Automated Planning and Scheduling

Lecture 6: Graphplan and SAT-based Planning
Tomáš Balyo, Dominik Schreiber | November 20, 2019
Outline

- Planning graphs and their properties
- The Graphplan procedure [BF97]
- Fundamentals of SAT-based planning
Planning graphs: Introduction

Remember relaxed planning graphs? Here’s their origin story . . .

- Enumerate reachable atoms and actions to understand problem
Planning graphs: Introduction

Remember relaxed planning graphs? Here’s their origin story . . .

Enumerate reachable atoms and actions to understand problem

Infer plan from “finished” planning graph

- FF heuristic: extracts a delete-relaxed plan, guiding planning
Planning graphs: Introduction

Remember relaxed planning graphs? Here’s their origin story . . .

- Enumerate reachable atoms and actions to understand problem
- Infer plan from “finished” planning graph
 - FF heuristic: extracts a delete-relaxed plan, guiding planning
 - Graphplan: extracts a sequence of sets of actions \(\langle A_1, \ldots, A_k \rangle \)
 - Can be transformed easily into an actual, valid plan
 - Overall different planning approach
 - Not a relaxation of the problem
Layers i of possible atoms P_i and potential actions A_i

One layer of atoms+actions \cong one time step

- Multiple actions per step allowed when they do not conflict:
 any ordering must be valid and lead to identical results

- Negative atoms are included as a complementary atom set
For each atom p at each layer, add persistence action nop_p

- $pre(nop_p) = eff(nop_p) = \{p\}$ (nop = “no operation”)
- Make explicit that an atom remains unchanged between layers
- Also for negative atoms
In addition to atoms P_i and actions A_i, maintain sets of conflicts M_i:

- Identify pairs of atoms / of actions which logically cannot co-occur
- Remember these as mutually exclusive (mutex)
- Limits possible degree of action parallelism per step
Opposite atom mutex:

- Atom pairs \(\{p, \overline{p}\} \) are obviously mutex
- Notation for mutex: \(\{p, q\} \in M_i \) if \(p \) and \(q \) are mutex at layer \(i \)
- Example: \(\{t@A, \overline{t@A}\} \in M_1 \) (even: \(\{t@A, \overline{t@A}\} \in M_i \) for all \(i \))
- Conflicting effects:
 - Actions a_1, a_2 are mutex if an effect of a_1 is mutex with an effect of a_2
 - Example: $\{\text{driveAtoB}, \text{driveBtoC}\} \in M_2$ because $\{t@B, \neg t@B\} \in M_2$
Interference between actions:

- Actions \(\{a_1, a_2\} \) are mutex if an effect of \(a_1 \) interferes with a precondition of \(a_2 \): \(\exists p \in \text{eff}(a_1): \bar{p} \in \text{pre}(a_2) \)

- Example: \text{driveAtoB} deletes \(t@A \) which is needed by \text{loadp1@A} \n
\[\Rightarrow \{\text{driveAtoB}, \text{loadp1@A}\} \in M_1 \]
Conflicting enabling actions:

- Atoms \(\{p_1, p_2\} \) are mutex if each pair of enabling actions is mutex
- Example: \(\{t@A, t@B\} \in M_1 \) because \(\{\text{driveAtoB, nop}_{t@A}\} \in M_1 \)
Conflicting enabling actions:
- Atoms \(\{p_1, p_2\} \) are mutex if each pair of enabling actions is mutex
- Example: \(\{t@A, t@B\} \in M_1 \) because \(\{\text{driveAtoB, nop}_{t@A}\} \in M_1 \)
- Similarly, \(\{t@B, p1@T\} \in M_1 \) because \(\{\text{driveAtoB, loadp1@A}\} \in M_1 \)
Decide if goal can be met at some layer

- At P_3, $p1@C$ and $p2@C$ are both reachable
- Still, $\{p1@C, p2@C\} \in M_3$ (see illustration for """"proof"""")
- As a consequence, goal is not satisfiable at P_3
 \Rightarrow Expand graph until goals are not mutex any more (?)
1. The set of atoms in P_i grows monotonically in i
 - Each atom p at P_{i-1} will also be at P_i (due to nop_p)

Maximum size of atoms and actions is bounded by problem size

The sets always either increase or remain constant (1), (2)

