Space Efficient Hash Tables
Overview

Technique

1. cuckoo

ADT

1. fully featured

6. perfect hashing

5. AMQ

2. retrieval

7. updateable retrieval

used for

order
H-ary Bucket Cuckoo Hashing

based on
Pagh Rodler 01, Fotakis Pagh S Spirakis 03,
Dietzfelbinger Weidling 05

- H hash functions address H buckets
- Buckets can store B elements each
- find: check these $H \times B$ possible locations
- delete: find, then overwrite with ⊥
- insert: can move elements around
 (BFS or random walk)
H-ary Bucket Cuckoo Hashing

+ Highly **space efficient** even for $H = 2$, $B = 4$
+ Worst case **constant find, delete**
+ Empirically $\approx \frac{1}{\epsilon}$ **average insertion time** when not too close to capacity limit

- **reallocate** when full

Capacity Limits $\hat{\alpha}$:

<table>
<thead>
<tr>
<th>$H \backslash B$</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>.5</td>
<td>.897</td>
<td>.959</td>
<td>.980</td>
<td>.989</td>
<td>.994</td>
<td>.996</td>
<td>.998</td>
</tr>
<tr>
<td>3</td>
<td>.918</td>
<td>.988</td>
<td>.997</td>
<td>.9992</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.977</td>
<td>.998</td>
<td>.998</td>
<td>.99997</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conjecture:
Cuckoo hashing achieves expected insertion time $O(1/\epsilon)$ when the load factor is below $\hat{\alpha}(H, B) - \epsilon$.
Retrieval

<table>
<thead>
<tr>
<th>key</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Godzilla</td>
<td>**</td>
</tr>
<tr>
<td>Ben Hur</td>
<td>***</td>
</tr>
<tr>
<td>Attack of the Killer Tomatoes</td>
<td>*</td>
</tr>
<tr>
<td>Three Gifts for Cinderella</td>
<td>****</td>
</tr>
<tr>
<td>Howl’s Moving Castle</td>
<td>****</td>
</tr>
<tr>
<td>Metropolis</td>
<td>****</td>
</tr>
</tbody>
</table>
For $S = \{s_1, \ldots, s_n\}$ allow evaluating $f : S \rightarrow \{0, 1\}^r$ where $S = \{s_1, \ldots, s_n\}$.

<table>
<thead>
<tr>
<th>key</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Godzilla</td>
<td>**</td>
</tr>
<tr>
<td>Ben Hur</td>
<td>***</td>
</tr>
<tr>
<td>Attack of the Killer Tomatoes</td>
<td>*</td>
</tr>
<tr>
<td>Three Gifts for Cinderella</td>
<td>****</td>
</tr>
<tr>
<td>Howl’s Moving Castle</td>
<td>****</td>
</tr>
<tr>
<td>Metropolis</td>
<td>****</td>
</tr>
</tbody>
</table>

Space near $r \cdot n$ bits?
A key \(x \) is mapped to \(k \) hash functions with range \(\mathbb{Z}_m \) and the computed output is

\[
f(x) := t[h_1(x)] \oplus \cdots \oplus t[h_k(x)]
\]
Solve a system of linear equations over F_2 with kn nonzeros determined by the hash values.
Brute Force

- $m = n$
- A is a random matrix
- A has full rank with constant probability
 (store a succeeding hash seed)
 - Cubic construction time
 - Linear query time
Sharding – A Standard Trick

Assume $r = O(1)$.

- Partitioning hash function h_p maps elements to shards of size $\Theta(\log n)$
- Constant time row operations using word parallelism
- $\frac{n}{\log n} \times \frac{\log^3 n}{\log n} = n \log n$ construction time
- Constant query time

For $r = O(\log n)$, word size w: Query time $O\left(\frac{r \log n}{w}\right)$
Sparse Matrices

Most well known: $k \in 3..7$ random nonzeros per row.

