize a

permutation ? on the bits of an element 4 such that ? (4)8 = 4?8 .
Benes networks can be de�ned recursively. A 1-Benes network is a single switch with two

inputs and outputs. A (A + 1)-Benes network has 2
A+1

inputs and outputs, it consists of two

layers of 2
A

switches with two A -Benes networks (�0, �1) between them. In the �rst layer,

for @ ∈ [0, 1] the output ~@ of switch 8 is connected to the 8’th input of �@ . Mirrored, the 8’th

output of �@ is the input G@ of the 8’th switch in the last layer. In the �rst layer of a A + 1-Benes

network the �rst input of switch B8 is 48 and the second input is 48+2A . In the last layer, the �rst

output of a switch B8 is ? (4)8 and the second output is ? (4)8+2A .
Any permutation of 2

A
bits can be realized with a A -Benes network [10]. If A ≤ F/log

2
(F),

each layer can be computed in parallel and the total time for a permutation is in $ (A) using

$ (F) space [3]. The permutation of two bits can be realized by a 1-Benes network by using

either a crossed or direct switch. The creation of a (A + 1)-Benes network for permutation ?

can be split into two repeating phases. In the �rst phase, a con�guration for the switches of the

�rst and last layer is computed such that a permutation for �1 and �2 exists which allows the

two layers in conjunction with �1 and �2 to realize ? . In the second phase, these permutations

are calculated and used to compute the A -Benes networks �1 and �2.

A valid switch con�guration can be found using the following method: Find a switch with

no con�guration in the left layer B;8 and set it to direct, thus the bit 48 will be sent to �0. Set

the permutation of �0 such that 48 is at output ?8 mod 2
A

thus 48 will be sent to the switch

BA?8 mod 2
A in the last layer, which is responsible for out output ?8 . The switch is set to either

direct if ?8 < 2
A

or crossed otherwise. Now we have to make sure that the second input of

BA?8 mod 2
A is sent to �1 by setting the con�guration of another switch B; 9 in the �rst layer. The

second input of BA?8 mod 2
A has to go through �1 because it is impossible to connect it to the

switch otherwise, as a switch in the last layer always gets one input from �0, which it already

10

Figure 3.3: Contruction of a (A + 1)-Benes net-

work, source: [10]. The source was

slightly edited, as the original im-

plies that a A -Benes network always

has four inputs and outputs.

Figure 3.4: Example of a 3-Benes Network

with the permutation [2, 7, 4, 3, 5,

6, 0, 1].

does, and one from �1 (and there is no communication between �0 and �1). After this has been

done, two possibilities arise. The �rst possibility is that B; 9 is actually the switch B;8 , which the

algorithm started with. In this case we either repeat the process with a new switch, assuming

there are still switches with no con�guration, or go into stage 2. In the case of B; 9 ≠ B;8 , it

indicates that the other output of B; 9 now �ows into �0, and we must ensure that it ends up

at the correct position. This can be achieved by repeating the previously described process.

Once all switches in the �rst and last layer have a con�guration, it is time to calculate the

permutations of �0 and �1. Let (̃ be the set of indices of switches in the �rst layer that are set

to crossed. We now de�ne a new permutation ?̃ for the two inner Benes-networks:

?̃8 =

{
?8 mod 2

A (8 mod 2
A) ∉ (̃

? (8+2A) mod 2
A mod 2

A (8 mod 2
A) ∈ (̃

(3.7)

The permutation of �0 is ?̃ [0, 1, ..., 2A − 1] and for �1 it is ?̃ [2A , 2A + 1, ..., 2A+1 − 1].

3.3.3 Bit Selector

Given an element G ∈ U and a list ! of indices [80, 81, ..., 8=] | 8 9 < F,∀9 ∈ [0, =], the elements

composed of the bits inG at the indices in! isG [!] = [G80, G81, ..., G8=]. A bit selector is a algorithm

that computes G [!]. The simplest bit selector algorithm extracts each bit individually, requiring

$ (|! |) time. The bit selector introduced by Sarel Cohen et al. [3] only requires $ (| logF |)
time but requires |! | ≤ F

log
2
F

. It makes multiple uses of Benes networks [10] to rearrange bits.

The bit selector is split into 8 phases, with the �rst 5 phases being used to shift the selected

bits to the front, the 6th and 7th to duplicate bits whose indices occur multiple times in ! and

the last phase to shift the bits to the correct position. The bits of G can be split intoF/log
2
(F)

11

(a) Benes network with no con�guration for the

switches, the lables at the outputs on the right

indicates the the input that should be connected

to it.

(b) In the �rst step B;0 is set to direct and as a

consequence BA1 is set to crossed.

(c) Because BA1 was set to crossed, the forth bit of

the input has to be sent to �1, therefore B;1 is set

to direct.

(d) Because B;1 was set to direct, the third bit of

the input is sent to �0 and BA0 has to be set to

direct.

(e) BA0 was set to direct, thus the �rst input has

to be sent to �1 by setting B;0 to direct. This is

already the case and the algorithm ends because

all switches have a con�guration.

Figure 3.5: Example for a 2-Benes network construction using ? = [2, 1, 0, 3].

12

consecutive blocks 10 to 1log
2
(F)−1 with the length log

2
(F). A bit G8 is part of block 1 b8/log

2
(F)c .

Phase 0, Removing unimportant bits: For the bit selector, all bits whose index does not appear

in ! are unimportant and removed in the �rst step. To achieve this, a mask " is created whose

bits are 1 at the indices in ! and 0 everywhere else, G′ = G AND " .

Phase 1, Packing bits inside their block: All important bits are shifted to the left most positions

inside their block while keeping their order. For this a loop with log(F) iterations is used. In

each iteration 8 , the rightmost 8 bits of each block are shifted one step to the left if the bit there

is not important, or stay the same if said bit is important. Each iteration of the loop can be

computed in constant time.