If both remain constant, a fixpoint is reached
The set of atoms in \(P_i \) grows monotonically in \(i \)
- Each atom \(p \) at \(P_{i-1} \) will also be at \(P_i \) (due to \(\text{nop}_p \))

The set of actions in \(A_i \) grows monotonically in \(i \)
- If some \(a \) is applicable at layer \(i - 1 \), then it is also applicable at layer \(i \) (monotonicity of atoms)
The set of atoms in P_i grows monotonically in i
- Each atom p at P_{i-1} will also be at P_i (due to nop_p)

The set of actions in A_i grows monotonically in i
- If some a is applicable at layer $i-1$,
 then it is also applicable at layer i (monotonicity of atoms)

The sets of atoms and actions (P_i, A_i) will eventually reach a fixpoint at some layer k, i.e. $P_k = P_{k+1} = \ldots$ and $A_k = A_{k+1} = \ldots$
- Maximum size of atoms and actions is bounded by problem size
- The sets always either increase or remain constant (1), (2)
- If both remain constant, a fixpoint is reached
The set of mutexes M_i eventually decreases monotonically in i:

Theorem.

Let $k \in \mathbb{N}$ such that $\hat{P} := P_k = P_{k+1} = \ldots$ and $\hat{A} := A_k = A_{k+1} = \ldots$, i.e. the sets of atoms and actions have reached a fixpoint at layer k. Then the size of M_{k+j} will decrease monotonically in $j \geq 0$.

Needed key observations:

- Non-mutex pairs at layer i will never become mutex.
- Non-mutex pairs do not have any intrinsic logical conflicts.
- No new conflicts will arise because A_i and P_i remain unchanged.

Mutex pairs at layer i may later become not mutex.

Intuition: More layers will allow some mutex actions to be executed one after another, opening up new possibilities.
The set of mutexes M_i eventually decreases monotonically in i:

Theorem.

Let $k \in \mathbb{N}$ such that $\hat{P} := P_k = P_{k+1} = \ldots$ and $\hat{A} := A_k = A_{k+1} = \ldots$, i.e. the sets of atoms and actions have reached a fixpoint at layer k. Then the size of M_{k+j} will decrease monotonically in $j \geq 0$.

Needed key observations:

- **Non-mutex pairs** at layer i will never become mutex
 - Non-mutex pairs do not have any intrinsic logical conflicts
 - No new conflicts will arise because A_i and P_i remain unchanged

- **Mutex pairs** at layer i may later become not mutex
 - Intuition: More layers will allow some mutex actions to be executed one after another, opening up new possibilities
Properties (1)–(4) imply the following:

Theorem.

A planning graph eventually reaches a fixpoint where no atoms, actions, or mutexes will change in any subsequent layers.
Planning graph: Termination

- Properties (1)–(4) imply the following:

Theorem.

A planning graph eventually reaches a fixpoint where no atoms, actions, or mutexes will change in any subsequent layers.

- Consequence: Building a planning graph always terminates (and: the planning graph is finite)
Planning graph: Termination

- Properties (1)–(4) imply the following:

Theorem.

A planning graph eventually reaches a fixpoint where no atoms, actions, or mutexes will change in any subsequent layers.

- Consequence: Building a planning graph always terminates (and: the planning graph is finite)
- Complexity: polynomial in amount of atoms \(P \) and actions \(A \)
 - Construction of \(P_i, A_i, M_i \) polynomial for each \(i \) (easy construction rules, quadratic amount of checks for mutexes)
 - Due to monotonicity, at most \(|P| + |A| \) layers until \(\hat{P} \) and \(\hat{A} \) reached (at each layer, at least one atom or action joins)
 - Then, at most \(|P|^2 + |A|^2 \) more layers until \(\hat{M} \) reached (at each layer, at least one mutex joins)
Making use of a planning graph

- Properties of \hat{P}, \hat{A}, \hat{M} give "one-sided hints" to solvability:
 - If $\exists p \in g : p \notin \hat{P}$, goal is unreachable
 - If for some $\{p, q\} \subseteq g$, $\{p, q\} \in \hat{M}$, goal is unreachable as well
 - Otherwise: There might be a plan

How to use planning graph to find an actual plan?
- If a plan may exist for layer l, search for it
- Use collected problem properties from planning graph
Making use of a planning graph