+ Linear time construction heuristics for sufficiently large m
 (typical value $m = 1.21n$)

- Bad locality for query and construction
Random bit pattern in a randomly placed window of width w

\[\text{For } m = (1 + \epsilon)n \text{ it works for some } w = \Omega \left(\frac{\log n}{\epsilon} \right). \]

- High locality
- Row operations can use word parallelism
- w large and dependent on n

Sharding helps a bit.
Function ribbonSolve(A, f, \texttt{var} $x = 0^m$) :

- bring A into **row-echelon form** (REM)
- backsubstitution

\[
\text{row } i
\]

\[
0
\]
Function ribbonSolve(A, f, \textbf{var} $x = 0^m$):

placed $= \langle 0, \ldots, 0 \rangle$: Array $1..m$ of $\{0,1\}^w$

rhs $= \langle 0^r, \ldots, 0^r \rangle$: Array $1..m$ of $\{0,1\}^r$

for $i := 1$ to n do
 \hspace{1cm} \text{-- bring A into row-echelon form}
 loop
 \hspace{1cm} \text{if } a_i = 0^m \text{ then}
 \hspace{1cm} \text{if } \text{rhs}_j = 0 \text{ then next iteration of for-loop}
 \hspace{1cm} \text{else return} \text{ "failed after } i - 1 \text{ rows"}
 \hspace{1cm} j := \min \{ \ell : a_{i\ell} = 1 \}
 \hspace{1cm} \text{if placed}_j = 0 \text{ then exit loop}
 \hspace{1cm} (a_i, f_i) \oplus= (\text{placed}_j, \text{rhs}_j)
 \hspace{1cm} (\text{placed}_j, \text{rhs}_j) := (a_i, f_i)$
 \hspace{1cm} for $j := m$ to 1 do
 \hspace{1cm} \text{-- backsubstitution}
 \hspace{1cm} \text{if placed}_j \neq 0 \text{ then } x_j := (x \cdot \text{placed}_j) \oplus \text{rhs}_j
Ribbon Solving
Assume \(\max(r, w) = O(\text{wordSize}) \)

- Constant time per row operation
- \(O(w) \) row operations per row (e.g., left-to-right processing)
- \(O(rn) \) time for backsubstitution

Overall \(O(n(w + r)) \) time using bit parallelism.
Problem of basic Ribbon: Even if a single row insertion fails, the entire construction was in vain. Idea: bump offending rows from the system and handle them separately.
Generic Bumped Retrieval (BuRe)

Class BuRe(\(E : \text{set of} \ Element \))
primary : ImperfectRetrieval
fallback : Retrieval
build primary from \(E \) and
let \(b \) indicate the bumped elements
build fallback from \(b \)

Function retrieve(\(e \))
if primary.isBumped(\(e \)) then
return fallback.retrieve(\(e \))
else return primary.retrieve(\(e \))

Originally used for filtered retrieval (FiRe) – simple, fast, updateable retrieval with \(\approx 4 \) bits overhead per element.

[Müller, Sanders, Schulze, Zhou; Retrieval and Perfect Hashing Using Fingerprinting, SEA 2014]
Bumped Ribbon Retrieval (BuRR)

Central Observation:
Rather than identifying specific bumped rows, we can bump ranges of rows based on the position $h_0(x)$ of their window.

\[
A \cdot t = f
\]
Bumped Ribbon Retrieval (BuRR)

- Partition columns into **buckets** of size B
- Allow some starting range of each bucket to be **bumped**
- Element x is mapped to bucket $h_0(x)$ – x is bumped if $h_0(x)$ is in the bumped range.
- Insert one **bucket** at a time from left to right
- **Within a bucket**, insert from right to left
- Bump remaining bucket when insertion fails (possibly more)

![Diagram of bucket insertion]

