Hashing

Lecture · 11. June 2019
Tobias Maier and Peter Sanders
Hash Tables – Definitions

- set \(S \subseteq U = \text{Keys} \times \text{Values} \)
 - each Key is unique in \(S \)
 - \(n = |S| \) elements in \(m \) cells

- Operations
 - insert
 - find
 - erase

All preferably in \(O(1) \)
Hash Tables – Mapping

- Position depends on the **key**
- **Independent of** the **time** of insertion

\[\langle \text{key}, \text{value} \rangle \]

hash function

\[h(\cdot) \]

mapping

\[h(\text{key}) \]
Hash Tables – Chaining = Balls into Bins

- Worst case find is in $O(n)$
- Probabilistic Bounds
Hash Tables – Chaining = Balls into Bins

- Worst case find is in $O(n)$
- Probabilistic Bounds

Hashing with Chaining = Balls into Bins
Excursion – Probability Theory

- sample space Ω
- events $\varepsilon \subset \Omega$
- probability p_x of $x \in \Omega$
- probability of an event $\mathbb{P}[\varepsilon] = \sum_{x \in \varepsilon} p_x$
- random variable $X : \Omega \rightarrow \mathbb{R}$
- expectation $E[X] = \sum_{y \in \Omega} p_y X(y)$

For Example:
- random hash functions / mapping $\text{Keys} \mapsto \{0..m - 1\}$
- keys k_1 and k_2 have a collision $\varepsilon_{k_1,k_2} = \{ h \in \Omega : h(k_1) = h(k_2) \}$
- uniform distribution $\forall h \in \Omega : p_h = \frac{1}{m^{|\text{Keys}|}}$
- $\mathbb{P}[\varepsilon_{k_1,k_2}] = 1/m^*$
- #elements hashed to 0 $X_0 = |\{ x \in S : h(x) = 0 \}|$
- expected #elements in one cell $E[X_0] = \frac{n}{m}$

* assuming a uniform hash function
Excursion – Probability Theory

- Sample space Ω
- Events $\varepsilon \subset \Omega$
- Probability p_x of $x \in \Omega$
- Probability of an event $P[\varepsilon] = \sum_{x \in \varepsilon} p_x$
- Random variable $X : \Omega \rightarrow \mathbb{R}$
- Expectation $E[X] = \sum_{y \in \Omega} p_y X(y)$

For Example:

- Random hash functions / mapping $Keys \mapsto \{0..m-1\}$
- Keys k_1 and k_2 have a collision $\varepsilon_{k_1,k_2} = \{ h \in \Omega : h(k_1) = h(k_2) \}$
- Uniform distribution $\forall h \in \Omega : p_h = \frac{1}{m|Keys|}$
- $P[\varepsilon_{k_1,k_2}] = 1/m^*$
- #Elements hashed to 0 $X_0 = |\{ x \in S : h(x) = 0 \}|$
- Expected #Elements in one cell $E[X_0] = \frac{n^*}{m^*}$

* assuming a uniform hash function
Hash Tables – Chaining (probabilistic) Bound

Linearity of the Expectation

\[E[X + Y] = E[X] + E[Y] \]

this is always true independent of correlations between \(X \) and \(Y \)

Consider one \(\{0, 1\} \) random variable for each element \(X_e \)

\[X_e = \begin{cases}
1 & \text{if } h(e) = 0 \\
0 & \text{otherwise}
\end{cases} \]

\[E[X_0] = E \left[\sum_{e \in S} X_e \right] = \sum_{e \in S} E[X_e] \]
\[= \sum_{e \in S} P[X_e = 1] = \frac{n}{m} \]
Hash Tables – Other Bounds

- **Multi Hashing**
 - for each collision use a new hash function
 - $t[h_1], t[h_2], \ldots$ have $p = \delta$ chance to be empty
 - $E[\#probes_{\text{insert}}] = E[\#probes_{\text{find } x \notin S}] = \frac{1}{\delta}$
 - $E[\#probes_{\text{find } x \in S}]$ abhängig vom Einfügezeitpunkt