- Properties of \hat{P}, \hat{A}, \hat{M} give “one-sided hints” to solvability:
 - If $\exists p \in g : p \notin \hat{P}$, goal is unreachable
 - If for some $\{p, q\} \subseteq g$, $\{p, q\} \in \hat{M}$, goal is unreachable as well
 - Otherwise: There might be a plan

- How to use planning graph to find an actual plan?
 - If a plan may exist for layer l, search for it
 - Use collected problem properties from planning graph
The Graphplan procedure (1)

Algorithm 1 Abstract Graphplan

1: \(G := \langle A_0, M_0, P_0 \rangle = \langle \{ \}, \{ \}, s_0 \rangle \)
2: \(l := 0 \)
3: \textbf{while TRUE do}
4: \quad \textbf{if} \(g \in P_l \) \textbf{and} \(\forall g_1, g_2 \in g : \{ g_1, g_2 \} \notin M_l \) \textbf{then}
5: \qquad \text{result} := \text{extractPlan}(G)
6: \qquad \textbf{if} \text{result} \neq \text{FAILURE} \textbf{then} \text{return result}
7: \quad \textbf{end if}
8: \quad l := l + 1
9: \quad (A_l, M_l, P_l) := \text{expand}(G)
10: \quad G := G \cup \langle A_l, M_l, P_l \rangle
11: \quad \textbf{if} G \text{ completely converged} \textbf{then} \text{return FAILURE}
12: \quad \textbf{end while}
The Graphplan procedure (2)

How does $\text{expand}(G)$ work?
- Calculate all applicable actions in the last P_i
- Calculate the resulting next set of atoms
- Calculate all mutexes
The Graphplan procedure (2)

How does $\text{expand}(G)$ work?
- Calculate all applicable actions in the last P_i
- Calculate the resulting next set of atoms
- Calculate all mutexes

How does $\text{extractPlan}(G)$ work?
- **Backwards search** algorithm to satisfy goal (see last lecture)
- Atom required \Rightarrow Pick any applicable enabling action **(OR)**
- Action required \Rightarrow Add all preconditions to required atoms **(AND)**
- Branching on **OR** choices, backtracking etc.
The Graphplan procedure (2)

How does \(\text{expand}(G) \) work?
- Calculate all applicable actions in the last \(P_i \)
- Calculate the resulting next set of atoms
- Calculate all mutexes

How does \(\text{extractPlan}(G) \) work?
- Backwards search algorithm to satisfy goal (see last lecture)
- Atom required \(\Rightarrow \) Pick any applicable enabling action (OR)
- Action required \(\Rightarrow \) Add all preconditions to required atoms (AND)
- Branching on OR choices, backtracking etc.

What does completely converged mean?
- Atoms, actions, mutexes reached fixpoint
- Last search yielded no new information on conflicting goal atom sets
Graphplan on Trucking

- Assume one single goal atom: \(p1@B \)
- Planning graph is built until \(P_2 \), where goal is first produced
 - Backward search unsuccessful: No valid path exists
Assume one single goal atom: $p_1@B$

Increase graph until P_3: Backward search successful

“Plan”: $\langle \{nop_{t@A}, loadp1@A\}, \{nop_{p1@T}, driveAtoB\}, \{dropp1@B\} \rangle$
Graphplan: Realization

- Use collected mutex information
 - Prune search space: Disallow impossible action choices
 - Add new mutexes when a sub-search fails
Graphplan: Realization

- Use collected mutex information
 - Prune search space: Disallow impossible action choices
 - Add new mutexes when a sub-search fails
- If entire backwards search fails: Remember reason for failing
 - Store conflicting goal atoms as \textit{no-goods} at this layer
 - Just like mutexes, eventually converges
 - Termination criterium for non-trivially unsolvable problems
Graphplan: Realization

- Use collected mutex information
 - Prune search space: Disallow impossible action choices
 - Add new mutexes when a sub-search fails
- If entire backwards search fails: Remember reason for failing
 - Store conflicting goal atoms as *no-goods* at this layer
 - Just like mutexes, eventually converges
 - Termination criterium for non-trivially unsolvable problems
- Heuristics for search,
 - e.g. *nop* actions first, atom with least enabling actions first
Graphplan: Realization