Phase 2, Sorting blocks by their important bits count: All blocks are sorted in descending

order by the number of important bits they contain. Note that a block is sorted by the amount

of bits that are important and it does not matter if the index of a bit occurs multiple times in

!. For the sorting, a modi�ed Benes network (subsection 3.3.2) that works on blocks instead

of bits is used. The Benes network can be computed during the initialization and only takes

$ (logF) time when a predecessor query is made.

Phase 3, Dispersing the bits: In this step every important bit is assigned to a single, distinct

block of x and moved to the blocks left most position. The position of this block depends on

the block the bit is currently in, the index it is at and how �lled the other blocks are. Bits at the

�rst index of their block are not moved, all bits at the second index of their block are shifted

at the same time by the same amount of bits such that the bit in the �rst block will be in the

empty block next to the �rst non-empty block. This is repeated for the bits at the third index

of their block and so on.

Phase 4, Compacting the bits: The bits are moved to the left most positions. If there are =

important bits they should occupy the bits at indices G0 to G=−1 after this phase, thus occupy the

left most @ = d =
log

2
(F) e blocks. First the @ − 1 left most blocks are �lled in parallel in $ (logF)

time. They already start with a important bit in their left most bit. To �ll the second left most

bit, the blocks 1@−1 to 1@+@−3 are shifted to the left by log
2
(F) · @ − 2 bits and added to the �rst

@ − 1 blocks. Now the two left most positions of the �rst @ − 1 blocks contain important. The

process is repeated log
2
(F) − 2 times to �ll the block entirely. Finally, to partially �ll the last

block 1@−1 the bits of the remaining blocks, which did not get added to the previous blocks, are

added individually to 1@−1.
Phase 5, Spacing the bits: Some bits have indices that appear multiple times in ! and will be

duplicated in phase 6. In this step we prepare for the duplication by creating empty spaces after

bits that will be duplicated. This is achieved by a Benes network that takes the = important

bits that are all positioned at very left, plus a few extra bits to the right of them, and moves the

extra bits (which are all zero) in between the important bits such that they appear right after

the bits that have to be duplicated.

Phase 6, Duplicating bits: The bits with indices that appear multiple times in ! get duplicated.

For this a loop is repeated log
2
(F
log

2
F
) times. In the �rst iteration of the loop, all bits whose

index appears at least
F

log
2
F
+ 1 times are duplicated. The original stays at its position, the copy

is stored
F

log
2
F

positions to the right of its original. In the next iteration the same is repeated

with bits that appear at least
F

2·log
2
F
+ 1 times. In addition, the duplicates of the previous steps

might have to be duplicated again depending on how often their original’s index appears in !.

To duplicate bits, �rst a mask is applied to remove all bits that will not be duplicated in the

13

Figure 3.6: Example for step 6, all important bits are 1 at the beginning and every 0 is an empty

space created in the previous step.

current step. The remaining bits are shifted to the right and added to the word. The masks

for each step are computed during the initialization of the node and require $ (F) space. An

example for step 6 is depicted in Figure 3.6.

Phase 7, Moving the bits to their �nal position. All bits at the indices in ! are now packed

together at the very left and occur as often as they are mentioned in !. However they are not

in the correct order, therefore a Benes network is used to move the bits to their �nal position.

Every step of the bit selector takes at most $ (logF) time and the total number of steps

needed is constant, thus in its entirety the bit selector also takes $ (logF) time. An example

for the result of each step is shown in Figure 3.7.

14

Figure 3.7: Example for all phases of the bit selector withF = 16, G = 10100000001000102 and

! = [13, 5, 6, 13].

15

3.4 Belazzougui and Navarro’s Approach

In attachment of the paper “Optimal lower and upper bounds for representing sequences”

Belazzougui and Navarro introduce a data structure which supports predecessor queries in

time$ (log F−log=
logF

) while using$ (= log(U/=)) memory. Their approach splits the predecessor

search into three stages. For the �rst stage a rank select index is built on a bit array � of size

= + 2blog2 =c . The array contains 2
blog

2
=c

bits that are set to zero and = bits that are set to one.

The 8’th zero is followed by a number of ones equivalent to the number of elements in the data

set (that have 8 as their most signi�cant bits.

In preparation for the second stage, (is split into up to blog
2
=c sets, where each set (8

contains all elements of (that share 8 as their most signi�cant bits. The elements have their

blog
2
=c most signi�cant bits removed before they are inserted into their respective (8 as these

bits equal 8 and are redundant. In the second stage a variation of the van Embde Boas tree

(vEB) [4] by Pătraşcu and Thorup [13] is built for each set. Each step in the vEB reduces

the key length by half and, in most cases, reduces the search range of the predecessor query

signi�cantly. Once all elements of a node �t into one word, the third stage begins. Here the

remaining elements, which have been reduced in size because of the vEB tree, are stored

consecutively in sorted order and separated by one bit which is set to 1. To �nd the predecessor

of 4 in the last step, �rst 4 is reduced to the bits that are signi�cant at the current node of

the vEB tree. These bits are then repeated, with one bit set to 0 in between each repetition,

to �ll out one word. The predecessor of G can be found by subtracting the word just created

using G from the previously mentioned word that has the bits set to 1 in between. After the

subtraction, some of the bits which were set to one �ip to zero. More precisely, all the bits set

to one that followed a element which was smaller than 4 �ip to zero. Because the elements are

sorted one can �nd the �rst bit which was not set to a�ected by the subtraction and knows

that is is the successor of 4 . The predecessor is either the successor or next to the successor.

All vEB trees are stored in one consecutive array � sorted by smallest element each tree

contains. For every vEB tree, � allocates memory equal to 2 multiplied by the number of

elements the tree contains. 2 is the minimum value for which all vEB trees �t into their

allocated memory, vEB trees that would require less memory are padded. To �nd the correct

vEB tree for a query element @, let @′ be the blog
2
|(|c most signi�cant bits of @. The vEB tree

containing the predecessor of @ starts at index 2 · (select0(�, @′) − @′) in �.

