Automated Planning and Scheduling

Lecture 7: SAT-based Planning
Tomáš Balyo, Dominik Schreiber | December 6, 2018
Finish basic SAT based planning
Advanced SAT based planning
Variable, Literal, Clause, Formula.

A (boolean) variable \(v \) has two possible values \(\text{true} \) or \(\text{false} \).

A literal \(l \) is either a variable \(v \) or its negated form \(\neg v \).

A clause \(c = l_1 \lor l_2 \lor \ldots \lor l_k \) is a set of literals which is \(\text{true} \) iff at least one of its literals is \(\text{true} \) (disjunction / OR of literals).

A (CNF) formula \(F = c_1 \land c_2 \land \ldots \land c_n \) is a set of clauses which is \(\text{true} \) iff all of its clauses are \(\text{true} \) (conjunction / AND of clauses).
SAT Preliminaries – reminder

Variable, Literal, Clause, Formula.

A (boolean) variable v has two possible values true or false. A literal l is either a variable v or its negated form $\neg v$. A clause $c = l_1 \lor l_2 \lor \ldots \lor l_k$ is a set of literals which is true iff at least one of its literals is true (disjunction / OR of literals). A (CNF) formula $F = c_1 \land c_2 \land \ldots \land c_n$ is a set of clauses which is true iff all of its clauses are true (conjunction / AND of clauses).

Assignments.

An assignment A maps each variable v to true or false. If a formula F is true under these variable values, A is a satisfying assignment.
Variable, Literal, Clause, Formula.

A (boolean) variable v has two possible values true or false.
A literal l is either a variable v or its negated form $\neg v$.
A clause $c = l_1 \lor l_2 \lor \ldots \lor l_k$ is a set of literals which is true iff at least one of its literals is true (disjunction / OR of literals).
A (CNF) formula $F = c_1 \land c_2 \land \ldots \land c_n$ is a set of clauses which is true iff all of its clauses are true (conjunction / AND of clauses).

Assignments.

An assignment A maps each variable v to true or false. If a formula F is true under these variable values, A is a satisfying assignment.

Example: $F = (x_1 \lor \neg x_2) \land (\neg x_3) \land (\neg x_1 \lor x_2)$,
Satisfying assignment $A = \{x_1 \mapsto \text{true}, x_2 \mapsto \text{true}, x_3 \mapsto \text{false}\}$
SAT Solving

SAT Problem.
Given a CNF formula F, find a satisfying assignment for F or report that none exists (i.e. F is unsatisfiable).

- Most prominent NP-complete problem
- Very efficient SAT Solvers exist
SAT Solving

SAT Problem.

Given a CNF formula F, find a satisfying assignment for F or report that none exists (i.e. F is unsatisfiable).

- Most prominent NP-complete problem
- Very efficient SAT Solvers exist

SAT Encoding.

Given a problem \mathcal{P}, a SAT encoding of \mathcal{P} is a CNF formula $F_\mathcal{P}$ such that:

- $F_\mathcal{P}$ is satisfiable if and only if \mathcal{P} has a solution.
- If $F_\mathcal{P}$ is satisfiable, then a solution to \mathcal{P} can be (easily) extracted from a satisfying assignment \mathcal{A} of $F_\mathcal{P}$.
Limit encoding of planning problem to at most n steps (actions)

- When unsatisfiable, increase n and try again
 - \Rightarrow Top-level procedure similar to Graphplan, iter. deepening search
SAT Encoding of Planning

Encoded variables: “is” and “do”

- Variable is^t_p for each atom p and each step $t = 0, \ldots, n$
 - “Atom p holds at step t”
- Variable do^t_a for each action a and each step $t = 0, \ldots, n - 1$
 - “Action a is applied at step t”
- Found plan can be read directly from true action variables

