Automated Planning and Scheduling
Lecture 14: Recap, Q&A
Tomáš Balyo, Dominik Schreiber | January 29, 2020
Outline

- Recap on all topics
- Questions and answers
Planning & Scheduling: Motivation

- Why automated planning and scheduling?

- Planning: Given a current state, a set of possible actions, and a desired state, find a sequence of actions = plan to achieve the desired state.

- Scheduling: Given a collection of actions and restricted resources, decide how to execute all the actions in an efficient manner.
Restrictive assumptions of Planning

Compared to the “Real World” in Classical Planning

- There are finitely many states and actions
- The world state is fully observable, the agent knows the current state
- Actions are deterministic, they only have one outcome
- The world is static, it only changes by the agents actions
- Goal is defined as a set of states
- Plan is defined as a sequence of actions
Three Kinds of Planners

- **Domain–specific**
 - A planner designed and developed for a specific planning domain.
 - Won’t work well or at all for other planning domains.
 - Examples: Path finding algorithms, Sokoban puzzle solver

- **Domain–independent**
 - A planner that works on any planning domain (given the restrictions on the previous slide).
 - Correctness and completeness is guaranteed, but performance may be worse than a domain-specific planner on its respective domain.

- **Configurable**
 - Domain independent engine, input includes info about efficient solving.
 - One example of this HTN (Hierarchical Task Network) Planning.
A classical planning problem \(\pi = (S, A, s_I, s_G) \) is a tuple where

- \(S \) represents the final set of world states
- \(A \) represents the final set of actions
- \(s_I \in S \) represents the initial state
- \(s_G \subset S \) represents the set of goal states

A plan \(P = [a_1, a_2, ..., a_n] \) is a sequence of actions where \(a_i \in A \) that transforms the world state from \(s_I \) to a state \(s \in s_G \).
Representation of World States

- In general far too many states to represent explicitly
- We represent states as a set of features
 - a set of propositions that are true (PR – Propositional rep.)
 - vector of values of finite domain variables (FDR – finite dom. rep.)

Example

- PR propositions: Tr@A, Tr@B, Tr@C, P1@A, P2@A, P1@B, P2@B, P1@C, P2@C, P1-in-Truck, P1-in-Truck
- FDR variables: TruckLocation = \{A|B|C\}, Package1Location = \{A|B|C|T\}, Package2Location = \{A|B|C|T\}
Representation of all possible Actions

- List all the actions – Explicit Representation
 - Can be a huge amount, but most of the time it’s fine
 - Requires some script to generate the list, cannot be done by hand
 - Usually used with FDR

- Operators – Action Templates – Implicit Representation
 - Using objects, types and predicates define Action Templates

Example: operator for loading a package at some location

Types: location, package

Objects: P1, P2 - package, A, B, C - location

Predicates: at(P - package, L - location),
TruckAt(L - location), InTruck(P - package)

Operator:
loadPackage(P - package, L - location) = ({at(P, L),
TruckAt(L)}, {¬at(P, L), InTruck(P)})
Grounding: Actions from Operators

Types: location, package
Objects: P1, P2 - package, A,B,C - location
Predicates: PackageAt(P - package, L - location), TruckAt(L - location), InTruck(P - package)
Operator:
loadPackage(P - package, L - location) =
($\{\text{PackageAt}(P,L), \text{TruckAt}(L)\}$, $\{\neg\text{PackageAt}(P,L), \text{InTruck}(P)\}$)

- The operator and objects generate these actions:
loadPackage(P1,A), loadPackage(P1,B), loadPackage(P1,C),
loadPackage(P2,A), loadPackage(P2,B), loadPackage(P2,C),
The Complexity of Classical Planning (1)

Theorem.

PLANSAT is **PSPACE**-complete.

A proof has two parts:

1. **Show that** **PLANSAT** ∈ **PSPACE**
 - Propose an algorithm deciding **PLANSAT** which “only” takes polynomial space

2. **Show that every problem in** **PSPACE** **can be reduced to** **PLANSAT**
 - If a Turing machine on polynomial space can solve a problem, show that we can solve the problem with classical planning
A Turing machine in PDDL: Plan

- Found plan:
 1. `transition(p1 p2 s0 s0 zero zero right)`
 2. `transition(p2 p3 s0 s0 zero zero right)`
 3. `transition(p3 p4 s0 s0 zero zero right)`
 4. `transition(p4 p5 s0 s1 one one right)`
 5. `transition(p5 p6 s1 s1 zero one right)`
 6. `transition(p6 pb s1 s1 zero one right)`
 7. `transition(pb p6 s1 s2 blank blank left)`
 8. `halt(p6 s2 one)`

- How can a non-deterministic TM be realized?
 - Just add multiple `transition` atoms for some of the state-symbol-combinations to the initial state.
 - Nice analogy:
 TM is deterministic ⟷ A forward search through the problem’s state space is a linear path without branches (no decisions necessary!)
Now what?