3.5 PGM-Index

The Piecewise Geometric Model index (PGM-index) [5] is a data structure that uses machine

learning to create a mapping between the data and its location in the memory. It allows a

variety of operations, including fast lookup, predecessor queries and range searches, while

using succinct space and also allowing dynamic insert and delete operations. The PGM-index is

a fully-learned index that makes use of compression and can be adaptive to both the distribution

of the data and the distribution of queries.

16

4 W -Node Implementation

Sarel Cohen et al. [3] suggests using the W-Node on blocks at the end of a predecessor query

and another predecessor data structure to �nd the correct block. In this paper we explore

the reversed approach, using a tree of W-Nodes (W-Tree) as the structure to �nd the correct

block. To �nd the predecessor inside a block we us a binary search, but for small blocks linear

probing is a valid alternative. This approach was chosen due to the high cache e�ciency of

accessing elements inside the same block. It doesn’t yield any bene�t to use a W-Node instead

of a binary search to reduce the required amount of probes on the elements if all probes of

the binary search were on elements very close to each other and thus already loaded into the

cache (Table 4.1). However, this is not the case for the initial probes a binary search does,

where each probe would likely result in a cache miss. It is also important to note that W-Nodes

have a much larger constant omitted by the big-$-notation. In practice, this makes them much

slower than binary search on small sets.

To fully leverage the advantages of W-Nodes,F has to be large (Table 4.2). Currently 32-bit

are 64-bit architectures are most commonly used, making W-Nodes less competitive. Larger

value ofF can still be used within these systems to increase the capacity of a W-Node, however

doing so leads to longer execution times for fundamental operations such as bit shifts and

additions.

4.1 Bit Selector

One of the reasons for the slow performance of W-Nodes is the high constant factor of the bit

selector omitted by the big-$-notation. ForF = 128, the bit selector has to execute three Benes

networks in addition to its own calculations in order to select a maximum of 16 bits from a 128

bit word. Instead, one could use a much simpler bit selector, which we will call a lazy selector
for its simplicity. The lazy selector picks each bit in ! individually and concatenates them.

This is achieved in $ (|! |) time using a loop. While the asymptotic time is worse, the constant

Index Search Time

Binary Search 36 ns

W-Node 536 ns

W-Node with skip selector 352 ns

W-Node with lazy selector 244 ns

Table 4.1: Average query time for a W-Node using di�erent selectors in comparison to binary

search usingF = 64 and |(| = 8.

17

F W<0G (F)
16 4

32 4

64 8

128 16

256 32

1024 64

2048 128

4096 256

Table 4.2: Maximum number of elements inside a W-Node (W<0G (F)) for a given word sizeF .

factor is smaller compared to the selector by Sarel Cohen et al. Because |! | ≤ F
log

2
F

the lazy

selector requires only
F

log
2
F
· log

2
(F) = F bits and is therefore smaller in size as well.

We also implement a third bit selector, which makes use of both the lazy selector and the

selector by Sarel et al. It replaces the steps 0 to 5 with a lazy selector, skipping the execution of

two Benes networks as well as a few other steps, and will be labelled skip selector. Skipping

steps 0 to 4 is very simple and the lazy selector does not have to be modi�ed at all. However

the �fth step adds spacing between the selected bits for which we have to slightly modify the

lazy selector. In addition to !, a second list !̃ which stores how many bits should be empty

between ![8] and ![8 + 1] is stored. The skip selector picks ![8] in ascending order of 8 , adds it

to the temporary result and then shifts the temporary result by !̃[8] + 1. Because the required

empty space between two selected bits is never larger than
F

log
2
F

, the required space to store !̃

is log
2
(F
log

2
F
) · F

log
2
F

, which is less than F bits. This provides multiple bene�ts, �rst are the

reduced space requirements and time constants because the steps 0 to 5 are skipped. The

second is the skip selectors asymptotic time, which is no longer in$ (|! |) like the lazy selector,

but in $ (<0G (logF, |unique elements in ! |), the �rst factor logF is due to step 6 and 7. The

second factor comes from skipping step 0 to 5, as the modi�ed lazy selector selects any bits

with an index mentioned in ! once and moves it to a di�erent, prede�ned, position. The �nal

bene�t only applies ifF is larger than the word size of the architecture used but
F

log
2
F

is not. In

this case step 6 and 7 can still be computed using
F

log
2
F

sized words and are therefore relatively

fast, while the lazy selector which skips steps 0 to 5 does not slow down signi�cantly ifF is

larger than the architecture.

4.2 Modified Blind Search

In this thesis the blind search of the W-Node was modi�ed in multiple aspects. First, the

search range reduction was changed because of an assumed oversight in the original paper

(subsection 4.2.1). Secondly we reduced the size of / (subsection 4.2.2). Lastly we added the

nodes in the left and right most path of the trie, which are needed for the �rst iteration of the

blind search, to the bit selector. Some optimizations where also added for word sizes larger

than the operating system’s architecture (subsection 4.2.4).

18

4.2.1 Search Range Reduction

In the paper by Sarel Cohen et al. [3], each step of the blind search reduces the search range

from [! , '] to [!, b !+'
2
c − 1] or [b !+'

2
c + 1, ']. They also claim that in every iteration both

G [�!] and G [�'] are known. While one of these two variables can be copied from the last

iteration, because either ! or ' stay unchanged, there is no indication on how G [b !+'
2
c + 1] or

G [b !+'
2
c − 1] could be found. However, the subtraction/addition of 1 could be removed and

b !+'
2
c as the left/right bound used for the next iterations search range instead. In this case

G [b !+'
2
c] can be easily found because it is calculated in the current iteration. Asymptotically

the search range still converges logarithmically but it requires more loop iterations. The

termination condition also has to factor in the size of the search range because for the range

[!, ! + 1] @ equals ! and the range is unable to converge to [! + 1, ! + 1].