$t \cdot f = A$
Bumped Ribbon Retrieval (BuRR)

bucket boundary

coefficient matrix

eventually bumped items

result table

✓
⊕
⊕
⊕
BuRR – Design Choices

\[B = O\left(\frac{w^2}{\log w}\right) \]

e.g., 128 or 256

\[w = 64 \]

2 bits of metadata per bucket, i.e., bump 0, \(\ell \), \(u \), or \(B \) columns

\[m = (1 + \epsilon)m \]

what should \(\epsilon \) be?
\Rightarrow overloading almost eliminates empty cells
Space–Performance Tradeoffs

![Graph showing space-performance tradeoffs with different methods such as Bloom, BlBloom, Cuckoo, Xor, Coupled, LMSS, Homog, Standard, Bu^3RR, BuRR, with overhead ranging from 6.6 to 8.4 percent (Pareto front).]
Interleaved storage of table allows bit parallelism – essentially one population count instruction per retrieved bit.

Use appropriate $\varepsilon > 0$ for ultimate fallback

$\text{Master Hash Codes: } e \rightarrow \text{MHC fast hash function} \rightarrow \text{further “random” data}$

e.g., use $h(x) = a \cdot x + b$, with $a \mod 4 = 1$ and odd b.

1+ bit metadata: bump 0 or t columns plus exception table

Sparse bit patterns: e.g. use 8 out of 64 bits per row. Faster for small r

Bu^1RR: Each element is stored in 1 out of 2 layers.

Parallelization: “implicit” sharding – bump segment of w columns

Variable bitlength encoding: For prefix-free codes like Huffman this reduces to 1-bit retrieval. Query can be made very fast using specialized interleaving techniques.
BuRR Analysis – Basic Ideas

- Ribbon solving is analogous to a variant of linear probing hashing
- Bumping mostly eliminates overloading
- \(B = \mathcal{O}\left(\frac{w^2}{\log w}\right) \)
 - larger buckets can have intra-bucket overloading
- Relative space overhead \(B = \mathcal{O}\left(\frac{\log w}{rw^2}\right) \)
BuRR/Retrieval – Open Problems

- Efficient use of bit-manipulation and SIMD instructions
- Parallelization without sharding
- Fast retrieval of numbers mod p for p not a power of two. (Algebraically this is easy but how to use word parallelism?)
- Dynamization (S available but small update on compressed data structure) for more space efficient variants than FiRe.
Approximate Membership Query Data Structure/Filter (AMQ) aka “Bloom” Filter

Fastest Filter

Bloom [5]
Blocked Bloom [27]
Cuckoo [13]
Xor [17]
Xor+ [17]
2-Block [11]
Homog. Ribbon [1]
Bu¹RR
BuRR
BuRR, sparse
Maintain approximation \tilde{S} of a set $S = \{s_1, \ldots, s_n\}$. Query contains $(x) \in \{0, 1\}$

Case $x \in S$, result 1: true positive query
Case $x \not\in S$, result 0: true negative query
Case $x \not\in S$, result 1: false positive query

false positive rate f

Lower space bound for \tilde{S}: 2^{-f}
Typical Application of AMQs

external/remote memory small/fast memory

S \tilde{S}

updates action for positive queries
Static Retrieval Based AMQs

With BuRR, space $\log(1/f) + o(1)$ bits per entry.
Solve a homogenous system of equations.
⇒ always solvable.
Take a random solution.
Bloom Filters – Simple Dynamic AMQs

Consider bit vector $b[1..an]$ and hash functions h_1, \ldots, h_k with range $1..an$.

Inserting x: set $b[h_1(x)], \ldots, b[h_k(x)]$.

$\text{contains}(x) = b[h_1(x)] \land \cdots \land b[h_k(x)]$.

What about deletion?
Bloom Filters $f \geq 2^{-0.69a}$
Blocked Bloom Filters

Consider bit vector $b[1..an]$, a block selection function h_B with range $0..m/B$, and hash functions h_1, \ldots, h_k with range $1..B$.

