
0 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

ITI AG Sanders

Dynamic Space Efficient Hash Tables
Tobias Maier, Peter Sanders

KIT – The Research University in the Helmholtz Association www.kit.edu

Peter Sanders

1 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

General: Algorithm engineering, basic algorithmic toolbox, graphs,
parallel algorithms, big data, randomized algorithms

Hashing Related Previous Work up to 2017
d-ary cuckoo hashing Fotakis, Pagh, S, Spirakis 03
analysis of 2-way bucket cuckoo hashing S, Egner, Korst 00
fast construction for the above Cain, S, Wormald 07
cache-, hash-, and space-efficient Bloom filters Putze, S, Singler 07
perfect hashing applied to model checking Edelkamp, S, Simecek 08
fast retrieval and perfect hashing using fingerprinting S, Zhou,[. . .] 14
hashing vs sorting for aggregation in column-based DB with SAP 15
concurrent hash tables Maier, S, Dementiev 16
space efficient dynamic hash tables Maier, S 17

Overview

2 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

the problem and why standard solutions do not work
simple solutions
DySECT – Dynamic Space Efficient Cuckoo Table

ESA 2017 and Algorithmica 2019 (with Stefan Walzer)

What we want

3 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

constant amortized time insert, find, erase
space close to lower bound (just the elements)
load factor δ = 1

1+ϵ for small ϵ

good constant factors
nice to have

worst case constant time find
whp constant time insert

1

+

ε

Hashing with Chaining?

4 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

+ grows dynamically and “smoothly”
− overhead for pointers
− eventually needs to grow basic table

Linear Probing?

5 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

+ can in principle be arbitrarily full
+ no overhead for pointers etc.
+ cache efficient
− reallocate when full

⇒temporarily at least doubles space
consumption
(during the migration)

− slow insert, erase and unsuccessful find
when near full

find

false

1 + ε (1 + ε)2

Engineering Linear Probing

6 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

Modulo Operations
mapping (hash value → table index)

usual: idx(k) = hash(k) % cap

for cap = 2k : idx(k) = hash(k) & (cap-1)

circular vs. non-circular

Mapping by Scaling
new: idx(k) = hash(k) *

cap
max_hash + 1

different for circular tables

find

false

1 + ε (1 + ε)2

Using Rehashing for Collisions

7 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

Recompute alternative cells using
additional hash functions.
Do this until you find a free cell

+ shorter search distances
− disadvantages similar to linear probing
− less cache efficient

Using Rehashing for Collisions

7 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

Recompute alternative cells using
additional hash functions.
Do this until you find a free cell

+ shorter search distances
− disadvantages similar to linear probing
− less cache efficient

Using Rehashing for Collisions

7 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

Recompute alternative cells using
additional hash functions.
Do this until you find a free cell

+ shorter search distances
− disadvantages similar to linear probing
− less cache efficient

Using Rehashing for Collisions

7 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

Recompute alternative cells using
additional hash functions.
Do this until you find a free cell

+ shorter search distances
− disadvantages similar to linear probing
− less cache efficient

Cuckoo Hashing

8 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

Similar to rehashing
Move items to reduce hash functions

Cuckoo Hashing

8 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

Similar to rehashing
Move items to reduce hash functions

Cuckoo Hashing

8 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

Similar to rehashing
Move items to reduce hash functions

Cuckoo Hashing

8 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

Similar to rehashing
Move items to reduce hash functions

Cuckoo Hashing

8 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

Similar to rehashing
Move items to reduce hash functions

Cuckoo Hashing

8 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

Similar to rehashing
Move items to reduce hash functions

H-ary Bucket Cuckoo Hashing

9 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

based on
Pagh Rodler 01, Fotakis Pagh S Spirakis 03,
Dietzfelbinger Weidling 05

H hash functions address H buckets
buckets can store B elements each
insert can move elements around
(BFS or random walk)

H-ary Bucket Cuckoo Hashing

9 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

based on
Pagh Rodler 01, Fotakis Pagh S Spirakis 03,
Dietzfelbinger Weidling 05

H hash functions address H buckets
buckets can store B elements each
insert can move elements around
(BFS or random walk)

H-ary Bucket Cuckoo Hashing

10 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

+ highly space efficient even for H = 2, B = 4
+ worst case constant find, erase
+ empirically ≈ 1/ϵ average insertion time

when not too close to capacity limit
− reallocate when full

Folklore (?): The Subtable Trick

11 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

most significant bits of hash address one of T subtables
+ reallocation space overhead affects only a single subtable
+ low overhead for small T when upper level fits into cache
+ works for linear probing and cuckoo
− frequent reallocations lead to expensive insertions
− worst case insertion time determined by subtable reallocation
− danger of memory fragmentation with many different subtable sizes

(past and present)

Mitigation: Cache Efficient
Reallocation

12 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

interpret bits of hash functions as number in [0,1)
scale to actual table size by multiplication
reallocation “essentially” becomes a sweep through memory

DySECT –
Dynamic Space Efficient Cuckoo Table

13 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

T subtables

2 · s
cells

new element
its H buckets

s
cells

bucket with
B cells

j-th
table

DySECT

14 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

inherits most advantages from ordinary cuckoo –
worst case constant find/erase, space efficiency (?), fast insert
elements are migrated rarely⇝ fast insert
subtable sizes are powers of two⇝ no fragmentation
reallocation in small increments for large T
⇝ constant insertion time whp when T = Ω(n)

Dynamic Insertion Time (H = 3,B = 8)

15 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

0.85 0.90 0.95 1.00

0
50

15
0

25
0

enforced min load δmin

tim
e

x
(1

−
δ m

in
)

 [n
s]

●●●●●●●

●●●●
●●●

●

DySECT
Cuckoo
Lin Prob
Robin Hood

Successful Find (H = 3,B = 8)

16 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

0.80 0.85 0.90 0.95 1.00

0
10

0
20

0
30

0
40

0

load factor δ

tim
e

 [
ns

]

● ●

●

DySECT
Cuckoo
Lin Prob
Robin Hood

Unsuccessful Find (H = 3,B = 8)

17 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

0.80 0.85 0.90 0.95 1.00

0
10

0
20

0
30

0
40

0

load factor δ

tim
e

 [
ns

]

● ●

●

DySECT
Cuckoo
Lin Prob
Robin Hood

Wordcount Mini-Benchmark (H = 3,B = 8)

18 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

0.85 0.90 0.95 1.00

0
20

0
40

0
60

0
80

0

enforced min load δmin

T
im

e
pe

r
op

er
at

io
n

 [
ns

]

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

8/3
8/2
4/3
4/2

Summary

19 Tobias Maier, Peter Sanders:
Dynamic Space Efficient Hash Tables

Institute of Theoretical Informatics
Algorithmics

first (?) “truly” space efficient dynamic hash tables
subtables help (once more)
scaling allows cache-efficient reallocation
virtual memory overallocation helps (but not needed for DySECT)
DySECT allows fast and non-amortized insertion