- Use collected mutex information
 - Prune search space: Disallow impossible action choices
 - Add new mutexes when a sub-search fails
- If entire backwards search fails: Remember reason for failing
 - Store conflicting goal atoms as no-goods at this layer
 - Just like mutexes, eventually converges
 - Termination criterium for non-trivially unsolvable problems
- Heuristics for search,
 e.g. nop actions first, atom with least enabling actions first
- Technical optimizations
 - Preprocess problem, removing all rigid predicates
 - Ground problem while building planning graph, as little as possible
 - When atoms and actions remain unchanged, only update mutexes
Graphplan: Conclusion

What does Graphplan do right?

- Very **careful expansion** of search space, with **polynomial complexity**, as long as possible
 - Also leads to **efficient termination condition** in case of failure
- Maintains **non-trivial logical properties** about problem, useful during entire algorithm
- Explicit ordering of actions only where it matters
Graphplan: Conclusion

What does Graphplan do right?

- Very careful expansion of search space, with polynomial complexity, as long as possible
 - Also leads to efficient termination condition in case of failure
- Maintains non-trivial logical properties about problem, useful during entire algorithm
- Explicit ordering of actions only where it matters

Limitations? Problems?

- Essentially, Graphplan = iterative deepening backwards search (with some additional knowledge)
 - For complex problems, depends on good heuristics again
 - Forward search more common / better practical performances
From Graphplan to SAT

- Graphplan backwards search: Problem of logical nature
 - Resolve causal and set-theoretic dependencies
 - Notion of “learning conflicts” (mutexes) during search
From Graphplan to SAT

- Graphplan backwards search: Problem of logical nature
 - Resolve causal and set-theoretic dependencies
 - Notion of “learning conflicts” (mutexes) during search
- Some Graphplan realizations use CSP (Constraint Satisfaction Problem) or SAT (Satisfiability) solvers
 - Translation of problem into low-level logical language
 - Resolution of translated problem using efficient solving techniques
 - Extraction of found solution
From Graphplan to SAT

- Graphplan backwards search: Problem of logical nature
 - Resolve causal and set-theoretic dependencies
 - Notion of “learning conflicts” (mutexes) during search
- Some Graphplan realizations use CSP (Constraint Satisfaction Problem) or SAT (Satisfiability) solvers
 - Translation of problem into low-level logical language
 - Resolution of translated problem using efficient solving techniques
 - Extraction of found solution
- Next up: Use SAT solving as engine for entire planning procedure
 [KS⁺92], [KS96]
A (boolean) variable v has two possible values true or false. A literal l is either a variable v or its negated form $\neg v$. A clause $c = l_1 \vee l_2 \vee \ldots \vee l_k$ is a set of literals which is true iff at least one of its literals is true (disjunction / OR of literals). A (CNF) formula $F = c_1 \wedge c_2 \wedge \ldots \wedge c_n$ is a set of clauses which is true iff all of its clauses are true (conjunction / AND of clauses).
A boolean variable \(v \) has two possible values true or false.

A literal \(l \) is either a variable \(v \) or its negated form \(\neg v \).

A clause \(c = l_1 \lor l_2 \lor \ldots \lor l_k \) is a set of literals which is true iff at least one of its literals is true (disjunction / OR of literals).

A (CNF) formula \(F = c_1 \land c_2 \land \ldots \land c_n \) is a set of clauses which is true iff all of its clauses are true (conjunction / AND of clauses).

An assignment \(A \) maps each variable \(v \) to true or false. If a formula \(F \) is true under these variable values, \(A \) is a satisfying assignment.
SAT Preliminaries

Variable, Literal, Clause, Formula.

A (boolean) variable v has two possible values true or false. A literal l is either a variable v or its negated form $\neg v$. A clause $c = l_1 \lor l_2 \lor \ldots \lor l_k$ is a set of literals which is true iff at least one of its literals is true (disjunction / OR of literals). A (CNF) formula $F = c_1 \land c_2 \land \ldots \land c_n$ is a set of clauses which is true iff all of its clauses are true (conjunction / AND of clauses).

Assignments.

An assignment A maps each variable v to true or false. If a formula F is true under these variable values, A is a satisfying assignment.