- **PSPACE**-complete problems are hard. \[citation needed\]
- What are possible responses to this (too) high complexity?
 1. **Restrict our model** to make it easier (but still useful!)
 - We’ll try on the next slides
 2. **Work out heuristics and/or approximations** that work fine in practice
 - Upcoming lecture(s) on heuristics and search methods
 3. **Drop our model’s generality** and develop planning algorithms which are **specialized** for the problem at hand
 - Partly being done in HTN planning (later lecture)
 - Feel free to take some robotics course covering motion planning
Complexity of Optimal Planning

Theorem.
For each mentioned PSPACE-complete PLANSAT (sub)problem, the corresponding PLANMIN problem is PSPACE-complete, as well.

Theorem.
Take the previous theorem and replace each occurrence of PSPACE with NP. Then the theorem still holds.

Observation: For polynomial PLANSAT subproblems, the corresponding PLANMIN subproblem may still be NP-complete!

- Example: PLANMIN\(_0\) (no preconditions)
State Space Graph

Planning: find a path from AAB to CCC
State Space Graph

- So planning is just path-finding :-)
- We can use standard path search algorithms
 - Breadth-first search
 - Depth-first search
 - Dijkstra’s algorithm
 - ...

BUT...

- The graph is astronomically huge
- Does not fit in the memory
- We will generate it on the go
Various Search Algorithms

Uninformed search:
- Breadth-first search and depth-first search
- Dijkstra’s algorithm

Informed, heuristic search:
- Best-First and Greedy Best-First search
- A* algorithm
- Enforced Hill Climbing technique
- Backwards and bi-directional search
Admissible heuristics

Admissibility.

A heuristic $h(s)$ regarding a goal g is admissible iff $\forall s : h(s) \leq h^*(s)$, where $h^*(s)$ is the actual remaining distance to the goal g.

- Our heuristic: $h_{euc}(s) := d(s, g) = \sqrt{\sum_{a \in g} 1 - [a \in s]}$
- Is this heuristic admissible (for uniform action costs)? Only if no action satisfies more than one goal atom.
- Discussion: Is the heuristic useful?
 - Can be useful if problem has many goals, each of which only take a single action
 - Mostly useless when many actions are required to produce a goal
 - Worst Case: Large planning problems with a single goal; heuristic degenerates to $h_{euc}(s) = 1$ for almost all s
The central paradigm: Relaxation

- We cannot hope to find the true goal distance from all s for our heuristic
- Instead, fall back to a simplified problem (relaxation)
 - Easier to compute and analyze
 - Provides at least certain bounds for the original problem’s properties

Delete-relaxation [GNT16]

Let $\pi = (\mathcal{P}, \mathcal{A}, s_I, G)$ a planning problem. Then $\pi_r := (\mathcal{P}, \mathcal{A}_r, s_I, G)$ is called the delete-relaxation of π, whereas $\mathcal{A}_r = \{a_r | a \in \mathcal{A}\}$, with $\text{pre}(a_r) = \text{pre}^+(a)$ and $\text{eff}(a_r) = \text{eff}^+(a)$.

- Delete-relaxed problem never gets harder in any way
The Fast-Forward Heuristic

Fast-Forward heuristic $h^{FF}(s)$ [HN01]

- Build relaxed planning graph G from s until relaxed goal g^+ is satisfied
- Extract an actual (relaxed) solution plan p
- Return cost of p
Delete-relaxed Landmark heuristics

- Try to find common points which all valid plans share
- How many such points are still missing? ⇒ Use for heuristic

Disjunctive Action Landmarks [HR15]

A *disjunctive action landmark* is a set of actions A such that each delete-relaxed plan contains some $a \in A$.

