Improving Kruskal’s Algorithm
Vitaly Osipov, Peter Sanders, Johannes Singler

Universität Karlsruhe (TH)
Motivation

What is the best (practical) algorithm for Minimum Spanning Trees?

- Kruskal? for very sparse graphs
- Jarník–Prim? else
Kruskal’s Algorithm

Procedure `kruskal(E, T : Sequence of Edge, P : UnionFind)`

1. sort E by increasing edge weight
2. **foreach** $(u, v) \in E$ **do**
 1. **if** u and v are in different components of P **then**
 1. add edge (u, v) to T
 2. join the partitions of u and v in P

Time $O((n + m) \log m)$
Quick-Kruskal

(Moret–Shapiro, Paredes–Navarro)

Procedure qKruskal($E, T : \text{Sequence of Edge}, P : \text{UnionFind}$)

if $m \leq \text{kruskalThreshold}(n, m, |T|)$ then kruskal(E, T, P)
else

pick a pivot $p \in E$

$E_{\leq} := \langle e \in E : e \leq p \rangle$

$E_{>} := \langle e \in E : e > p \rangle$

qKruskal(E_{\leq}, T, P)

if $|T| = n - 1$ then exit

qKruskal($E_{>}, T, P$)

Time:

- $O\left(m + n \log^2 n\right)$ – random graphs, random edge weights
- $\Theta((n + m) \log m)$ if there is any heavy MST edge, e.g., Lollipop graph with random edge weights
Filter-Kruskal

Procedure `filterKruskal(E, T : Sequence of Edge, P : UnionFind)`

if $m \leq \text{kruskalThreshold}(n, m, |T|)$ then `kruskal(E, T, P)`
else
 pick a pivot $p \in E$
 $E_{\leq} := \langle e \in E : e \leq p \rangle$
 $E_{> :=} \langle e \in E : e > p \rangle$
 `qKruskal(E_{\leq}, T, P)`
 if $|T| = n - 1$ then exit
 $E_{>} := \text{filter}(E_{>}, P)$
 `qKruskal(E_{>}, T, P)`

Function `filter(E)`

return $\langle \{u, v\} \in E : u, v \text{ are in different components of } P \rangle$
Analysis – *Arbitrary* Graph, Random Weights

Lemma: It suffices to count edge comparisons

Chan’s sampling lemma:
r lightest edges processed ⇒ \(\mathbb{P}[e \in E_{>} \text{ survives filtering}] \leq \frac{n}{r} \)

Optimistic Analysis:
Assume edge with rank \(i \) is filtered when \(r = i \).

\[
\mathbb{E}[\#\text{survivors}] \leq n + \sum_{i>n} \frac{n}{i} = \Theta\left(n \log \frac{m}{n} \right)
\]

Partitioning \(m \) edges and sorting \(n \log \frac{m}{n} \) edges:

\[
\Omega(m + n \log n \log \frac{m}{n})
\]
Idea: Generalize textbook analysis of quicksort.

0–1-RV $X_{ij} := 1$ iff edges with ranks i and j are compared.

$$E[\text{#comparisons}] = \sum_{i \leq m} \sum_{i < j \leq m} \mathbb{P}[X_{ij} = 1].$$

Strengthen bound on $\mathbb{P}[X_{ij} = 1]$ using Chan’s sampling lemma.

\ldots

\ldots

$O(m + n \log n \log \frac{m}{n})$ expected comparisons
Getting rid of the log m/n? E.g., random graphs

![Diagram showing the comparison of \(m = n \log(n) \) and \(\log(\log(x)) \) with increasing number of nodes. The diagram compares two lines: one representing \(m = n \log(n) \) and the other representing \(\log(\log(x)) \). The \(x \) axis represents the number of nodes, and the \(y \) axis represents the comparisons / edges. The graph shows that \(\log(\log(x)) \) grows more slowly than \(m = n \log(n) \) as \(n \) increases.

Vitaly Osipov, Johannes Singler, Peter Sanders

Improving Kruskal's Algorithm
Filter-Kruskal+

Function $\text{filter+}(E, T, P)$

$E' := \langle \{u, v\} \in E : u, v \text{ are in different components of } P \rangle$

$T' := \langle \{u, v\} \in E' : u \text{ or } v \text{ have degree one in comp. graph} \rangle$

$T := T \cup T'$

return $E' \setminus T'$
Linear Time? E.g., random graphs

Vitaly Osipov, Johannes Singler, Peter Sanders
Improving Kruskal's Algorithm
Parallelization

Procedure filterKruskal($E, T : \text{Sequence of Edge}, P : \text{UnionFind}$)

if $m \leq \text{kruskalThreshold}(n, m, |T|)$ then
 kruskal(E, T, P) // parallel sort
else
 pick a pivot $p \in E$
 $E_\leq := \langle e \in E : e \leq p \rangle$
 $E_\gt := \langle e \in E : e > p \rangle$
 qKruskal(E_\leq, T, P)
 if $|T| = n - 1$ then exit
 $E_\gt := \text{filter}(E_\gt, P)$
 qKruskal(E_\gt, T, P) // parallel removeIf

Easy: available in the Multi-Core Parallel STL (e.g. g++)
Running Time: Random graph with 2^{16} nodes
Graph Formatting: Random graph with 2^{22} nodes

- List of edges -> Adjacency Array
- Adjacency Array -> List of Edges
- filterKruskal
- pJP

Vitaly Osipov, Johannes Singler, Peter Sanders

Improving Kruskal’s Algorithm
Conclusions

filterKruskal improves on Kruskal and Jarník–Prim

- very simple
- often faster
- parallelizable
- needs only edge sequence

Todo: More real world inputs, tight analysis,…

Open Problem: What about filterKruskal+

- provably linear time?
- scalable parallelization? Sequential component $O(n^{0.6})$?
- more efficient implementation
Thank you!
Random graph with 2^{10} nodes

Vitaly Osipov, Johannes Singler, Peter Sanders

Improving Kruskal’s Algorithm
Random graph with 2^{22} nodes

Vitaly Osipov, Johannes Singler, Peter Sanders
Improving Kruskal’s Algorithm
Random graph, $n = 2^{16}$, anti-Prim weights
Random geometric graph with 2^{16} nodes

Vitaly Osipov, Johannes Singler, Peter Sanders

Improving Kruskal's Algorithm
Lollipop graph with 2^{10} nodes

Vitaly Osipov, Johannes Singler, Peter Sanders
Improving Kruskal’s Algorithm
Lollipop graph with 2^{16} nodes

Vitaly Osipov, Johannes Singler, Peter Sanders
Improving Kruskal's Algorithm
Lollipop graph with 2^{22} nodes

Graph showing the comparison of various algorithms (Kruskal, qKruskal, Kruskal8, filterKruskal+, filterKruskal, filterKruskal8, qJP, pJP) in terms of time (in nanoseconds) vs. the number of edges divided by the number of nodes.
Image Segmentation Application

Improving Kruskal’s Algorithm