Contents

- SatPlan Challenge Results
- A question about the exam
- Classical Scheduling
 - Basic Notions
 - Graham Notation
 - Single resource scheduling
 - Parallel resources scheduling
 - Job shop scheduling
- Lecture Evaluation Questionnaire
How would you feel about having written exams?

- Sure, I like written exams more anyways
- Yeah, whatever, I don’t give a $\#$!⊥
- No way, you promised us an oral exam you piece of $\#$!⊥
International Timetabling Competition

Take part in the ITC 2019
https://www.itc2019.org/home
You can win some moniez!

- 1st Prize €1000
- 2nd Prize €500
- 3rd Prize €250
Global Game Jam

In Karlsruhe at ZKM, free food and coffee and artists!
https://globalgamejam.org/
Planning vs Scheduling

- **Planning**
 - given a description of the current state, a set of possible actions, and a desired state come up with a sequence of actions = plan that one can take to achieve the desired state.
 - belongs to the category of Artificial Intelligence.
 - high complexity, P-SPACE hard or even Undecidable.

- **Scheduling**
 - given a collection of actions and restricted resources decide how to execute all the actions in an efficient manner (create a schedule).
 - belongs to the category of operations research.
 - complexity typically in P and NP
Scheduling – problem definition

- Given:
 - A set of jobs $J = \{J_1, \ldots, J_n\}$ to be processed
 - A set of machines $M = \{M_1, \ldots, M_m\}$ to process the jobs
 - Various constraints and properties
 - Interference/dependency of jobs
 - Compatibility of machines and jobs
 - Efficiency of a machine for a given (type of) job
 - Preemptiveness of jobs (can be interrupted or not)
 - ...
 - Various Optimization Criteria

- Task:
 - Find a Schedule, i.e., a mapping of jobs to machines and processing times that satisfies the given constraints and is optimal w.r.t. optimization criteria
(a) machine oriented

(b) job oriented
Data associated to Jobs

A job $J_j \in \mathcal{J}$ can have a:

- Processing time p_j – time to do the job
- Release date r_j – earliest time when the job can be run
- Due date d_j – called deadline if strict
- Weight w_j – the cost/benefit of doing the job
- Cost function $h_j(t)$ – cost of completing J_j at time t
- A job J_j may consist of several (n_j) operations (a.k.a. tasks) $J_j \rightarrow O_{j1}, \ldots, O_{jn_j}$, and data for each operation.
- A set of machines associated to each job/operation
Data associated to Jobs

A job $J_j \in J$ can have a:

- Processing time p_j – time to do the job
- Release date r_j – earliest time when the job can be run
- Due date d_j – called deadline if strict
- Weight w_j – the cost/benefit of doing the job
- Cost function $h_j(t)$ – cost of completing J_j at time t
- A job J_j may consist of several (n_j) operations (a.k.a. tasks) $J_j \rightarrow O_{j1}, \ldots, O_{jn_j}$, and data for each operation.
- A set of machines associated to each job/operation

Data that depend on the schedule:

- Starting time S_j
- Completion time C_j (typically $C_j = S_j + p_j$)
A scheduling problem is described by a triplet: $\alpha | \beta | \gamma$ where
- α describes the machine environment (1-2 entries)
- β job characteristics (0-many entries)
- γ objective function to be minimized (1 entry)
Graham Notation

A scheduling problem is described by a triplet: $\alpha | \beta | \gamma$ where

- α describes the machine environment (1-2 entries)
- β job characteristics (0-many entries)
- γ objective function to be minimized (1 entry)

Objective functions

For a given job \(J_j \) it is a function of \(C_j \) (completion times) and possibly something extra

- Lateness \(L_j = C_j - d_j \) (completion minus due date)
- Tardiness \(T_j = \max(L_j, 0) \)
- Earliness \(E_j = \max(d_j - C_j, 0) \)
- Unit Penalty \(U_j = T_j > 0 ? 1 : 0 \)
Objective functions