Example: $F = (x_1 \lor \neg x_2) \land (\neg x_3) \land (\neg x_1 \lor x_2)$, Satisfying assignment $A = \{x_1 \mapsto \text{true}, x_2 \mapsto \text{true}, x_3 \mapsto \text{false}\}$
SAT Problem.

Given a CNF formula F, find a satisfying assignment for F or report that none exists (i.e. F is unsatisfiable).

- Most prominent NP-complete problem
- Very efficient SAT Solvers exist
SAT Solving

SAT Problem.
Given a CNF formula F, find a satisfying assignment for F or report that none exists (i.e. F is unsatisfiable).

- Most prominent NP-complete problem
- Very efficient SAT Solvers exist

SAT Encoding.
Given a problem \mathcal{P}, a SAT encoding of \mathcal{P} is a CNF formula $F_\mathcal{P}$ such that:

- $F_\mathcal{P}$ is satisfiable if and only if \mathcal{P} has a solution.
- If $F_\mathcal{P}$ is satisfiable, then a solution to \mathcal{P} can be (easily) extracted from a satisfying assignment A of $F_\mathcal{P}$.
Objective: Find procedure to encode given planning problem as a CNF formula; let SAT solver find a plan for you
Objective: Find procedure to **encode** given planning problem as a CNF formula; let SAT solver find a plan for you

Theoretical issue with SAT encodings of planning problems:
- PLANSAT is **PSPACE-complete**, SAT is **NP-complete**
 - A single, polynomial-size SAT encoding for general planning problems implies **NP = PSPACE** (contrary to our best knowledge!)
 - SAT encodings for entire planning problem will explode in size
Towards a SAT Encoding of Planning (2)

General procedure of SAT-based planning:

- Limit encoding of planning problem to at most n steps (actions)
- When unsatisfiable, increase n and try again
 \Rightarrow Top-level procedure similar to Graphplan, iter. deepening search
Encoded variables: “is” and “do”

- Variable $i_s^t_p$ for each atom p and each step $t = 0, \ldots, n$
- “Atom p holds at step t”
Encoded **variables**: “is” and “do”

- Variable is^t_p for each atom p and each step $t = 0, \ldots, n$
 - “Atom p holds at step t”

- Variable do^t_a for each action a and each step $t = 0, \ldots, n - 1$
 - “Action a is applied at step t”
Encoded variables: “is” and “do”

- Variable is_p^t for each atom p and each step $t = 0, \ldots, n$
 - “Atom p holds at step $t”
- Variable do_a^t for each action a and each step $t = 0, \ldots, n - 1$
 - “Action a is applied at step $t”
- Found plan can be read directly from true action variables

Table

<table>
<thead>
<tr>
<th>Step</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>t@A</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t@B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t@C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>p1@A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>p1@C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>p1@T</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>p2@B</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>p2@C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>p2@T</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>loadp1@A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>loadp2@B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>dropp1@C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>dropp2@C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>moveAtoB</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>moveBtoC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Clauses of the encoding:

1. The initial state must hold at $t = 0$.

$$
\forall p \in s_0 : is_p^0 \quad \forall p \notin s_0 : \neg is_p^0
$$
SAT Encoding of Planning (2)

Clauses of the encoding:

1. The initial state must hold at $t = 0$.

\[\forall p \in s_0 : is_p^0 \quad \forall p \notin s_0 : \neg is_p^0 \]

2. At every step, at least one action is applied.
 (Assume $A = \{a_1, \ldots, a_k\}$)

\[\forall t \in \{0, \ldots, n - 1\} : (do_{a_1}^t \lor do_{a_2}^t \lor \ldots do_{a_k}^t) \]
SAT Encoding of Planning (2)

Clauses of the encoding:

1. The initial state must hold at $t = 0$.
 \[
 \forall p \in s_0 : is_p^0 \quad \forall p \notin s_0 : \neg is_p^0
 \]

2. At every step, at least one action is applied.
 (Assume $A = \{a_1, \ldots, a_k\}$)
 \[
 \forall t \in \{0, \ldots, n - 1\} : (do_{a_1}^t \lor do_{a_2}^t \lor \ldots do_{a_k}^t)
 \]