- Construct a **Justification Graph** [HR15]
 - Vertices: Single atoms. Directed edges for each action a: some precondition of a to each of its effects

Each graph cut forms a Landmark!
Relaxation by abstraction

- Another relaxation: **Abstract state space of some atom pattern** X
- Example: Consider subspace of pattern $X := \{ \text{at}(p1, \cdot), \text{at}(p2, \cdot) \}$

Plan search in abstracted state space can be much easier \Rightarrow Exploit this for a heuristic
Relaxation by abstraction

- Another relaxation: Abstract state space of some atom pattern X
- Example: Consider subspace of pattern $X := \{at(p_1, \cdot), at(p_2, \cdot)\}$
Relaxation by abstraction

- Another relaxation: Abstract state space of some atom pattern X
- Example: Consider subspace of pattern $X := \{ at(p1, \cdot), at(p2, \cdot) \}$

Plan search in abstracted state space can be much easier
Relaxation by abstraction

- Another relaxation: **Abstract state space of some atom pattern** \(X \)
- Example: Consider subspace of pattern \(X := \{ at(p_1, \cdot), at(p_2, \cdot) \} \)

Plan search in abstracted state space can be much easier
⇒ Exploit this for a heuristic
Critical Path Heuristics

- Suppose we can apply multiple actions in parallel
 - Build causal dependency graph as DAG from initial state to goal
 - (At least) one path in DAG is the longest \Rightarrow **Critical path**

Diagram:

- Start
 - pick-up(p1)
 - move(B)
 - move(C)
 - pick-up(p2)
- move(C)
- drop(C,p2)
- drop(C,p1)
- Goal

Idea for relaxation: Allow applying $\leq m$ actions in parallel

- $\{h^m \mid m = 1, 2, \ldots\}$ heuristics family [GH00]
 - Polynomial for a fixed (small) m; admissible for all m
Lifted Backwards Search

- Goal: decrease the branching factor of search
- Try to ground as little as possible – least commitment strategy

```
Lifted-backward-search(O, s₀, g)
    π ← the empty plan
    loop
        if s₀ satisfies g then return π
        A ← {(o, θ) | o is a standardization of an operator in O,
             θ is an mgu for an atom of g and an atom of effects \( o \),
             and \( γ^{-1}(θ(g), θ(o)) \) is defined}
        if A = ∅ then return failure
        nondeterministically choose a pair \( (o, θ) ∈ A \)
        π ← the concatenation of \( θ(o) \) and \( θ(π) \)
        g ← \( γ^{-1}(θ(g), θ(o)) \)
```

- branching factor will get (significantly) decreased, still need backtracking though
The original STRIPS algorithm is a lifted version of the algorithm below.

```
Ground-STRIPS(O, s, g)
    \pi \leftarrow \text{the empty plan}
    \text{loop}
        \text{if } s \text{ satisfies } g \text{ then return } \pi
        A \leftarrow \{a \mid a \text{ is a ground instance of an operator in } O,
               \text{ and } a \text{ is relevant for } g\}
        \text{if } A = \emptyset \text{ then return failure}
        \text{nondeterministically choose any action } a \in A
        \pi' \leftarrow \text{Ground-STRIPS}(O, s, \text{precond}(a))
        \text{if } \pi' = \text{failure} \text{ then return failure}
        ;; if we get here, then } \pi' \text{ achieves } \text{precond}(a) \text{ from } s
        s \leftarrow \gamma(s, \pi')
        ;; s now satisfies } \text{precond}(a)
        s \leftarrow \gamma(s, a)
        \pi \leftarrow \pi \cdot \pi'. a
```

$g_2 = (g - \text{effects}(a_2)) \cup \text{precond}(a_2)$

$\pi' = \langle a_6, a_4 \rangle$ is a plan for $\text{precond}(a_2)$

$s = \gamma(\gamma(s_0, a_6), a_4)$ is a state satisfying $\text{precond}(a_2)$
The STRIPS Algorithm Properties

- STRIPS tries to solve each goal separately
- The current goal is the preconditions of the last selected action
- Works if the goals can be solved in some linear order
- Not optimal, not complete –
 E.g. cannot solve the register assignment problem
- swap the values of two variables (registers)
- registers: R1, R2, R3 values: V0, V1,..., V5
- initial state: value(R1,V3), value(R2,V5), value(R3,V0)
- goal: value(R1,V5), value(R2,V3)
- operator: assign(r1,v1,r2,v2):
 value(r1,v1), value(r2,v2) → value(r1,v2)
Plan-Space Planning - Basic Idea

- Backward search from the goal
- Each node of the search space is a partial plan
 - A set of partially-instantiated actions
 - A set of constraints
- Make more and more refinements, until we have a solution
- Types of constraints:
 - precedence constraint: a must precede b
 - binding constraints:
 - inequality constraints, e.g., $v_1 \neq v_2$ or $v \neq c$
 - equality constraints (e.g., $v_1 = v_2$ or $v = c$) and/or substitutions
 - causal link:
 - use action a to establish the precondition p needed by action b
- How to tell we have a solution: no more flaws in the plan
 - Will discuss flaws and how to resolve them
Layers i of possible atoms P_i and potential actions A_i.

One layer of atoms+actions \cong one time step.

- Multiple actions per step allowed when they do not conflict: any ordering must be valid and lead to identical results.