- **Linear Probing**
 - in case of a collision use the next empty cell
 - probability of finding a cell depends on its predecessor
 - $E[\#probes_{\text{insert}}] = E[\#probes_{\text{find } x \notin S}] = O\left(\frac{1}{\delta^2}\right)$
 - $E[\#probes_{\text{find } x \in S}] = O\left(\frac{1}{\delta}\right)$

\[\delta = \frac{m-n}{m} \]
Hash Tables – More Hashing Issues

- High probability and **worst case** guarantees
 - more requirements on the hash functions

- Hashing as a means of load balancing in parallel systems, e.g., storage servers
 - Different disk sizes and speeds
 - Adding disks / replacing failed disks without much copying
Space Efficient Hashing

- densely filled table
- lots of collisions
 - needs good collision handling
- static size (post-initialization)
 - fixed number of elements
Space Efficient Hashing – Cuckoo Hashing

- constant lookups independent of fill ratio
- element \rightarrow const. number possible cells
- if all cells are full, move existing elements

d-ary Bucket Cuckoo Hashing
combination of different results, by:
[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]
Space Efficient Hashing – Cuckoo Hashing

- constant lookups independent of fill ratio
- element \rightarrow const. number possible cells
- if all cells are full, move existing elements
 - breadth-first-search
- 2 alternative buckets per element $h_1(k), h_2(k)$

d-ary Bucket Cuckoo Hashing
combination of different results, by:
[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]
Space Efficient Hashing – Cuckoo Hashing

- constant lookups independent of fill ratio
- element \rightarrow const. number possible cells
- if all cells are full, move existing elements
 - breadth-first-search
- 2 alternative buckets per element $h_1(k), h_2(k)$

d-ary Bucket Cuckoo Hashing
combination of different results, by:
[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]
Space Efficient Hashing – Cuckoo Hashing

- constant lookups independent of fill ratio
- element \(\rightarrow\) const. number possible cells
- if all cells are full, move existing elements
 - breadth-first-search
- 2 alternative buckets per element \(h_1(k), h_2(k)\)

\[d \]-ary Bucket Cuckoo Hashing
combination of different results, by:
[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]
Space Efficient Hashing – Cuckoo Hashing

- Constant lookups independent of fill ratio
- Element → constant number possible cells
- If all cells are full, move existing elements
 - Breadth-first-search
- \(d\) alternative buckets per element
 \(h_1(k), \ldots, h_d(k)\)

\(d\)-ary Bucket Cuckoo Hashing

Combination of different results, by:

[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]
Space Efficient Hashing – Cuckoo Hashing

- Constant lookups independent of fill ratio
- Each element maps to a constant number of possible cells
- If all cells are full, move existing elements:
 - Breadth-first-search
- D alternative buckets per element:
 \(h_1(k), \ldots, h_d(k) \)

d-ary Bucket Cuckoo Hashing

Combination of different results, by:
[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]
Space Efficient Hashing – Cuckoo Hashing

- constant lookups independent of fill ratio
- element → const. number possible cells
- if all cells are full, move existing elements
 - breadth-first-search
- \(d \) alternative buckets per element
 - \(h_1(k), \ldots, h_d(k) \)
- buckets of \(B \) cells

\(d \)-ary Bucket Cuckoo Hashing

combination of different results, by:

[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]
Space Efficient Hashing – Cuckoo Hashing

- constant lookups independent of fill ratio
- element \rightarrow const. number possible cells
- if all cells are full, move existing elements
 - breadth-first-search
- d alternative buckets per element
 - $h_1(k), \ldots, h_d(k)$
- buckets of B cells

d-ary Bucket Cuckoo Hashing
combination of different results, by:
[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]
Space Efficient Hashing – Cuckoo Hashing

- constant lookups independent of fill ratio
- element \rightarrow const. number possible cells
- if all cells are full, move existing elements
 - breadth-first-search
- d alternative buckets per element
 - $h_1(k), \ldots, h_d(k)$
- buckets of B cells

d-ary Bucket Cuckoo Hashing
combination of different results, by:
[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]
Space Efficient Hashing – Cuckoo Parameters