4.2.2 Smaller/

To calculate ~@ [�@] a section of either ~@ [�!@] or ~@ [�'@] is concatenated with ~@ [�̃@] according

to Sarel Cohen et al. [3]. This does not work. While @ and ' or ! share a path up to an inner

node D, they only share their pre�x up to the index right before the index of D. This is because

D is the node at which the two paths separate and thus the bit has to be di�erent. As a result

there is one bit missing when computing ~@ [�@]. This bit can be easily computed, because it is

known whether the �rst part of ~@ [�@] is copied from ~@ [!] or ~@ [']. If ~@ [!] was picked, the

bit has to be 1, because ! is to the left of @, and thus the path to @ has to split to the right side.

For the same reason the bit is 0 if ' was chosen.

4.2.3 Smaller Benes Networks

In the paper by Sarel et al. [3] the Benes networks are realized by using two bit arrays for every

layer. The direct bit mask is used to extract all bits that do not change position in the layer

and the crossed bit mask for all bits that do change positions. Storing both is unnecessary

because crossed and direct are the same except every bit is �ipped. Another trick, which

was not implemented in this thesis, halves the necessary memory again. The �rst and second

half of the bit arrays are the same. Thus one can only store the �rst half and reconstruct the

entire bit array by shifting the �rst half and then adding it to itself. When one concatenates

the bit arrays of every layer together, after using both methods to reduce memory, only
F
2

bits

are required, which is equal to the total number of switches in the Benes network and thus

optimal. Because our implementation used di�erent values for F , there was no convenient

way to store the
F
2

bits in a data type of the same size. Thus we choose not implement the

second size reduction and use the data type forF that was already available.

4.2.4 Optimizations for large word sizes

One of the word sizes we intensively used for the W-Node is 1024 because
1024

log
2
1024

= 64, which

is the word size of the architecture we used in our testing environment. The two bit strings

~@ [�@] and G [�@] used in each step of a blind search iteration are the dependent on �@ , which is

the path from the root of the trie to @ and is always smaller than |(|. Therefore, generating

19

~@ [�@] and G [�@] does not require emulating larger word sizes. The trie is also small enough

that the size of the concatenation (/) of all �̃@ is less or equal 64 bit and thus we can store

/ within one 64 bit word. The only sections where arithmetic operations on 1024 bit words

is needed are the generation of I, because I is a 1024 word, and the phases 0 to 4 of the bit

selector. While some of the data for the bit selectors is stored in 1024 bit words, it can be

extracted without using operations on 1024 bit words by �rst addressing the bytes that contain

the section of the data one needs, which will be spread over less than 8 byte, and only shifting

the 64 bit word that contains the entire section.

There is also the problem of accessing individual bits. For small values ofF , a bit shift can

be used to access a speci�c bit. However, this can be a signi�cant time loss if a machine’s

architecture is smaller than the word size. Let F ′ be the word size used by the machine’s

architecture. An element can be split into
F
F ′ blocks of size F ′. One can calculate the block

that contains the bit easily. An individual bit can be accessed by �rst extracting the block that

contains it by using pointer arithmetic. Then a bit shift on the block can be used to access the

bit itself.

4.3 W -Tree

W-Nodes on their own do not have many applications due to the limited size of (. To remove

this limitation we introduce the W-Tree, which is a tree with a high branching factor, elements

of (in its leaves and W-Nodes as its inner nodes. Let W<0G (F) be the maximum capacity of a

W-Node using word size F . To build a W-Tree, split (into blocks of size W<0G (F) and build a

W-Node on every block. Next build a W-Nodes on every W<0G (F) consecutive blocks, using the

smallest element of each block as representative for the block. This process is repeated until a

single W-Node, called root, is responsible for all elements. A predecessor search starts at the

root and can identify the child of the root that holds the predecessor in $ (logF) time while

probing (a maximum of three times. The search continues in said child of the root and repeats

this until it reaches a leaf, which will either contain the predecessor or the successor. With the

W-Tree having a height of logW<0G (F) |(|, this requires $ (logW<0G (F) |(|) probes on (. The time a

predecessor query takes is

$ (logF · logW<0G (F) |(|) = $ (logF · logF/logF |(|)

= $ (logF · log |(|
log(F/logF))

= $ (logF · log |(|
logF − log2F

)

= $ (log |(|

1 − log
2F

logF

)

(4.1)

and can be reduced to $ (log |(|) forF > 1 + n .

20

4.3.1 Cuto�

While the just described W-Tree minimizes the number of probes and has the same time

complexity as binary search, practically the W-Nodes on the lower levels of the tree are not

as e�cient as those near the root. This stems from the fact that these nodes are responsible

for elements that are stored closer to each other. If they are close enough, probes on them

cost very little time making algorithms such as binary search and linear probing much faster,

meanwhile the W-Nodes large overhead stays the same. Let us call the block size at which a

W-Tree switches from using W-Nodes to binary search or linear probing the cuto� 2 . Because of

the high branching factor of a W-Node, by far the most allocated space of a W-Tree is used by

its lowest level. As a result the cuto� is highly relevant when calculating the overall space

allocated by a W-Tree. On average, doubling the cuto� will halve the redundant space.

There are two ways to implement the cuto�. First is a bottom up approach, the W-Tree splits

the input into d |(|
2
e blocks and builds W-Nodes on top of these blocks. In this case the cuto� is

static and does not depend on the input size. This approach often leads to the W-Nodes at the

root not reaching its full capacity. It causes the time for predecessor queries to change little

when the input size is increased, up until a point where the current height of the W-Tree can

no longer support it and another layer is added, creating sudden jumps in its query times.

The alternative is a top down approach, in which �rst the root is created with the biggest

capacity possible, then on then the children of the root and so on, until a child would have less

than 2 leaves bellow it. At this point the cuto� is reached and the tree will switch to binary or

linear search. Because W-Nodes have a high branching factor the cuto� can be overshot by

a lot. Using this approach leads to smoother times for predecessor queried, however it also

introduces jumps in the allocated memory because after a cuto� is reduced, a lot of elements

can be inserted without adding another layer to the W-Tree by increasing the cuto�.