- Negative atoms are included as a complementary atom set.
For each atom \(p \) at each layer, add persistence action \(\text{nop}_p \)

- \(\text{pre}(\text{nop}_p) = \text{eff}(\text{nop}_p) = \{ p \} \) (\(\text{nop} \) = “no operation”)
- Make explicit that an atom remains unchanged between layers
- Also for negative atoms
In addition to atoms P_i and actions A_i, maintain sets of conflicts M_i:

- Identify pairs of atoms / of actions which logically cannot co-occur
- Remember these as mutually exclusive (mutex)
- Limits possible degree of action parallelism per step
Atom mutex: **Opposite atoms**

- Atom pairs \(\{p, \bar{p}\} \) are obviously mutex
- Notation for mutex: \(\{p, q\} \in M_i \) if \(p \) and \(q \) are mutex at layer \(i \)
- Example: \(\{t@A, \neg t@A\} \in M_1 \) (even: \(\{t@A, \neg t@A\} \in M_i \) for all \(i \))
Action mutex: **Conflicting effects**

- Actions a_1, a_2 are mutex if an effect of a_1 is mutex with an effect of a_2
- Example: \{driveAtoB, driveBtoC\} $\in M_2$

 because \{t@B, ¬t@B\} $\in M_2$
Action mutex: Interference between actions

- Actions \(\{a_1, a_2\} \) are mutex if an effect of \(a_1 \) interferes with a precondition of \(a_2 \): \(\exists p \in \text{eff}(a_1) : \bar{p} \in \text{pre}(a_2) \)
- Example: \(\text{driveAtoB} \) deletes \(t@A \) which is needed by \(\text{loadp1@A} \)
 \[\Rightarrow \{\text{driveAtoB}, \text{loadp1@A}\} \in M_1 \]
Atom mutex: Conflicting enabling actions

- Atoms \(\{p_1, p_2\} \) are mutex if each pair of enabling actions is mutex
- Example: \(\{t@A, t@B\} \in M_1 \) because \(\{\text{driveAtoB}, \text{nop}_{t@A}\} \in M_1 \)
Atom mutex: **Conflicting enabling actions**

- Atoms \(\{p_1, p_2\} \) are mutex if each pair of enabling actions is mutex
- Example: \(\{t@A, t@B\} \in M_1 \) because \(\{\text{driveAtoB}, \text{nop}_{t@A}\} \in M_1 \)
- Similarly, \(\{t@B, p1@T\} \in M_1 \) because \(\{\text{driveAtoB}, \text{loadp1}@A\} \in M_1 \)
- Decide if goal can be met at some layer
 - At P_3, $p1@C$ and $p2@C$ are both reachable
 - Still, $\{p1@C, p2@C\} \in M_3$ (see illustration for """"proof"""")
 - As a consequence, goal is not satisfiable at P_3
 \Rightarrow Expand graph until goals are not mutex any more (?)
The sets of atoms and actions in P_i grow monotonically in i; eventually, set of mutexes M_i decreases monotonically in i.

No more logical information can be drawn from the graph itself just by expanding it further.

If not all goals are contained or if some are still mutex: \[\Rightarrow \] 1st termination criterium for unsatisfiability.

Else, more layers may be needed (switch example from exercises) until a valid plan is found or unsatisfiability can be shown.

Can still find new logical insights by explicit backwards searches from goal atoms to initial state, even after fixpoint is reached.

If these insights cease to increase as well after i layers:

information fully converged \[\Rightarrow \] 2nd termination criterium for unsat.
Planning graph: Properties

- The sets of atoms and actions in P_i grow monotonically in i;
 eventually, set of mutexes M_i decreases monotonically in i
- When atoms, actions, and mutexes reach a fixpoint . . .
 - No more logical information can be drawn from graph itself just by expanding it further
The sets of atoms and actions in P_i grow monotonically in i; \emph{eventually}, set of mutexes M_i decreases monotonically in i.

When atoms, actions, and mutexes reach a fixpoint . . .

- No more logical information can be drawn from graph itself just by expanding it further.
- If not all goals are contained or if some are still mutex: \Rightarrow 1st termination criterium for unsatisfiability.
The sets of atoms and actions in P_i grow monotonically in i; \textit{eventually}, set of mutexes M_i decreases monotonically in i.

When atoms, actions, and mutexes reach a fixpoint . . .

- No more logical information can be drawn from graph itself just by expanding it further.
- If not all goals are contained or if some are still mutex: \Rightarrow \textit{1st termination criterium} for unsatisfiability.
- Else, more layers may be needed (switch example from exercises) until valid plan is found or unsatisfiability can be shown.
The sets of atoms and actions in P_i grow monotonically in i; eventually, set of mutexes M_i decreases monotonically in i.