For a given job J_j it is a function of C_j (completion times) and possibly something extra

- Lateness $L_j = C_j - d_j$ (completion minus due date)
- Tardiness $T_j = \max(L_j, 0)$
- Earliness $E_j = \max(d_j - C_j, 0)$
- Unit Penalty $U_j = T_j > 0 ? 1 : 0$

For a schedule

- Makespan $C_{\text{max}} = \max\{C_1, \ldots, C_n\}$
- Maximum lateness $L_{\text{max}} = \max\{L_1, \ldots, L_n\}$
- Total completion $\sum C_i$
- Total weighted tardiness $\sum w_i T_i$
- Weighted number of tardy jobs $\sum w_i U_i$
Problem description?
Problem description?

- 1 machine
- job release times are specified
- goal is to minimize maximal lateness (minimize lateness)

This problem is NP hard, but adding further constraints makes it P...
1|r_j, d_j = d|L_{max}

Problem description?
Problem description?

- 1 machine
- job release times are specified, all jobs have the same due date
- goal is to minimize maximal lateness (minimize lateness)

Solvable in P. How?
1\mid r_j, d_j = d \mid L_{max}

Problem description?

- 1 machine
- job release times are specified, all jobs have the same due date
- goal is to minimize maximal lateness (minimize lateness)

Solvable in P. How?

- tasks are ordered in ascending order by release dates
Problem description?

1 | $r_j = r$ | L_{max}
Problem description?
- 1 machine
- job release times are specified and are the same for each job
- goal is to minimize maximal lateness (minimize lateness)

Solvable in P. How?
1|r_j = r|L_{max}

Problem description?

- 1 machine
- job release times are specified and are the same for each job
- goal is to minimize maximal lateness (minimize lateness)

Solvable in P. How?

- Use the earliest due date rule (EDD) – tasks are ordered in ascending order by due dates
- proof by contradiction
1 | \(r_j, pmtn \) | \(L_{max} \)

Problem description?
- 1 machine
- job release times are specified, job can be interrupted (preemption)
- goal is to minimize maximal lateness (minimize lateness)

Solvable in P. How?
1\(|r_j, pmtn|L_{\text{max}}\)

Problem description?

- 1 machine
- job release times are specified, job can be interrupted (preemption)
- goal is to minimize maximal lateness (minimize lateness)

Solvable in P. How?

- Start with the job \(J_j\) with the smallest \(r_j\) (break ties by smallest \(d_j\))
- as soon as we reach the \(r_j\) of a job \(J_j\) with smaller \(d_j\) than the current jobs due date we interrupt the current job and switch to that job \(J_j\)

<table>
<thead>
<tr>
<th>task</th>
<th>(p_j)</th>
<th>(r_j)</th>
<th>(\delta_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>0</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>
1 | r_j | L_{max} | L_{max}

Back to general version (NP Hard)

- 1 machine
- job release times are specified
- goal is to minimize maximal lateness (minimize lateness)

We design a branch and bound algorithm

- Branch on
Back to general version (NP Hard)

- 1 machine
- job release times are specified
- goal is to minimize maximal lateness (minimize lateness)

We design a branch and bound algorithm

- Branch on which job to do next (build schedule left to right)
- Calculate bound by solving a relaxed problem: $1|r_j, \text{pmtn}|L_{\text{max}}$
 - An optimal preemptive schedule has always better or equal lateness than the non relaxed problem – it provides a lower bound
 - If we find a schedule that has no interruptions we use that solution, no further search needed

- Pruning: a task J_j is pruned if there is other task J_i that could be completed before J_j can start.
Branch & Bound Example