In theory the top down approach should perform better in terms of speed. The reason for

this is simple as a top down approach guarantees that as many nodes as possible are at high

capacity, which is optimal because a W-Nodes performance is practically independent of its

capacity. Meanwhile, the root in the bottom up approach is often at less than half capacity

and thus a tree of the same high could lead to a smaller search range for the binary search,

but doesn’t because the root’s branching factor is lower than it could be. For example, using

F = 128 and thus a maximum branching factor of 16, 2 = 32 and = = 100 the bottom up

approach creates 3 blocks of size 32 and one block of size 4, resulting in a branching factor of 4

in the root. The top down approach on the other hand would create 12 blocks of size 8 and one

block of size 4, leading to a branching factor of 13. Thus more often than not the predecessor

query, using one W-Node, reduces the search range to only 32 in the �rst case and 8 in the

second.

However, in practice the cache has to be considered as well. While a W-Tree with nodes at

low capacity does not reduce the search range as much as it could if its node were at high

capacity, the lowest level of the tree consist of less nodes. Fewer nodes mean that the tree might

�t into the cache in its entirety and thus will cause no cache misses, while a bad allocation

strategy might cause a lot of cache misses if the tree is too big. Should = be big enough the

speci�c cuto�, and whether it is dynamic or static, becomes less relevant. They only add a

constant overhead, which is overshadowed by the operations needed to traverse the rest of the

tree.

21

Our tests showed that the value for the cuto� is very lax when it comes to its impact on

the time a predecessor query takes (Figure 7.2). In general, it is bene�cial to use a high cuto�

because the memory requirements are lower.

4.3.2 Node structure

The nodes of a W-Tree are stored inside an array using the same structure has a heap. All nodes

on the same level of the tree are stored consecutively by the same order as the elements they

contain. The root is at the start of the array, followed by all nodes that are children of the

root, followed by all the children of these nodes and so on. Let @ be the node at which the

predecessor query is currently in the tree, 9 the size of the blocks in @, B the index of the �rst

node on the level below @ and A ∈ [0, |(|) be the rank that @ returns as predecessor. The node

in the next level that the predecessor query will look at is at index 8̃ = B + A
9 ·W<0G (F) . Using 8̃ the

W-Tree can be stored without any pointers to W-Nodes.

22

5 Analyzing Belazzougui and Navarros
Approach

The predecessor search described in the attachment of “Optimal lower and upper bounds

for representing sequences” [2] is split into three parts. In the �rst part the word size is

reduced fromF toF − blog
2
(=)c. Elements are split into sets using the �rst blog

2
(=)c bits as

separator. A rank select data structure is used to �nd the set which holds the predecessor. In

the attachment a variation of the vEB tree [4] by Pătraşcu and Thorup [13] is used to continue

the predecessor search on the sets. They use a vEB tree because of its fast asymptotic time,

however, many other predecessor queries could be used as well. The sets on which the vEB

trees are built can be as small as one element and the sizes and number of sets depends on the

distribution of elements.

Let the distribution be uniform random and the number of elements = a power of two. Let (′

be the set of unique pre�xes of length log
2
(=) of the elements in (. The proportion of elements

that are in (′ in relation to all possible elements with log
2
(=) bits is:

|(′|
2
log

2
=
=
2
log

2
= · (1 − (=−1

=
)=

2
log

2
=

= 1 − (= − 1
=
)= =→inf

=
4 − 1
4
≈ 0.632 (5.1)

and therefore the average vEB tree contains 1.58 elements. In this case it is much more practical

to use a linear or binary search because the number of elements is so low.

An opposite distribution would be one in which every element has the same �rst blog
2
(=)c

bits. In this case all elements end up in the same set and the rank select data structure’s only

bene�t is the reduction of the word sizes within the aforementioned set. Using a vEB tree can

be bene�cial in this case as its speed is more dependent onF than on the size of the set itself.

It is important to note that Belazzougui and Navarro’s approach is best used for small

universes and a large = as its size of $ (= · (log(D) − blog=c) and its speed of $ (log log(D/=)
log

2 D
)

bene�t from both.

The memory needed for a vEB tree of a single set is 2 (|(8 | (logD − log=′)) where 2 is some

constant. The bit array for the rank select data structure requires 2
blog

2
(=)c + = bits. The rank

select data structure itself has to be stored as well, which can be achieved with less 5% of the

memory the bit array requires [19].

23

The size of the overall data structure is highly dependent on 2 , which in turn dependents on

F and =, for example using D = 2
128

and = = 2
32

, the sizes of all vEB trees combined is:∑
8

2 (|(8 | (logD − log=′))

=
∑
8

|(8 | · 2 (logD − log=′)

= = · 2 (logD − log=′)
= 2

32 · 2 (128 − 32)
= 2

32 · 2 · 96

As a result, for 2 = 4

3
the memory usage by the vEB tree is the same as the memory used for

storing the elements of (. This is �ne as the vEB trees store the elements inside them as well.

However, for 2 = 8

3
the allocated redundant memory would be as big as the memory required

to store the elements of the set.

Each node in the vEB tree, responsible for elements withF ′ bits, consists of three parts, a

summary node, a collection of children and a dictionary to �nd its children. This dictionary

uses the �rst half of bits of an element as key and stores �ve values, these are the minimum and

maximum element in the child as well as their ranks and a pointer to the child. The minimum

and maximum element needF ′ bits, their rank log
2
= bits each and �nally the pointer to the

child. This pointer is stored di�erently and only uses one bit in the dictionary, indicating if it

is a null pointer or not.

For example, for (= [0 · 278, 1 · 278, ..., 225 · 278] and F = 128, (is the set that contains all

elements with the �rst 25 bits and last 78 bits set to zero. For this set the predecessor structure

of Belazzougui and Navarro [2] will store all elements in a single vEB tree. The �rst node of this

tree would have a 2
25

children. For every child the dictionary stores an entry, which has size

3 · 51+ 2 · 25+ 1 = 204. In addition a summary node is build on the upper 48 bits. The summary

will again have 2
25

children and entries in the dictionary require 3 · 25 + 2 · 25 + 1 = 126 Bits.