When atoms, actions, and mutexes reach a fixpoint . . .

- No more logical information can be drawn from graph itself just by expanding it further.
- If not all goals are contained or if some are still mutex: \Rightarrow 1st termination criterion for unsatisfiability.
- Else, more layers may be needed (switch example from exercises) until valid plan is found or unsatisfiability can be shown.

Can still find new logical insights I_i by explicit backwards searches from goal atoms to initial state, even after fixpoint is reached.
Planning graph: Properties

- The sets of atoms and actions in P_i grow monotonically in i;
 eventually, set of mutexes M_i decreases monotonically in i
- When atoms, actions, and mutexes reach a fixpoint . . .
 - No more logical information can be drawn from graph itself just by expanding it further
 - If not all goals are contained or if some are still mutex:
 ⇒ 1st termination criterium for unsatisfiability
 - Else, more layers may be needed (switch example from exercises) until valid plan is found or unsatisfiability can be shown
- Can still find new logical insights l_i by explicit backwards searches from goal atoms to initial state, even after fixpoint is reached
- If these insights l_i cease to increase as well after i layers:
 information fully converged ⇒ 2nd termination criterium for unsat.
Algorithm 1 Abstract Graphplan

1: \(G := \langle A_0, M_0, P_0 \rangle = \langle \{ \}, \{ \}, s_0 \rangle \)
2: \(l := 0 \)
3: while TRUE do
4: \(\text{if } g \in P_l \text{ and } \forall g_1, g_2 \in g : \{ g_1, g_2 \} \notin M_l \text{ then} \)
5: \(\quad \text{result} := \text{extractPlan}(G) \)
6: \(\quad \text{if result} \neq \text{FAILURE} \text{ then return result} \)
7: \(\text{end if} \)
8: \(l := l + 1 \)
9: \((A_l, M_l, P_l) := \text{expand}(G) \)
10: \(G := G \cup \langle A_l, M_l, P_l \rangle \)
11: \(\text{if } G \text{ completely converged then return FAILURE} \)
12: end while
Towards a SAT Encoding of Planning

General procedure of SAT-based planning:

- Limit encoding of planning problem to at most n steps (actions)
- When unsatisfiable, increase n and try again
 \Rightarrow Top-level procedure similar to Graphplan, iter. deepening search
SAT Encoding of Planning

Clauses of the encoding:

1. The initial state must hold at $t = 0$: $\forall p \in s_0 : is_p^0$, $\forall p \not\in s_0 : \neg is_p^0$
2. At every step, at least one action is applied: $(do_{a_1}^t \lor do_{a_2}^t \lor \ldots do_{a_k}^t)$
3. At every step, at most one action is applied: $\forall a_1 \neq a_2 : (\neg do_{a_1}^t \lor \neg do_{a_2}^t)$
4. If action a is applied at step t, then $pre(a)$ hold at step t: $\forall a \in A : \forall p \in pre^+(a) : (do_a^t \rightarrow is_p^t)$, $\forall p \in pre^-(a) : (do_a^t \rightarrow \neg is_p^t)$
5. If action a is applied at step t, then $eff(a)$ hold at step $t + 1$: $\forall a \in A : \forall p \in eff^+(a) : (do_a^t \rightarrow is_p^{t+1})$, $\forall p \in eff^-(a) : (do_a^t \rightarrow \neg is_p^{t+1})$
6. The goal g holds at step n: $\forall p \in g : is_p^n$
7. If atom p changes between steps t and $t + 1$, an action which supports this change must be applied at t: $\forall p \in P : (is_p^t \land \neg is_p^{t+1}) \rightarrow \bigvee_{a \in sprt(\neg p)} do_a^t$, $(\neg is_p^t \land is_p^{t+1}) \rightarrow \bigvee_{a \in sprt(p)} do_a^t$
Planning as Incremental SAT

- Avoid re-encoding entire problem for each $n = 0, 1, 2, \ldots$:
 - Maintain one single, growing formula
- Incremental SAT Solving: For each n,
 - Add clauses (1)–(5), (7) permanently
 - Assume clauses (6)
 - Literals are considered for one single solving attempt, then dropped
 - Let SAT Solver search for a solution
 - Satisfiable? \Rightarrow Finished
 - Unsatisfiable? \Rightarrow Continue
- Solver can learn conflicts from unsatisfiable increments to speed up subsequent increments
- More in “Practical SAT Solving” lecture
- Implementation: edu.kit.aquaplaning.planners.SimpleSatPlanner
Improvements for SAT Planning