3. At every step, at most one action is applied.
 \[
 \forall t \in \{0, \ldots, n - 1\}, \forall a_1 \neq a_2 : (\neg do_{a_1}^t \lor \neg do_{a_2}^t)
 \]
If action a is applied at step t, then $pre(a)$ hold at step t.

$$\forall t \in \{0, \ldots, n - 1\}, \forall a \in A, \forall p \in pre^+(a) : (do^t_a \rightarrow is^t_p)$$

$$\forall t \in \{0, \ldots, n - 1\}, \forall a \in A, \forall p \in pre^-(a) : (do^t_a \rightarrow \neg is^t_p)$$
4. If action a is applied at step t, then $pre(a)$ hold at step t.

\[
\forall t \in \{0, \ldots, n-1\}, \forall a \in A, \forall p \in pre^+(a) : (do^t_a \rightarrow is^t_p)
\]

\[
\forall t \in \{0, \ldots, n-1\}, \forall a \in A, \forall p \in pre^-(a) : (do^t_a \rightarrow \neg is^t_p)
\]

5. If action a is applied at step t, then $eff(a)$ hold at step $t + 1$.

\[
\forall t \in \{0, \ldots, n-1\}, \forall a \in A, \forall p \in eff^+(a) : (do^t_a \rightarrow is^{t+1}_p)
\]

\[
\forall t \in \{0, \ldots, n-1\}, \forall a \in A, \forall p \in eff^-(a) : (do^t_a \rightarrow \neg is^{t+1}_p)
\]
If action a is applied at step t, then $\text{pre}(a)$ hold at step t.

\[
\forall t \in \{0, \ldots, n-1\}, \forall a \in A, \forall p \in \text{pre}^+(a) : (\text{do}^t_a \rightarrow \text{is}_p^t)
\]
\[
\forall t \in \{0, \ldots, n-1\}, \forall a \in A, \forall p \in \text{pre}^-(a) : (\text{do}^t_a \rightarrow \neg \text{is}_p^t)
\]

If action a is applied at step t, then $\text{eff}(a)$ hold at step $t + 1$.

\[
\forall t \in \{0, \ldots, n-1\}, \forall a \in A, \forall p \in \text{eff}^+(a) : (\text{do}^t_a \rightarrow \text{is}_{p}^{t+1})
\]
\[
\forall t \in \{0, \ldots, n-1\}, \forall a \in A, \forall p \in \text{eff}^-(a) : (\text{do}^t_a \rightarrow \neg \text{is}_{p}^{t+1})
\]

The goal g holds at step n.

\[
\forall p \in g : \text{is}_p^n
\]
Almost finished . . .

With clauses (1)–(6) for $n = 1$, the following is a solution for Trucking:

- Set $do_0^{move_{AtoB}}$ to true, all other actions to false
- Set $is^1_{p1@c}$ and $is^1_{p2@c}$ to true

Why can the packages teleport to C without any action?
Almost finished . . .

With clauses (1)–(6) for \(n = 1 \), the following is a solution for Trucking:

- Set \(do^0_{moveAtoB} \) to true, all other actions to false
- Set \(is^1_{p1@c} \) and \(is^1_{p2@c} \) to true

Why can the packages teleport to \(C \) without any action?

- Atoms can change arbitrarily without actions – explicitly disallow this
Almost finished . . .

With clauses (1)–(6) for \(n = 1 \), the following is a solution for Trucking:

- Set \(do^0_{\text{moveAtoB}} \) to true, all other actions to false
- Set \(is^1_{p1@c} \) and \(is^1_{p2@c} \) to true

Why can the packages teleport to \(C \) without any action?

- Atoms can change arbitrarily without actions – explicitly disallow this

If atom \(p \) changes between steps \(t \) and \(t + 1 \), an action which supports this change must be applied at \(t \):

\[
\forall t \in \{0, \ldots, n - 1\}, \forall p \in P : \left((is^t_p \land \neg is^{t+1}_p) \rightarrow \bigvee_{a \in \text{support}(\neg p)} do^t_a \right) \\
\forall t \in \{0, \ldots, n - 1\}, \forall p \in P : \left(\neg is^t_p \land is^{t+1}_p \rightarrow \bigvee_{a \in \text{support}(p)} do^t_a \right)
\]
Stay tuned!

Next lecture: Advanced SAT-based planning; Plan optimization