<table>
<thead>
<tr>
<th>Step</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t@A$</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t@B$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$t@C$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$p1@A$</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$p1@C$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>$p1@T$</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$p2@B$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>$p2@C$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>$p2@T$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>loadp1@A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>loadp2@B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>dropp1@C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>dropp2@C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>moveAtoB</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>moveBtoC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Clauses of the encoding:

1. The initial state must hold at $t = 0$.

$$\forall p \in s_0 : is^0_p \quad \forall p \notin s_0 : \neg is^0_p$$
SAT Encoding of Planning (2)

Clauses of the encoding:

1. The initial state must hold at $t = 0$.

 \[
 \forall p \in s_0 : is^0_p \quad \forall p \notin s_0 : \neg is^0_p
 \]

2. At every step, at least one action is applied.

 (Assume $A = \{a_1, \ldots, a_k\}$)

 \[
 \forall t \in \{0, \ldots, n-1\} : (do^t_{a_1} \lor do^t_{a_2} \lor \ldots do^t_{a_k})
 \]
SAT Encoding of Planning (2)

Clauses of the encoding:

1. The initial state must hold at \(t = 0 \).

\[
\forall p \in s_0 : is_p^0 \quad \forall p \notin s_0 : \neg is_p^0
\]

2. At every step, at least one action is applied.
 (Assume \(A = \{a_1, \ldots, a_k\} \))

\[
\forall t \in \{0, \ldots, n - 1\} : (do_{a_1}^t \lor do_{a_2}^t \lor \ldots do_{a_k}^t)
\]

3. At every step, at most one action is applied.

\[
\forall t \in \{0, \ldots, n - 1\}, \forall a_1 \neq a_2 : (\neg do_{a_1}^t \lor \neg do_{a_2}^t)
\]
4. If action \(a \) is applied at step \(t \), then \(\text{pre}(a) \) hold at step \(t \).

\[
\forall t \in \{0, \ldots, n - 1\}, \forall a \in A, \forall p \in \text{pre}^+(a) : (\text{do}_a^t \rightarrow \text{is}_p^t) \\
\forall t \in \{0, \ldots, n - 1\}, \forall a \in A, \forall p \in \text{pre}^-(a) : (\text{do}_a^t \rightarrow \neg \text{is}_p^t)
\]
If action a is applied at step t, then $\text{pre}(a)$ hold at step t.

\[
\forall t \in \{0, \ldots, n - 1\}, \forall a \in A, \forall p \in \text{pre}^+(a) : (\text{do}_a^t \rightarrow \text{is}_p^t) \\
\forall t \in \{0, \ldots, n - 1\}, \forall a \in A, \forall p \in \text{pre}^-(a) : (\text{do}_a^t \rightarrow \neg\text{is}_p^t)
\]

If action a is applied at step t, then $\text{eff}(a)$ hold at step $t + 1$.

\[
\forall t \in \{0, \ldots, n - 1\}, \forall a \in A, \forall p \in \text{eff}^+(a) : (\text{do}_a^t \rightarrow \text{is}_p^{t+1}) \\
\forall t \in \{0, \ldots, n - 1\}, \forall a \in A, \forall p \in \text{eff}^-(a) : (\text{do}_a^t \rightarrow \neg\text{is}_p^{t+1})
\]
SAT Encoding of Planning (3)

4. If action a is applied at step t, then $\text{pre}(a)$ hold at step t.

$$\forall t \in \{0, \ldots, n-1\}, \forall a \in A, \forall p \in \text{pre}^+(a) : (do_a^t \rightarrow is_p^t)$$

$$\forall t \in \{0, \ldots, n-1\}, \forall a \in A, \forall p \in \text{pre}^-(a) : (do_a^t \rightarrow \neg is_p^t)$$

5. If action a is applied at step t, then $\text{eff}(a)$ hold at step $t + 1$.

$$\forall t \in \{0, \ldots, n-1\}, \forall a \in A, \forall p \in \text{eff}^+(a) : (do_a^t \rightarrow is_p^{t+1})$$

$$\forall t \in \{0, \ldots, n-1\}, \forall a \in A, \forall p \in \text{eff}^-(a) : (do_a^t \rightarrow \neg is_p^{t+1})$$

6. The goal g holds at step n.

$$\forall p \in g : \ is_p^n$$
Almost finished . . .