- Better semantics for sets of parallel actions
 - (Naïve version: Purely sequential actions)
 - Foreach step: parallel actions may never be interfering
 - Exists step: parallel set of actions may interfere if \(\exists \) a valid ordering, all preconditions are met in the start, all effects hold in the end
 - Relaxed exists step: not even all preconditions must be met in the start
 - Relaxed relaxed exists step: not even all effects must hold in the end

\[\Rightarrow \text{Needed techniques: Enabling graph, implication chains} \]

- Better scheduling of makespans: Increase \(n \) in varying intervals, (pseudo-)parallel execution of solvers on different makespans
Hierarchical Task Network (HTN) planning

- Ovals: non-primitive tasks (expand to new task networks by choosing an appropriate method)
- Rectangles: primitive tasks (correspond to classical actions)
- In addition: Methods establish various constraints between tasks
A sequence of actions \(\pi = \langle a_1, \ldots, a_n \rangle \) is a solution plan for a ground HTN planning problem \(\mathcal{P} = (P, A, D, s_0, T_0) \), \(T_0 = (T, C) \), if one of the following alternatives holds:

1. \(T \) is empty, and \(n = 0 \).
2. Achieving a primitive task \(t \in T \) meets the constraints \(C \) in \(s_0 \), its corresponding action \(a_1 \) is applicable in \(s_0 \), and \(\pi' = \langle a_2, \ldots, a_n \rangle \) is a solution plan for \(\mathcal{P}' = (P, A, D, \gamma(s_0, a_1), (T \setminus \{t\}, C)) \).
3. Applying a ground method \(m \) of a compound task \(t \in T \) meets the constraints \(C \) in \(s_0 \), and \(\pi \) is a solution plan for \(\mathcal{P}' = (P, A, D, s_0, (T \setminus \{t\} \cup \text{subtasks}(m), C \cup \text{constraints}(m))) \).
Undecidability of HTN Planning

HTN planning is strictly more expressive than classical planning:

Theorem. [EHN94]

Given an HTN planning problem \mathcal{P}, it is generally **undecidable** whether \mathcal{P} is solvable (i.e. has a solution plan).

- **Consequence:** Can only have **semi-decidable** planning procedures
 - If a plan exists, it will eventually be found
 - If no plan exists, you may never know
- **Proof:** Model an undecidable problem as an HTN planning problem
 \Rightarrow HTN planning cannot be decidable then!
- **“Best” candidate:** Post Correspondence Problem
HTN can simulate Classical Planning

Given classical planning problem \((S, A, s_i, g)\) with \(|\pi| > 0\) for all plans \(\pi\), find an HTN planning problem solving exactly the same problem.

Tasks: (mainTask), (anyAction)
Methods: \(m_1, m_2, m_a (a \in A)\)

- \(task(m_1) = \text{(mainTask)}\), \(\text{subtasks}(m_1) = \langle \text{(anyAction)}, \text{(mainTask)} \rangle\), \(\text{constraints}(m_1) = \emptyset\)
- \(task(m_2) = \text{(mainTask)}\), \(\text{subtasks}(m_2) = \langle \text{(anyAction)} \rangle\), \(\text{constraints}(m_2) = \emptyset\)
- For each \(a \in A\): \(task(m_a) = \text{(anyAction)}\), \(\text{subtasks}(m_a) = \langle a \rangle\), \(\text{constraints}(m_a) = \emptyset\)

Initial task network \((T, C)\):
\(T = \langle \text{(mainTask)} \rangle\), \(C = \{(\text{(mainTask)}, p) | \ p \in g\}\) (after constraints)
SHOP2 Planner

Most popular HTN planner: SHOP2

Algorithm 2 SHOP2 Planning procedure [NAI+03] (simplified, abstract)

1: $\pi = \langle \rangle$; $(T, C) :=$ initial task network
2: while TRUE do
 3: if $T = \emptyset$ then return π // everything achieved
 4: $T' := \{t \in T : \text{there is no } t' \text{ such that } t' \prec t \in C\}$
 5: if $T' = \emptyset$ then return FAILURE // no valid tasks to pick from
 6: if $\exists t \in T': t$ is primitive and its action a is applicable in s then
 7: $T := T \setminus \{t\}$; $\pi := \pi \circ a$; $s := \gamma(s, a)$
 8: else if $\exists t \in T': t$ is compound and one of its methods m is applicable in s then
 9: $T := T \setminus \{t\} \cup \{\text{subtasks}(m)\}$
 10: $C := C \cup \{\text{constraints}(m)\}$
 11: else return FAILURE
12: end if
13: end while
SAT-based HTN Planning

Some approaches we looked at:

- Stack Machine Simulation (SMS)
- Tree-like Reduction Exploration (Tree-REX)
Improving Plans

A Plan: $L(P1,A), M(A,B), M(B,C), M(C,B), L(P2,B), M(B,C), U(P1,C), U(P2,C), M(C,B)$

- It is **Redundant** – some actions may be removed: $M(B,C), M(C,B)$ and then plan will still be valid.