The diagram illustrates the relationship between the enforced minimum load \(\delta_{\text{max}} \) and the time multiplied by \(\delta_{\text{max}} \) in nanoseconds (ns) for different Cuckoo parameters: 8/3, 8/2, 4/3, and 4/2. The x-axis represents the enforced minimum load, and the y-axis shows the time \(\times \delta_{\text{max}} \) in nanoseconds. The graph shows how the time increases as the enforced minimum load increases for each parameter.
Space Efficient Hashing – Final Size Unknown

- conservative estimate

- strict bound might not be reasonable

\[n \leq n' \]

- less space efficient

\[n \leq n' \]

\[\epsilon n \]

\[\epsilon n' \]
Space Efficient Hashing – Final Size Unknown

- conservative estimate
- optimistic estimate
 - might overfill
 - needs growing strategy

\[n \approx n' \]

- slow
- needs growing
Space Efficient Hashing – Final Size Unknown

- conservative estimate
- optimistic estimate
- number of elements changes over time
- cannot be initialized with max size
Space Efficient Hashing – Resizing

- growing has to be in small steps

- basic approaches

additional table

full migration

inplace+reorder

most common in libraries

In libraries
Secondary Contribution – Efficient Growing

- addressing the table (no powers of two)
 - conventional wisdom: modulo table size
 - faster: use hash value as scaling factor
 \[idx(k) = h(k) \cdot \frac{\text{size}}{\text{maxHash} + 1} \]
- very fast migration due to cache efficiency
Secondary Contribution – Efficient Growing

- addressing the table (no powers of two)
- conventional wisdom: modulo table size
- faster: use hash value as scaling factor
 \[
 \text{idx}(k) = h(k) \cdot \frac{\text{size}}{\text{maxHash} + 1}
 \]
- very fast migration due to cache efficiency
Secondary Contribution – Efficient Growing

- **addressing** the table (no powers of two)
- **conventional wisdom**: modulo table size
- faster: use hash value as **scaling factor**

\[
idx(k) = h(k) \cdot \frac{size}{\text{maxHash} + 1}
\]

- **very fast migration** due to cache efficiency

- **inplace** variant going from right to left

 ![Diagram of inplace variant going from right to left]

 not portable
Contribution – Dynamic Space Efficient Cuckoo Table

- Use subtables of unequal size (use powers of 2)
 - \(h_i(k) \Rightarrow h_{it}(k) \) table and \(h_{ip}(k) \) position in table
 - Doubling one subtable \(\Leftrightarrow \) small overall factor

- Use displacements to equalize load imbalance
Contribution – Dynamic Space Efficient Cuckoo Table

- use subtables of unequal size (use powers of 2)
 - \(h_i(k) \Rightarrow h_{it}(k) \) table and \(h_{ip}(k) \) position in table
 - doubling one subtable \(\Leftrightarrow \) small overall factor

- use displacements to equalize load imbalance
use subtables of unequal size (use powers of 2)

- $h_i(k)$ ⇒ $h_{it}(k)$ table and $h_{ip}(k)$ position in table
- doubling one subtable ⇔ small overall factor

use displacements to equalize load imbalance
Result – Insertion into Growing Table

![Graph showing time per operation vs. enforced min load](image)

- **DySECT** $B=8, H=3$
- **Cuckoo** $B=8, H=3$
- **Lin Prob**
- **Robin Hood**

Expected time per insertion:

$$\frac{1}{1-\delta}$$
Result – Word Count Benchmark

![Graph showing the comparison of time per operation against enforced min load δ for different hash table implementations.]

- DySECT $B=8$, $H=3$
- Cuckoo $B=8$, $H=3$
- Lin Prob
- Robin Hood

- CommonCrawl (avg. $12 \times$)
- not normalized
Result – Load Bound

we are in cooperation to prove bounds
Conclusion

- **only dynamic tables offer true space efficiency**
- **lack of published work on dynamic hash tables**
 - even simple techniques are largely unpublished
- **DySECT**
 - no overallocation
 - constant lookup
 - addressing uses bit operations
- **cuckoo displacement offers more untapped potential**
- **code available:** https://github.com/TooBiased/DySECT