Therefore at least 329 bits are required for every element in (, which is an overhead of over

150%.

While it is unlikely this exact scenario occurs, �nding distributions that often cause 2 to be

quite large is not hard. If 2
F

is su�ciently larger than =, any vEB tree with 3 elements that

di�er in their most signi�cant bits has a large overhead. This is due to both the root and its

summary having 3 dictionary entries. The rank select data structure expects 2 to be the same

for all sets (8 . If a single vEB tree requires requires 2 to be large, all other vEB trees have to

padded so that their size is 2 multiplied with the number of elements they contain. This is due

to the method the rank select data structure uses to �nds the set that contains the predecessor.

It calculates how many elements are smaller than the smallest element in the vEB tree it wants

to access and then multiplies this number with 2 andF − blog
2
(=)c, the result is the position

at which the vEB tree with the predecessor will start.

For some distributions, vEB trees can also have a relatively low space requirement, even

lower than the original data. For example, when all elements in (share their �rst
F
2

most

signi�cant bits, the root only has a single child. All elements in this child are of size
F
2

,

e�ectively reducing the size of all elements in (by half using a constant number of bits.

24

Because of the interaction with 2 , the great performance of rank select data structures

on their own (Figure 7.3) and time constrains, we did not implement the rank select data

structure paired with the vEB tree as described by Belazzougui and Navarro. Instead, we

implement two predecessor data structures, the rank select data structure paired with binary

search (section 6.2) and the vEB tree on its own. Due to time constrains, the dictionaries

in the vEB tree were stored separately from the nodes, with every node storing a pointer

to its dictionary. Instead of a tuple it also only contains a pointer to the position of a child,

and said child contains the information normally stored in the tuple. This adds a constant

overhead because more pointer are stored. However this also reduced memory. When the

algorithm switches to parallel comparison, it is no longer needed to store both the minimum

and maximum rank because the distance of the two can be extracted from the word used for

the parallel comparison. On the other hand, a tuple would have to store both values anyways

because, as a member of a dictionary, it has to be of �xed size.

25

6 Other Implementations

6.1 Fusion Trees

The word sizes used in this paper do not allow a large branching factor for fusion nodes.

Using non-perfect sketches would reduces the branching factor even further, to a point were it

becomes redundant to use fusion trees in the �rst place. For this reason we are using perfect

sketches, for which we use the lazy selector introduced in section 4.1. By using perfect sketches

the fusion nodes achieve a branching factor 7, 10 or 31 forF = 64, 128 or 1024 respectively. In

addition we use the same structure as the W-Tree and switch to a binary search once the search

range is small enough.

6.2 Rank Select

A rank select data structure on the �rst< bits can drastically reduce the search range. Using

the bit array 0 decribed by Belazzougui and Navarro [2] (section 3.4), the search range of a

predecessor query for G can be reduced to the range:

start = select0(0, G >> (F −<)) − (G >> (F −<)) + 1 (6.1)

end = select0(0, (G >> (F −<)) + 1) − (G >> (F −<)) (6.2)

were >> is a bit shift to the right. One can now use a binary search on the range [start, end]

or begin a linear search at start. A linear search can be faster if the distribution is su�ciently

uniform because end is not needed and does not have to be computed. However, it is much

slower for distributions concentrated around a few points. For this reason we will be only

using binary search in this thesis.

26

7 Results

The predecessor data structures are evaluated on their space e�ciency and their speed. In this

thesis we evaluate the data structures for di�erent word sizes, data distributions and limitations

on the working memory.

7.1 Setup

The machine used for our experiments has two Intel Xeon ES-2650 v2 with a total of 12 cores

that run at 2.3 GHz. It uses a 30 MB Cache and a SATA 10000 hard drive as well as 128 GIB

DDR4-RAM. All implementations are written in C++ and single threaded.

In each experiment we measure the time it takes to search the predecessor of 10000 elements

and divide this number by 10000 to get the average predecessor search time. This was repeated

50 times and the median used as data point. The query elements and the elements in the

predecessor data structure are drawn from the same distribution, with 1% of the query elements

also appearing in the set for the data structure.

We evaluate the predecessor data structures for three di�erent word sizes. The �rst and

smallest word size is 64 bit. It was chosen because the architecture of the system for our

experiments is also 64 bit, allowing fast elementary operations like bit shifts and additions

while still giving us a branching factor of 8 for W-Nodes and 7 for fusion nodes. The second

word size is 128 bit, because there is a native integer data type using 128 bit in C++, still

enabling fast operations but increasing the branching factor. Lastly we use a word size of 1024

bit as it facilitates some optimizations for the W-Nodes (see subsection 4.2.4) and increased the

branching factor to 64 for the W-Node and 31 for the fusion node.

The data set (used for the experiments is generated from three di�erent distributions. The

�rst follows a uniform random distribution generated using the standard c++ library. The

second data set uses the longitude coordinates of points of interests in Italy and is taken from

OpenStreetMap [12]. This data set is only used for word size 64 because of its limited precision.

Lastly we use a set of URLs from 2001 obtained by the WebBase crawler [15] and �ltered by the

Laboratory for Web Algorithmics [9]. All URLs in this data set start with the pre�x "http://".

Because at least one predecessor data structure is heavily in�uenced by the distribution of the

most signi�cant bits we decided to split it into two. One with the original data and one with

the pre�x "http://" removed. In addition, the URLs are of di�erent length. URLs that can be

stored using less than 1024 bits have their remaining bits padded with 0. URLs that require

more than 1024 bit have their su�x cut of. If the removal of a su�x creates a duplicate, it is

removed from the set.