Another Plan: $L(P1,A), M(A,B), M(B,C), U(P1,C), M(C,B), L(P2,B), M(B,C), U(P2,C)$

- It is **Suboptimal** but NOT Redundant
- Cannot be improved by only removing actions (must reorder actions)
Removing Redundant Actions

No redundancy: **Perfectly Justified Plan**

- NP-complete to find (proof idea: 3-SAT reduction)
- Approximation 1: Action Elimination
 - Basic Idea: remove an action and see what happens
 - Overall complexity: $O(n^2p)$
- Approximation 2: Greedy Action Elimination
 - Identify all sets of redundant actions first, then remove the best such set, repeat until no redundant set is found.
 - Complexity $O(n^3p)$, good for problems with action cost
- Optimal solution: Encode as MaxSAT
 - SAT encoding where only the plan’s actions exist at each step
 - Soft clauses for omitting each of the actions
Beyond Removing Redundant Actions

Sliding windows, Plan de-ordering, Plan neighborhood graph search
Planning in Parallel

Two kinds of approaches

- **Portfolios** – Diversify and Conquer
 - Run several planners in parallel, each working on the entire problem
 - The planner that first finds the solution stops all the planners ("virtual best planner")
 - You can run the same planner many times but with different heuristics, search strategies, random seeds, settings, etc
 - **PRO:** no dynamic load balancing required, small communication volume, easy to implement, works well for up 8-16 cores.
 - **CON:** overlapping work, hard to scale up (need many diverse planners)

- **Search Space Splitting** – Divide and Conquer
 - Each planner process works on a distinct subset of search space
 - **PRO:** No overlapping work as in Portfolios, can scale better
 - **CON:** Requires expensive load balancing and lots of communication
Enhancing our problem logic

- From STRIPS to ADL: Logic describing the problem gains more expressive power
 - STRIPS: Pure “sets of literals” – Flat conjunctions
 - Structure of expressions: $F \in \{a, \neg a, F_1 \land F_2\}$
 (a: atom; F_1, F_2: expressions)
 - ADL (Action Description Language): Function-free First Order Logic
 - $F \in \{a, \neg F_1, F_1 \land F_2, F_1 \lor F_2, \forall x F_1(x), \exists x F_1(x)\}$

- Advanced logical constructs in planning
 - Axioms (PDDL: Derived predicates)
 (:derived (at-house) (or (at-kitchen)(at-livingroom)))
 - Functions (PDDL: Mainly numeric fluents)
 (decrease (capacity ?t) (* 2 (weight ?p)))
More Non-classical Planning

Numeric Planning
- FF-metric heuristic: Extend delete-relaxation to numeric fluents

Temporal Planning
- Temporal forward SSS: based on action clocks and events
- Alternatives: Plan-space, blackbox solving (MILP, SMT, ...)

\[\text{Temp} \]
\[\text{Temp} \]
\[\text{Temp} \]
Deterministic Planning: Brief Taxonomy

- Common notions in classical planning
 - STRIPS (preconditions, effects, goals)
 - ADL (equality, disjunctive conditions, quantifications)
 - Axioms / derived predicates
- Hierarchical planning
 - Hierarchical task networks
- Numeric planning
 - Numeric fluents (functions) and conditions
 - Advanced (arithmetic) plan quality metrics
- Temporal planning
 - Durative and concurrent actions
Markov Decision Process

A Markov Decision Process (MDP) is a stochastic system $\Sigma = (S, A, P)$ with a reward function R, a cost function C, and a utility function V. The solution of a MDP is a policy π^* which maximizes $E(\pi^*)$.

- Full observability, but probabilistic state transitions
- More abstract than classical planning: Result is not a plan, but an “online plan generator” π^*
- Procedures to find optimal solutions, according to Bellman equation:
 - Value iteration: apply recursion until (approx.) fixpoint of utility function
 - Policy iteration: solve systems of linear equations to update policy
 - Problem: Iterating over all states. Alternative: heuristic search.
A Partially Observable Markov Decision Process (POMDP) is a stochastic system \(\Sigma = (S, A, P) \) with a finite set of observations \(O \) with probabilities \(P_a(o|s) \) for \(a \in A, s \in S, o \in O \). It must hold that \(\sum_{o \in O} P_a(o|s) = 1 \).