With clauses (1)–(6) for \(n = 1 \), the following is a solution for Trucking:

- Set \(d_0 \) \(\text{move}_{A\to B} \) to true, all other actions to false
- Set \(is^1_{p1@c} \) and \(is^1_{p2@c} \) to true

Why can the packages teleport to \(C \) without any action?
Almost finished . . .

With clauses (1)–(6) for $n = 1$, the following is a solution for Trucking:

- Set $do^0_{moveAtoB}$ to true, all other actions to false
- Set $is^1_{p1@c}$ and $is^1_{p2@c}$ to true

Why can the packages teleport to C without any action?

- Atoms can change arbitrarily without actions – explicitly disallow this
Almost finished . . .

With clauses (1)–(6) for \(n = 1 \), the following is a solution for Trucking:

- Set \(do^0_{\text{moveAtoB}} \) to true, all other actions to false
- Set \(is^1_{p1@c} \) and \(is^1_{p2@c} \) to true

Why can the packages teleport to \(C \) without any action?

- Atoms can change arbitrarily without actions – explicitly disallow this

If atom \(p \) changes between steps \(t \) and \(t + 1 \), an action which supports this change must be applied at \(t \):

\[
\forall t \in \{0, \ldots, n - 1\}, \forall p \in P : \left((is^t_p \land \neg is^{t+1}_p) \rightarrow \bigvee_{a \in \text{support}(\neg p)} do^t_a \right)
\]

\[
\forall t \in \{0, \ldots, n - 1\}, \forall p \in P : \left((\neg is^t_p \land is^{t+1}_p) \rightarrow \bigvee_{a \in \text{support}(p)} do^t_a \right)
\]
SAT Encoding: Properties

Clauses (1)–(7) together form a correct SAT encoding of planning

- Variable complexity?

More details on variable complexity:

- Clause complexity:
 - (3): $O(n \cdot |A|^2)$ clauses
 - (7): $O(n \cdot |P|)$ clauses
 - (4), (5): $O(n \cdot |A| \cdot |E|)$ clauses
 - $E := \max_{a \in A} \{|\text{pre}(a)| + |\text{eff}(a)|\}$

Can be significant e.g. if using quantified conditions

Total:

$O(n \cdot (|A|^2 + |P| + |A| \cdot |E|))$ clauses

Amount of clauses and variables linear in amount of steps

All clauses only contain variables of neighbored steps

Each clause "belongs" to some $t \Rightarrow$ Only contains variables from steps t and $t + 1$
SAT Encoding: Properties

Clauses (1)–(7) together form a correct SAT encoding of planning

- Variable complexity?
 - \(n \cdot |P| \) “is” variables + \(n \cdot |A| \) “do” variables = \(n(|A| + |P|) \) variables

- Clause complexity?

\(E := \max_{a \in A} \{ |\text{pre}(a)| + |\text{eff}(a)| \} \)
Clauses (1)–(7) together form a correct SAT encoding of planning

- **Variable complexity?**
 \[n \cdot |P| \text{ “is” variables} + n \cdot |A| \text{ “do” variables} = n(|A| + |P|) \text{ variables} \]

- **Clause complexity?**

 - (3): \(\mathcal{O}(n \cdot |A|^2) \) clauses, (7): \(\mathcal{O}(n \cdot |P|) \) clauses

 - (4),(5): \(\mathcal{O}(n \cdot |A| \cdot |E|) \) clauses

 - \(E := \max_{a \in A} \{|\text{pre}(a)| + |\text{eff}(a)|\} \)

 - Can be significant e.g. if using quantified conditions

- **Total:** \(\mathcal{O}(n \cdot (|A|^2 + |P| + |A| \cdot |E|)) \) clauses
SAT Encoding: Properties