Lower bound is greater than the best so-far solution

Task 2 can be before task 3

Tasks 1 or 2 can be before task 4

1,2,---
1 [0,4] $L_1=-4$
2 [4,6] $L_2=-6$
4 [6,11] $L_4=1$
3 [11,17] $L_3=6$

1,3,---
1 [0,4] $L_1=-4$
3 [4,10] $L_3=-1$
4 [10,15] $L_4=5$
2 [15,17] $L_2=5$

2,---
2 [1,3] $L_2=-9$
1 [3,7] $L_1=-1$
4 [7,12] $L_4=2$
3 [12,18] $L_3=7$

3,---

4,---

Task 1 or 2 can be before task 4

<table>
<thead>
<tr>
<th>task</th>
<th>p_j</th>
<th>r_j</th>
<th>δ_j</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

Final schedule: 1,3,4,2
Planning with Parallel Resources

We have several resources (Machines) to process the tasks. We assume each machine can process each task

- identical resources – each machine has the same speed on each task
- uniform resources – machines have different speed, it does not depend on the task (if \(J_1 \) can be done \(k \) times faster than \(J_2 \) on one machine, it is \(k \) times faster on each machine.)
- general resources – task duration depends on machine arbitrarily

Preemptive tasks may migrate between the machines
Problem description:

- minimize makespan for tasks running on m identical resources

How to do it? (in linear time)
Problem description:
- minimize makespan for tasks running on m identical resources

How to do it? (in linear time)
- A lower bound for makespan $LB = \max\{ \max_i p_i, \frac{\sum_i p_i}{m} \}$
- sequence tasks in any order on the first machine, when LB is reached split the last task an schedule on the next machine
- a task will not overlap with itself on another machine because $p_i < LB$
Problem description:

- minimize makespan for non-preemptive tasks with precedence relations between them running on m identical resources

Complexity?

$Pm|prec|C_{max}$
Problem description:
- minimize makespan for non-preemptive tasks with precedence relations between them running on m identical resources

Complexity?
- if $2 \leq m < n$ (more tasks than machines) then NP-hard
- if $m \geq n$ (more tasks than machines) then P – critical path method
Critical Path Method

Terminology:
- critical task – a task that cannot be delayed without increasing the makespan
- critical path – a sequence of critical tasks

Algorithm:
- find the earliest start (est) and completion (ect) time for each task
 - tasks J_i with no predecessors have $est_i = 0$, $ect_i = p_i$
 - a task with predecessors J_1, \ldots, J_k has $est = \max_{i=1}^k ect_i$
 - $C_{max} = \max_i ect_i$
- Find the latest start (lst) and completion (lct) time for each task
 - task J_i with no successor $lct_i = C_{max}$ and $lst_i = C_{max} - p_i$
 - a task with successors J_1, \ldots, J_k has $lct = \min_{i=1}^k lst_i$
- each task J_i such that $est_i = lst_i$ is a critical task
Shop Problems

- The Shop Problems are the most commonly used scheduling problems in practice
 - Each job consists of a set of tasks
 - Each task must be executed on a specific machine
 - There can be precedence relations between the tasks
- The 3 kinds of shop problems
 - Job-shop – the tasks within each job are totally ordered (a job is sequence of tasks), often each resource is used at most once per job.
 - Flow-shop – special case of Job-shop, all jobs have identical tasks in the same order (assembly line production)
 - Open-shop – no precedence relations between the tasks,

Graham notation: $Jm||C_{max}$, $Fm||C_{max}$, $Om||C_{max}$ for m machines and optimizing makespan, in general NP-hard, see scheduling zoo polynomial cases and algorithms.
Problem Definition:

- We have a set of n jobs J_1, \ldots, J_n and m machines M_1, \ldots, M_m.
- Each job $J_i = \langle O_1^i, \ldots, O_{q_i}^i \rangle$ is a sequence of operations.
- Each operation O_i^j requires the exclusive use of machine $M_{O_i^j}$ for an uninterrupted duration p_i^j (processing time).