Procedure of an acting agent in a POMDP:

1. Start with some initial belief state \(b \)
2. Based on \(b \), apply some action \(a \) and make an observation \(o \)
3. Calculate prior belief state \(b_a(s) = \sum_{s' \in S} P_a(s|s') b(s') \)
4. Infer new belief state \(b' = P_a(s|o) = \frac{P_a(o|s) b_a(s)}{P_a(o)} \) (Bayes rule)
5. Back to (2)

POMDP Planning: Heurisitic search, or “leave planning towards learning”
Multi-Agent Path Finding (MAPF)

Input
- A graph with n vertices, usually a grid with obstacles
- A set of k agents each with a start and goal vertex

The Problem
- An agent can move or wait in each time step
- Find a path for each agent such that paths do not conflict
- The problem is solved by a centralized solver offline

- Additional constraints: No-swap, no-train, in general k-robustness
- Plan quality: Total makespan (max #steps), sum of costs
- NP-hard in general (some polynomial cases exist)
How to solve MAPF?

- Encode in PDDL and use a generic planner
 - Too slow, does not scale well for large problems
- Polynomial Sub-optimal rule-based algorithms
 - Like push&swap, push&rotate, bibox, ...
 - Scale better but the solution quality is usually rather bad
- Search based techniques
 - State space search with A* and some heuristics:
 - Cooperative A*, M*, ...
 - Conflict based search – kinda sorta plan-space-search
 - work well for many “practical” problems
- Reduction based techniques
 - SAT/MaxSat/ILP/CSP/ASP based MAPF
 - work best for small sized but complex problem instances
Challenges

- We need real-time planning (very fast reactions)
- continuous, nondeterministic, partially observable environments
- There are usually other (unpredictable) agents in the world (like the human player)
- How to model properly (how to choose the goals)?

What is used instead

- Reactive techniques (Finite state machines, Behavior Trees)
- Machine learning (very rare, Black and White, Creatures series)
Given:
- A set of jobs $\mathcal{J} = \{J_1, \ldots, J_n\}$ to be processed
- A set of machines $\mathcal{M} = \{M_1, \ldots, M_m\}$ to process the jobs
- Various constraints and properties
 - Interference/dependency of jobs
 - Compatibility of machines and jobs
 - Efficiency of a machine for a given (type of) job
 - Preemptiveness of jobs (can be interrupted or not)
 - ...

Various Optimization Criteria

Task:
- Find a **Schedule**, i.e., a mapping of jobs to machines and processing times that satisfies the given constraints and is optimal w.r.t. optimization criteria.
Graham Notation

A scheduling problem is described by a triplet: $\alpha|\beta|\gamma$ where

- α describes the machine environment (1-2 entries)
- β job characteristics (0-many entries)
- γ objective function to be minimized (1 entry)

Examples:

- $1|r_j,pmtn|L_{max}$ polynomially solvable:
 Start with the job J_j with the smallest r_j (break ties by smallest d_j);
 as soon as we reach the r_j of a job J_j with smaller d_j than the current jobs due date, we interrupt the current job and switch to that job J_j

- $1|r_j|L_{max}$ NP-complete;
 Branch-and-bound by making use of relaxed problem $1|r_j,pmtn|L_{max}$

- $Pm|prec|C_{max}$ with $m \geq n$: Critical path method
The Shop Problems are the most commonly used scheduling problems in practice:
- Each job consists of a set of tasks
- Each task must be executed on a specific machine
- There can be precedence relations between the tasks

The 3 kinds of shop problems:
- Job-shop – the tasks within each job are totally ordered (a job is sequence of tasks), often each resource is used at most once per job.
- Flow-shop – special case of Job-shop, all jobs have identical tasks in the same order (assembly line production)
- Open-shop – no precedence relations between the tasks,

Graham notation: $J_m || C_{max}, F_m || C_{max}, O_m || C_{max}$ for m machines and optimizing makespan, in general NP-hard

Example: Solving Job Shop problems using Crawford SAT encoding
What else to expect in the Exam

- Modeling of planning problems
 - How to do it, what to avoid, . . .
 - Given a planning problem, describe how you could model it with classical planning
 - Given a scenario, pick a planning model / style which is best suited

- Planning in practice
 - Grounding: How it works, what it does
 - Popular planner(s) and what makes them special
 - Given some realistic scenario, which combinations of planning techniques would you employ?
 - Optimal planning, plan optimization, planning in parallel, . . .
 - Apply a planning algorithm to some (small) example

- Topics covered in the exercises
Questions?
The End

Thank you for participating!
It was fun!