Clauses (1)–(7) together form a correct SAT encoding of planning

- Variable complexity?
 - $n \cdot |P|$ “is” variables + $n \cdot |A|$ “do” variables = $n(|A| + |P|)$ variables

- Clause complexity?
 - (3): $O(n \cdot |A|^2)$ clauses, (7): $O(n \cdot |P|)$ clauses
 - (4),(5): $O(n \cdot |A| \cdot |E|)$ clauses
 - $E := \max_{a \in A} \{|\text{pre}(a)| + |\text{eff}(a)|\}$
 - Can be significant e.g. if using quantified conditions
 - Total: $O(n \cdot (|A|^2 + |P| + |A| \cdot |E|))$ clauses

- Amount of clauses and variables linear in amount of steps n

- All clauses only contain variables of neighbored steps
 - Each clause “belongs” to some t
 - Only contains variables from steps t and $t + 1$
Structure of a Planning Formula

- $n = 0$: One set each of variables V_0, clauses C_0
- $n = 1$: New clauses C_1 as “logical glue” between V_0 and V_1
- $n = 2$: C_2 glue V_1 and V_2 together, etc.

 \[\Rightarrow \text{Formula grows incrementally; cumulative set of clauses} \]

 \[\Rightarrow \text{Only non-cumulative part: (6)} \]

 (goal holds at step n)

 - Can be enforced separately
Planning as Incremental SAT

- Avoid re-encoding entire problem for each $n = 0, 1, 2, \ldots$:
 - Maintain one single, growing formula
Avoid re-encoding entire problem for each $n = 0, 1, 2, \ldots$:
- Maintain one single, growing formula

Incremental SAT Solving: For each n,
- Add clauses (1)–(5), (7) permanently
- Assume clauses (6)
 - Literals are considered for one single solving attempt, then dropped
- Let SAT Solver search for a solution
 - Satisfiable? \Rightarrow Finished
 - Unsatisfiable? \Rightarrow Continue
Planning as Incremental SAT

Avoid re-encoding entire problem for each \(n = 0, 1, 2, \ldots \):
- Maintain one single, growing formula

Incremental SAT Solving: For each \(n \),
- Add clauses (1)–(5), (7) permanently
- Assume clauses (6)
 - Literals are considered for one single solving attempt, then dropped
- Let SAT Solver search for a solution
 - Satisfiable? \(\Rightarrow \) Finished
 - Unsatisfiable? \(\Rightarrow \) Continue

Solver can learn conflicts from unsatisfiable increments to speed up subsequent increments

More in “Practical SAT Solving” lecture

Implementation: edu.kit.aquaplanning.planners.SimpleSatPlanner
Improving the encoding

What is the weakness of the simple encoding?
Improving the encoding

What is the weakness of the simple encoding?

- Too many clauses: $O(n \cdot (|A|^2 + |P| + |A| \cdot |E|))$ clauses

Which term is the worst?
Improving the encoding

What is the weakness of the simple encoding?

- Too many clauses: $O(n \cdot (|A|^2 + |P| + |A| \cdot |E|))$ clauses

Which term is the worst?

- $|A|^2$ representing the at most one action

What to do?

- SAT Encoder Person: use better encoding for at-most-one constraint
 - doable with $|A| \log(|A|)$ clauses

More actions in each step \Rightarrow less SAT solver calls \Rightarrow PROFIT
Improving the encoding

What is the weakness of the simple encoding?
- Too many clauses: $O(n \cdot (|A|^2 + |P| + |A| \cdot |E|))$ clauses

Which term is the worst?
- $|A|^2$ representing the at most one action

What to do?
- SAT Encoder Person: use better encoding for at-most-one constraint
 - doable with $|A| \log(|A|)$ clauses
- Planner Person: Why only one action per step?
 - More actions in each step \implies less SAT solver calls \implies PROFIT
 - How many actions can be in one step?
Parallel Plans

Definition

A sequence of sets of actions \(P = [A_1, \ldots, A_k] \) is a parallel plan for a planning task \(\Pi \) if there is an action ordering function \(\trianglelefteq \) such that \(\trianglelefteq (A_1) \oplus \cdots \oplus \trianglelefteq (A_k) \) is a (sequential) plan for \(\Pi \), where \(\oplus \) denotes the concatenation of sequences. The sets \(A_i \) are called parallel steps and \(k \) is called the makespan of \(P \).