Example: job0 = $[(0,3),(1,2),(2,2)]$, job1 = $[(0,2),(2,1),(1,4)]$, job2 = $[(1,4),(2,3)]$

For the SAT encoding we will assume that the makespan is at most L (encode the question, is there a schedule with makespan L or less).
Job Shop by SAT – 2

Variables:
- $\text{pr}_{i,j}^{l,k}$ means that O_i^l precedes O_j^k
- $\text{sa}_{i,t}^l$ means that O_i^l starts at time t or after t
- $\text{eb}_{i,t}^l$ means that O_i^l ends at time t or before t

Clauses (1-3):
- O_i^l precedes O_{i+1}^l
- $(\text{pr}_{i,i+1}^{l,l})$
Job Shop by SAT – 2

Variables:

- $pr_{i,j}^{l,k}$ means that O_i^l precedes O_j^k
- $sa_{i,t}^l$ means that O_i^l starts at time t or after t
- $eb_{i,t}^l$ means that O_i^l ends at time t or before t

Clauses (1-3):

- O_i^l precedes O_{i+1}^l
 \((pr_{i,i+1}^{l,l})\)
- If O_i^l and O_j^k require the same machine we add clauses
 \((pr_{i,j}^{l,k} \lor pr_{j,i}^{k,l})\)
Job Shop by SAT – 2

Variables:
- $pr_{i,j}^{l,k}$ means that O_i^l precedes O_j^k
- $sa_{i,t}^l$ means that O_i^l starts at time t or after t
- $eb_{i,t}^l$ means that O_i^l ends at time t or before t

Clauses (1-3):
- O_i^l precedes O_{i+1}^l
 $(pr_{i,i+1}^{l,l})$
- If O_i^l and O_j^k require the same machine we add clauses
 $(pr_{i,j}^{l,k} \lor pr_{j,i}^{k,l})$
- If O_i^l starts at t or after t then it also starts after $t - 1$
 $sa_{i,t}^l \rightarrow sa_{i,t-1}^l$
Job Shop by SAT – 3

Variables:
- $pr_{i,j}^{l,k}$ means that O_i^l precedes O_j^k
- $sa_{i,t}^l$ means that O_i^l starts at time t or after t
- $eb_{i,t}^l$ means that O_i^l ends at time t or before t

Clauses (4-6):
- If O_i^l end at t or before t then it also ends before $t + 1$
 $eb_{i,t}^l \rightarrow eb_{i,t+1}^l$
Job Shop by SAT – 3

Variables:
- $pr_{i,j}^{l,k}$ means that O_i^l precedes O_j^k
- $sa_{i,t}^l$ means that O_i^l starts at time t or after t
- $eb_{i,t}^l$ means that O_i^l ends at time t or before t

Clauses (4-6):
- If O_i^l end at t or before t then it also ends before $t + 1$
 $$eb_{i,t}^l \rightarrow eb_{i,t+1}^l$$
- If O_i^l starts at t or after t then it cannot end before $t + p_i^l - 1$
 $$sa_{i,t}^l \rightarrow \neg eb_{i,t+p_i^l-1}^l$$
Variables:

- $pr_{i,j}^{l,k}$ means that O_i^l precedes O_j^k
- $sa_{i,t}^l$ means that O_i^l starts at time t or after t
- $eb_{i,t}^l$ means that O_i^l ends at time t or before t

Clauses (4-6):

- If O_i^l end at t or before t then it also ends before $t + 1$
 $$eb_{i,t}^l \rightarrow eb_{i,t+1}^l$$
- If O_i^l starts at t or after t then it cannot end before $t + p_i^l - 1$
 $$sa_{i,t}^l \rightarrow \neg eb_{i,t+p_i^l-1}^l$$
- If O_i^l starts at time t or after time t and O_j^k follows O_i^l then O_j^k cannot start before O_i^l is finished
 $$sa_{i,t}^l \land pr_{i,j}^{l,k} \rightarrow \neg sa_{j,t+p_i^l}^k$$
The End

Next Week: Planning under Uncertainty