27

Figure 7.1: Speed of the predecessor queries on external memory

7.2 Implementations

For the rank select predecessor data structure we use the implementation by Florian Kurpicz

[8] for operations on the bit array. An implementation of the PGM-index was made public by

its authors. It can be found on github.com [14] and is used in our experiments. For the data

type with a word size of 1024 bit a generic C++ template from the Wide-Integer repository

[16] by Christopher Kormanyos is used.

7.3 Experiments

Experiments on internal memory In our �rst experiments (Figure 7.3) we make full use of the

working memory of the machine. Of the three selectors for W-Nodes, the lazy selector performs

the best in terms of speed on a 64 bit architecture. However, it is clear that its performance

lags far behind existing predecessor queries like the PGM-index or binary search. The rank

select data structure that switches to binary search has one of the fastest performances, and is

28

github.com

Figure 7.2: Performance of the W-Tree with a lazy selector for di�erent static cuto�s as well as

a dynamic cuto� of at least 32 on a uniform distribution withF=128.

faster than the PGM-index for a uniform distribution. However it is much more dependent on

the distribution of the data compared to a W-Tree and fusion tree.

Experiments on external Memory. To fully leverage the low number of element probes of the

W-Tree, we arti�cially reduce the working memory the machine has access to. We store data

for the predecessor index as well as (in two �les on the hard drive. This severely slows down

the time it takes to access data. We also add a small cache of 4096 Bytes to both of these �les

which will store the last accessed element as well as its neighbours. This allows faster access

times if consecutive data probes are in one vicinity. Unfortunately, the public implementations

for the PGM-index, the modi�ed vEB tree and the rank select data structure do not support

such a change. For this reason, the PGM-index and the modi�ed vEB tree are excluded from

the remaining experiments. The rank select data structure on the other hand will be included

because the binary search in the second part is still a�ected by our change, however it should

be noted that its �rst part still operates with no limitations and has an unfair advantage because

of it.

Our �rst experiments (Figure 7.2) using external memory are to determine the cuto� used for

the W-Tree. As one can see in the graph, the cuto� is very lax and the performances relatively

even between 32 and 256. Because of this we decided to use a static cuto� of 256 as it has

the least amount of redundant data to store. It is also interesting to note that the search time

does not always increase when the number of elements increases. This is a side e�ect of the

external memory and does not occur our tests for internal memory.

In our next experiment using external memory we compare the predecessor search time

of the data structures. Except for the very skewed distribution of the URLs with "http://" as

pre�x, the rank select data data structure performs the best. Nevertheless it has be noted again

that we were unable to limit the working memory the rank select structure itself uses because

we used an existing implementation, making it much faster than it would normally be. For

F = 64 and F = 128 the W-Trees with di�erent bit selectors are close to each other as they

29

all need the same amount of probes on the elements. ForF = 1024 this changes because the

memory requirements for the nodes di�ers much more and, for the bit selector of Sarel et al.,

computations are very slow because of the large word size.

The fusion tree performs similar to binary search because of its low branching factor. It has

to probe more elements in (and on the tree. In addition, a fusion node often requires one

more probe on the elements than its W-Node counterpart would.

Memory Requirements. Lastly we evaluate the memory required to store the di�erent data

structures. The memory required to store the indices is divided by memory used to store (. (

itself is not compressed and each value in (is stored individually, thus the total number of bits

used to store (is |(| ·F . Our experiments show that the PGM-index is by far the most space

e�cient algorithm forF = 64.

For F = 64 and F = 128 the fusion tree is slightly more space e�cient than the W-Trees.

While there are more nodes in the fusion tree because of a lower branching factor, the nodes

themselves requiring less space. At a word size of 1024 bit the branching factor of a fusion

node is less than half of that of a W-Node resulting in the W-Tree with a lazy selector using less

memory than a fusion tree. ForF = 64 andF = 128 the W-Trees using the original bit selector

by Sarel et al. and the ones that use the skip selector require the same amount of space. In

theory the skip selector would allocate less memory for these word sizes, but does not because

of byte padding by the compiler.

There are two plot lines for the vEB tree described in “Optimal lower and upper bounds for

representing sequences” [2]. One is for the memory used by the implementation of this paper.

The other plot line shows the theoretical memory usage if no pointers to the dictionaries are

stored and the values of the dictionaries scaled with the depth of the tree. These optimizations

were scratched due to time constrains. The plots lines show that for a uniform distributions

the vEB tree requires a signi�cant amount of memory. This is caused by the large volume of

dictionary entries with one element in the root. We had to prematurely end the experiments

at |(| = 10
7

because our machine could not handle the high memory usage. However, if the

distribution is skewed, the vEB tree can require less memory than |(| itself. Because all values

of (are stored inside the tree, technically one could deallocate (to reduce the total memory

used to belowF · |(|. However, this comes at the cost of other operations, such as accessing

elements at a speci�c index, which would no longer be possible in constant time.

30

Figure 7.3: Speed of the predecessor queries on external memory.

31

Figure 7.4: Additional memory used by the di�erent predecessor queries in relation to the

memory used to store the elements.

32

8 Conclusion and Future Work

In this work, we implemented the succinct predecessor data structure by Sarel et al. called W-

Node [3]. However due to the, in this context, small bit size of currently available architectures

and the high overhead, the W-Node performed poorly in the average scenario. By storing the

data on external memory instead, we showed that W-Nodes can be useful if memory access

is very slow. Yet we were not able to compare them to implementations other than our own

in most tests because the predecessor queries that were publicly available were either not

compatible with the data structure used for external memory accesses or with the large word

sizes. It is likely that the PGM-index will perform better than the implemented W-Trees in these

scenarios as well. Our benchmarks also showed that the bit selector used by Sarel et al. is too

slow and a simpler solution performs better in practice.

The succinct predecessor data structure in the attachment of “Optimal lower and upper

bounds for representing sequences” [2], while asymptotically succinct, is very memory in-

tensive in practice if the universe is much larger than the data set. However, the rank select

structure used in this attachment can be used in combination with an in-place algorithm

like binary search. For su�ciently uniform distributions this combination achieves great

performances. The combination of a rank select data structure and a vEB tree does not work

quite well because the size per element has to be the same for all vEB trees.