Example:

- \(A_1 = \{\text{loadP1, move-A-B}\} \)
- \(A_2 = \{\text{loadP2, move-B-C}\} \)
- \(A_3 = \{\text{unloadP1, unloadP2}\} \)
Foreach step semantics

Interfering Actions

- A set of atoms S is consistent if S does not contain x and $\neg x$ for some atom x.
- Two actions $a_1 = (p_1, e_1)$ and $a_2 = (p_2, e_2)$ **do not interfere** if:
 - $p_1 \cup p_2$ is consistent (consistent preconditions)
 - $e_1 \cup e_2$ is consistent (consistent effects)
 - $e_1 \cup p_2$ and $e_2 \cup p_1$ are consistent

Proposition

Let A be a set of actions such that $\forall a_i \neq a_j \in A$ the actions a_i and a_j do not interfere. If there is an ordering \sqsubseteq such that $\sqsubseteq(A)$ transforms the state s_1 to s_2 then all the possible orderings of A transform s_1 to s_2.

- It is enough to suppress compatible interfering action pairs.
- For each ordering we get a valid plan, hence the name.
Foreach step semantics

A parallel plan \(P = [A_1, \ldots, A_k] \) satisfies the \(\forall \)-Step semantics if

- each action in \(A_j \) is applicable in the state \(s_j \),
- the effects of all the actions in \(A_j \) are applied in \(s_{j+1} \),
- each pair of actions in \(A_j \) do not interfere.
- \([\triangledown(A_1) \oplus \cdots \oplus \triangledown(A_k)] \) is a valid plan for some ordering function \(\triangledown \).

Example:

- \(A_1 = \{\text{loadP1}\} \)
- \(A_2 = \{\text{move-A-B}\} \)
- \(A_3 = \{\text{loadP2}\} \)
- \(A_4 = \{\text{move-B-C}\} \)
- \(A_5 = \{\text{unloadP1, unloadP2}\} \)
 Exists step semantics

A parallel plan $P = [A_1, \ldots, A_k]$ satisfies the \forall-Step semantics if

- each action in A_j is applicable in the state s_j,
- the effects of all the actions in A_j are applied in s_{j+1},
- each pair of actions in A_j do not interfere,
- $[\sqsubseteq(A_1) \oplus \cdots \oplus \sqsubseteq(A_k)]$ is a valid plan for some ordering function \sqsubseteq.

Example:

- $A_1 = \{\text{loadP1, move-A-B}\}$
- $A_2 = \{\text{loadP2, move-B-C}\}$
- $A_3 = \{\text{unloadP1, unloadP2}\}$

Only 3 steps required
Relaxed Exists step semantics

A parallel plan $P = [A_1, \ldots, A_k]$ satisfies the \forall-Step semantics if

- each action in A_j is applicable in the state s_j,
- the effects of all the actions in A_j are applied in s_{j+1},
- each pair of actions in A_j do not interfere,
- $[\sqsubseteq(A_1) \oplus \cdots \oplus \sqsubseteq(A_k)]$ is a valid plan for some ordering function \sqsubseteq.

Example:

- $A_1 = \{\text{loadP1, move-A-B, loadP2}\}$
- $A_2 = \{\text{move-B-C, unloadP1, unloadP2}\}$

Only 2 steps required!