Inserting x: set $b[Bh_B(x) + h_1(x)], \ldots, b[Bh_B(x) + h_k(x)]$.

$\text{contains}(x) = b[Bh_B(x) + h_1(x)] \land \cdots \land b[Bh_B(x) + h_k(x)]$.

Typically B is one cache line.
Blocked Bloom Filters f

- **plain, k=4**
- **plain, k=5**
- **blocked, k=5**
Tradeoff Speed, Space, f

Fastest Filter

- Bloom [5]
- Blocked Bloom [27]
- Cuckoo [13]
- Xor [17]
- Xor+ [17]
- 2-Block [11]
- Homog. Ribbon [1]
- Bu1RR
- BuRR
- BuRR, sparse

% space overhead
Tradeoff Speed, Space, f
Tradeoff for small r

![Graph showing tradeoff for small r.](image)

Per-key construction time + 3 queries (ns)

Overhead (%); $r < 1.1$ (Pareto front)

Symbols and Legends:
- BlBloom
- Xor
- Coupled
- GOV
- LMSS
- 2-Block
- Homog
- Standard
- Bu^1RR
- $BuRR$

- $n = 10^6$
- $n = 10^8$
- parallel,
 $n = 10^7$

Peter Sanders, et al.
Tradeoff for large r

Per-key construction time + 3 queries (ns)

Overhead (%); $r > 13$ (Pareto front)

- BlBloom
- Cuckoo
- Xor
- Coupled
- LMSS
- Homog
- Standard
- Bu^1RR
- BuRR

- $n = 10^6$
- $n = 10^8$
- parallel,
- $n = 10^7$
Tradeoff Query Time – Space \((r = 8)\)
Tradeoff Constr. T. – Space \((r = 8) \)
Given a set $S = \{s_1, \ldots, s_n\}$, find a function $h : S \rightarrow \mathbb{Z}_m$.

Minimal Perfect Hash Functions (MPHF): $m = n$.
Space Lower Bound
\[m = (1 + \epsilon) n \]

\[\log e - \epsilon \log \frac{1 + \epsilon}{\epsilon} \]

![Graph showing the lower bound for PHF](image)

Bits per element

0 0.5 1 1.5 2

\(\epsilon \)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Lower bound for PHF
Brute Force PHFs

Consider a sequence \(h_1, h_2, \ldots \) of random hash functions.

\[
\text{for } i := 1 \text{ to } \infty \text{ do if } |h_i(S)| = |S| \text{ then break loop}
\]

store \(i \)

\[p := P[\text{success}] = \frac{n!(\begin{pmatrix} m \\ n \end{pmatrix})}{m^n} \]

\(i \) has geometric distribution with parameter \(p \)

Its entropy is about \(\log 1/p \). Let \(m = (1 + \epsilon)n \)

\[
\log \frac{1}{p} \approx n \log m - n \log \frac{n}{e} - n \log \frac{m}{n} - (m - n) \log \frac{m}{m - n}
\]

\[
= n \left(\log e - \epsilon \log \frac{1 + \epsilon}{\epsilon} \right)
\]

use \(n! \sim n \ln n - n \), \(\log (\begin{pmatrix} m \\ n \end{pmatrix}) \sim n \log \frac{m}{n} + (m - n) \log \frac{m}{m - n} \) when \(m = \Theta(n) \)
Insert S into an m-cell cuckoo-hash-table using 2^r hash functions. Store the choice of hash function for each $x \in S$ in an r-bit retrieval data structure f.

$$h(x) := h_{f(x)}(x)$$

With BuRR:

<table>
<thead>
<tr>
<th>r</th>
<th>m</th>
<th>bits per el.</th>
<th>lower bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\approx 2n$</td>
<td>≈ 1</td>
<td>0.443</td>
</tr>
<tr>
<td>2</td>
<td>$\approx 1.024n$</td>
<td>≈ 2</td>
<td>1.313</td>
</tr>
</tbody>
</table>