Future Work. Probably the most competitive predecessor query implemented in this paper

was the rank select data structure. Its main problem is the requirement of a semi uniform

distribution on the most signi�cant bits. This problem could be reduced by using a entropy

compressed bit array [11] which would allow an increase in the size of the bit array and a better

reduction of the search range. A di�erent approach could be to expect the data to follow a

distribution that is concentrated around a few points and build a separate rank select structure

for each such point. This would allow the removal of the �rst bits as all elements around such

a point would share them.

The rank select data structure had an unfair advantage in the tests with external memory

because we used a public implementation which did not support this. Its performance without

such an advantage could be a topic of future research.

In this thesis we were limited to using a machine with a 64 bit architecture. While unlikely,

should higher bit architectures become more common, it might be interesting to take another

look at W-Nodes, as it is a severe drawback for them.

33

Bibliography

[1] Paul Beame and Faith E Fich. “Optimal bounds for the predecessor problem and related

problems”. In: Journal of Computer and System Sciences 65.1 (2002), pp. 38–72.

[2] Djamal Belazzougui and Gonzalo Navarro. “Optimal lower and upper bounds for rep-

resenting sequences”. In: ACM Transactions on Algorithms (TALG) 11.4 (2015), pp. 1–

21.

[3] Sarel Cohen et al. “Minimal indices for predecessor search”. In: Information and Compu-
tation 240 (2015), pp. 12–30.

[4] Peter van Emde Boas. “Preserving order in a forest in less than logarithmic time”. In: 16th
Annual Symposium on Foundations of Computer Science (sfcs 1975). IEEE. 1975, pp. 75–84.

[5] Paolo Ferragina and Giorgio Vinciguerra. “The PGM-index: a fully-dynamic compressed

learned index with provable worst-case bounds”. In: Proceedings of the VLDB Endowment
13.8 (2020), pp. 1162–1175.

[6] Michael L Fredman and Dan E Willard. “Surpassing the information theoretic bound

with fusion trees”. In: Journal of computer and system sciences 47.3 (1993), pp. 424–436.

[7] Michael L Fredman and Dan E Willard. “Trans-dichotomous algorithms for minimum

spanning trees and shortest paths”. In: Proceedings [1990] 31st Annual Symposium on
Foundations of Computer Science. IEEE. 1990, pp. 719–725.

[8] Florian Kurpicz. “Engineering Compact Data Structures for Rank and Select Queries on

Bit Vectors”. In: SPIRE. Vol. 13617. Lecture Notes in Computer Science. Springer, 2022,

pp. 257–272. doi: 10.1007/978-3-031-20643-6_19.

[9] Laboratory for Web Algorithmics. https://law.di.unimi.it/webdata/webbase-2001.

Accessed: 2023-6-13.

[10] J Ian Munro et al. “Succinct representations of permutations”. In: Automata, Languages
and Programming: 30th International Colloquium, ICALP 2003 Eindhoven, The Netherlands,
June 30–July 4, 2003 Proceedings 30. Springer. 2003, pp. 345–356.

[11] Daisuke Okanohara and Kunihiko Sadakane. “Practical entropy-compressed rank/select

dictionary”. In: 2007 Proceedings of the Ninth Workshop on Algorithm Engineering and
Experiments (ALENEX). SIAM. 2007, pp. 60–70.

[12] OpenStreetMap. https://www.openstreetmap.org/. Accessed: 2023-01-10.

[13] Mihai Pătraşcu and Mikkel Thorup. “Time-space trade-o�s for predecessor search”. In:

Proceedings of the thirty-eighth annual ACM symposium on Theory of computing. 2006,

pp. 232–240.

[14] PGM Implementation. https://github.com/gvinciguerra/PGM-index. Accessed: 2023-

3-19.

34

https://doi.org/10.1007/978-3-031-20643-6_19
https://law.di.unimi.it/webdata/webbase-2001
https://www.openstreetmap.org/
https://github.com/gvinciguerra/PGM-index

[15] The Stanford WebBase Project. http://diglib.stanford.edu:8091/~testbed/doc2/
WebBase. Accessed: 2023-6-19.

[16] WideInteger. https://github.com/ckormanyos/wide-integer. Accessed: 2023-3-19.

[17] Dan E Willard. “Log-logarithmic worst-case range queries are possible in space Θ (N)”.

In: Information Processing Letters 17.2 (1983), pp. 81–84.

[18] Dan E Willard. “Log-logarithmic worst-case range queries are possible in space Θ (N)”.

In: Information Processing Letters 17.2 (1983), pp. 81–84.

[19] Dong Zhou, David G Andersen, and Michael Kaminsky. “Space-e�cient, high-performance

rank and select structures on uncompressed bit sequences”. In: Experimental Algorithms:
12th International Symposium, SEA 2013, Rome, Italy, June 5-7, 2013. Proceedings 12.

Springer. 2013, pp. 151–163.

35

http://diglib.stanford.edu:8091/~testbed/doc2/WebBase
http://diglib.stanford.edu:8091/~testbed/doc2/WebBase
https://github.com/ckormanyos/wide-integer

	Introduction
	Preliminaries
	Related Work
	Fusion Trees
	Van Embde Boas Trees
	-Nodes
	Blind Search
	Benes Networks
	Bit Selector

	Belazzougui and Navarro's Approach
	PGM-Index

	-Node Implementation
	Bit Selector
	Modified Blind Search
	Search Range Reduction
	Smaller Z
	Smaller Benes Networks
	Optimizations for large word sizes

	-Tree
	Cutoff
	Node structure

	Analyzing Belazzougui and Navarros Approach
	Other Implementations
	Fusion Trees
	Rank Select

	Results
	Setup
	Implementations
	Experiments

	Conclusion and Future Work
	Bibliography