- What can we drop?
Relaxed Relaxed Exists step semantics

A parallel plan $P = [A_1, \ldots, A_k]$ satisfies the \forall-Step semantics if

- each action in A_j is applicable in the state s_j,
- the effects of all the actions in A_j are applied in s_{j+1},
- each pair of actions in A_j do not interfere.
- $[\sqsubseteq(A_1) \oplus \cdots \oplus \sqsubseteq(A_k)]$ is a valid plan for some ordering function \sqsubseteq.

Example:

$A_1 = \{\text{loadP1, move-A-B, loadP2, move-B-C, unloadP1, unloadP2}\}$

Only 1 steps required! We probably cannot do better than that :)}
How to encode the (relaxed) Exists step semantics into SAT?

Overview of Basic Ideas

The SAT encoding only approximates the semantics, i.e., the satisfiability of the constructed formula F_k implies the existence of a k-step plan (not vice versa). The actions are ranked arbitrarily. The goal is to guess the order of actions in the final plan. A heuristic: use cycle–ignoring topological sorting on the enabling graph. Better ranking heuristics wanted (Master thesis anyone?)

The encoding allows only lower ranking actions before higher ranking ones in a step. The encoding uses implication chains.
How to encode the (relaxed) Exists step semantics into SAT?

Overview of Basic Ideas

- The SAT encoding only approximates the semantics, i.e., the satisfiability of the constructed formula F_k implies the existence of a k-step plan (not vice versa)
- The actions are ranked arbitrarily
 - goal is to guess the order of actions in the final plan
 - heuristic: use cycle–ignoring topological sorting on the enabling graph
 - better ranking heuristics wanted (Master thesis anyone?)
- The encoding allows only lower ranking actions before higher ranking ones in a step.
- The encoding uses implication chains.
Enabling Graph

Definition

The *enabling graph* G for a set of actions A is a directed graph where vertices represent actions and there is an edge (a, a') if a supports a', i.e., $G = (A, \{ a \rightarrow a' \mid a, a' \in A; \text{eff}(a) \cap \text{pre}(a') \neq \emptyset \})$.
Ranking Actions

The actions are ranked using cycle–ignoring topological sorting on the enabling graph.

\[
\text{topologicalRanking}(O)
\]

\[
\begin{align*}
T_1 & \quad \text{global } lastRank := 0 \\
T_2 & \quad \text{global } visited := \{False, \ldots, False\} \\
T_3 & \quad \textbf{foreach } a \in O \ \textbf{do} \\
T_4 & \quad \text{rankAction}(a)
\end{align*}
\]

\[
\text{rankAction}(a)
\]

\[
\begin{align*}
R_1 & \quad \textbf{if } visited[a] = False \ \textbf{then} \\
R_2 & \quad visited[a] := True \\
R_3 & \quad \textbf{foreach } s \in \text{supportingActions}(a) \ \textbf{do} \\
R_4 & \quad \text{rankAction}(s) \\
R_5 & \quad r(a) := lastRank \\
R_6 & \quad lastRank := lastRank + 1
\end{align*}
\]
Encoding – these clauses same as before

1. The initial state must hold at $t = 0$.
 \[\forall p \in s_0 : is^0_p \quad \forall p \notin s_0 : \neg is^0_p \]

2. The goal state must hold at $t = n$.
 \[\forall p \in G : is^n_p \]

3. If atom p changes between steps t and $t + 1$, an action which supports this change must be applied at t:
 \[\forall t \in \{0, \ldots, n - 1\}, \forall p \in P : \]
 \[
 \left((is^t_p \land \neg is^{t+1}_p) \rightarrow \bigvee_{a \in \text{support}(\neg p)} do^t_a \right)
 \]
 \[
 \left((\neg is^t_p \land is^{t+1}_p) \rightarrow \bigvee_{a \in \text{support}(p)} do^t_a \right)
 \]
Encoding Clauses – Preconditions

These clauses are added $\forall t \in \{0, \ldots, n - 1\}, \forall a \in A$

For Foreach and Exists Step:

4 If action a is applied at step t, then $pre(a)$ hold at step t:

$$\forall p \in pre^+(a) : (do^t_a \rightarrow is^t_p)$$

$$\forall p \in pre^-(a) : (do^t_a \rightarrow \neg is^t_p)$$

For Relaxed and Relaxed Relaxed Exists Step:

4 If action a is applied at step t, then $pre(a)$ hold at step t or some supporting action happens before:

$$\forall p \in pre^+(a) : (do^t_a \rightarrow (is^t_p \vee do^t_{a^1_p} \vee \ldots \vee do^t_{a^k_p}))$$

$$\forall p \in pre^-(a) : (do^t_a \rightarrow (\neg is^t_p \vee do^t_{a^1_{\neg p}} \vee \ldots \vee do^t_{a^k_{\neg p}}))$$

where a^*_p are supports for p with lower rank than a.
Encoding Clauses – Effects

For Foreach, Exists and Relaxed Exists Step:

5 If action a is applied at step t, then $\text{eff}(a)$ hold at step $t + 1$ or some other action sets in later:

\[
\forall p \in \text{eff}^+(a) : (do_a^t \rightarrow is_p^{t+1})
\]
\[
\forall p \in \text{eff}^-(a) : (do_a^t \rightarrow \neg is_p^{t+1})
\]

For Relaxed Relaxed Exists Step:

5 If action a is applied at step t, then $\text{eff}(a)$ hold at step $t + 1$ or some other action sets in later:

\[
\forall p \in \text{eff}^+(a) : (do_a^t \rightarrow (is_p^{t+1} \lor do_{a_p}^t \lor \ldots \lor do_{a_k}^t))
\]
\[
\forall p \in \text{eff}^-(a) : (do_a^t \rightarrow (\neg is_p^{t+1} \lor do_{a_{-p}}^t \lor \ldots \lor do_{a_{-k}}^t))
\]

where a_p^* are supports for p and $\neg p$ with higher rank than a.
Dealing with action interference

Easy in Foreach step

- add $\neg do_{a_i} \lor \neg do_{a_j}$ for each pair of interfering actions a_i, a_j

How about (Relaxed)* Exists step?
What could go wrong?
Dealing with action interference

Easy in Foreach step

- add \((\neg do_{a_i} \lor \neg do_{a_j})\) for each pair of interfering actions \(a_i, a_j\)

How about (Relaxed)* Exists step?

What could go wrong?

- **In Exists Step:** one actions destroys the precondition for another action coming later

- **In (Relaxed)+ Exists Step:**
 - one actions destroys the precondition for another action
 - one actions destroys the effect of another action
 - one actions \(a_1\) sets up the precondition for \(a_2\) but then some action \(a_3\) between them destroys it again
 - one actions \(a_1\) set up the precondition for \(a_2\) but then some action \(a_3\) between them destroys it again, but then \(a_4\) between \(a_3\) and \(a_2\) may restore it back ...
We have a chain for each positive and negative atom

- h_i are helper variables, $a_i = do_{a_i}$, full arrow is implication ($h_i \implies a_j$) dashed arrow is negative implication ($h_i \implies \neg a_j$)
- an action a activates the chain for $\neg p$ if $p \in eff(a)$
- the chain for $\neg p$ deactivates an action a if $p \in pre(a)$
- if one action activates the chain all actions with higher rank that require that atom in their preconditions are disabled
- a_1, a_2, a_3 and a_5 are opponents of the given atom p (they have $\neg p$ as an effect).
- a_3 and a_6 require p (they have p in their preconditions).
- a_3 both requires and opposes p
 - Example: $p = truckAt_A$, $a_3 = move(A, B)$
- we need one helper variable h in p’s chain for each action that requires p
- a_1, a_2, a_3 and a_5 are opponents of the given atom p (they have $\neg p$ as an effect).
- a_3, a_4 and a_6 require p (they have p in their preconditions).
- a_3 both requires and opposes p
- a_4 supports p (has p as an effect)
- a_4 can break the chain between h_3 and h_4: $h_3 \implies (h_4 \lor a_4)$
Implication Chain Clauses

- each involved action gets a helper variable (except the last one)

For each atom p at each time step t

1. $(h_{j-1} \rightarrow h_j)$ for each j such that a_j is not a support for p
2. $(h_{j-1} \rightarrow (h_j \lor \text{do}_{a_j}))$ for each j such that a_j is a support for p
3. $(\text{do}_{a_j} \rightarrow h_j)$ for each j such that a_j is an opponent for p
4. $(h_{j-1} \rightarrow \neg \text{do}_{a_j})$ for each j such that a_j requires for p
Extracting the Plan

How to get the plan from the satisfying assignment of the formula?
Extracting the Plan

How to get the plan from the satisfying assignment of the formula?

- Get the parallel plan (sequence of sets of actions)
 - check which do^t_{ai} variables are true in each step
- Turn it into a regular plan
 - order the actions in each step according to the ranking
Exists (R)* Step Encodings properties

- The better you rank the actions (predict their ordering)
 - the least SAT solving steps you need
 - the faster and with less memory you find a plan
- For some domains 1 step is enough
 - if each actions is required only once
 - if you can guess the order of actions
- Number of variables/clauses?
 - Homework :)
- Future Work:
 - better ranking heuristics!
How about chaining “n++” part of the algorithm?

Why?
Runtime Profile

Evaluation times: logistics39-0

- Time in secs
- Time points

<table>
<thead>
<tr>
<th>Time Points</th>
<th>Evaluation Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-2</td>
<td>0</td>
</tr>
<tr>
<td>2-4</td>
<td>0</td>
</tr>
<tr>
<td>4-6</td>
<td>0</td>
</tr>
<tr>
<td>6-8</td>
<td>700</td>
</tr>
<tr>
<td>8-10</td>
<td>0</td>
</tr>
<tr>
<td>10-12</td>
<td>0</td>
</tr>
<tr>
<td>12-14</td>
<td>0</td>
</tr>
<tr>
<td>14-16</td>
<td>0</td>
</tr>
<tr>
<td>16-18</td>
<td>0</td>
</tr>
<tr>
<td>18-20</td>
<td>0</td>
</tr>
</tbody>
</table>

Tomáš Balyo, Dominik Schreiber – Planning and Scheduling

December 6, 2018

34/40
Runtime Profile

Evaluation times: gripper10

The diagram shows a histogram of evaluation times for gripper10, with time points on the x-axis and time in seconds on the y-axis. The data is represented by vertical bars, with the height indicating the frequency of evaluation times at each time point.
Runtime Profile

Evaluation times: blocks22
Scheduling Strategies by Rintanen

- Classical scheduling: solve 1, 2, 3, ... sequentially

- Algorithm A
 - start n solvers in parallel solving 1, 2, ..., n
 - if a formula found unsat continue with the smallest not solved yet
 - can get past hard UNSAT formulas if n is big enough
 - in the worst case n times slower than sequential
 - bigger formulas – higher memory requirement
 - skipping lengths is ok, i.e., solve 10, 20, 30, ..., 10n

- Algorithm B – geometric
 - start n solvers in parallel solving 1, 2, ..., n
 - solver solving step $k + 1$ has a time limit g times less than the time limit of the solver solving k, for some constant $g < 1$
 - focus on solving the smaller steps
 - can choose higher n than before
Runtime Profile

Finding a plan for blocks22 with Algorithm B

![Graph showing runtime profile for blocks22 with Algorithm B]
- Algorithm C – exponential
 - start n solvers in parallel solving $1, 2, 4, 8, \ldots$
 - works surprisingly well
 - easy to run out of memory
 - finds very long plans
 - solves dozens of problems unsolved by the previous strategies
Stay tuned!

Next lecture: Hierarchical Task Network (HTN) Planning