Sorting Suffixes

Juha Kärkkäinen, Peter Sanders

MPI für Informatik, U. Karlsruhe, U. Helsinki
Stringology-Speak

String S: Array $S[0:n) := S[0:n-1] := [S[0], \ldots, S[n-1]]$ of characters

Suffix: $S_i := S[i..n)$

End markers: $S[n] := S[n+1] := \cdots := 0$

0 is smaller than all other characters
Suffix sorting problem

Sort the set \(\{S_0, S_1, \ldots, S_{n-1}\} \) of the suffixes of a string \(S \) of length \(n \) (alphabet \([1, n] = \{1, \ldots, n\} \)) into the lexicographic order.

- **suffix** \(S_i = S[i, n] \) for \(i \in [0 : n - 1] \)

\[
S = \text{banana}
\]

\[
\begin{array}{c|c}
0 & \text{banana} \\
1 & \text{anana} \\
2 & \text{nana} \\
3 & \text{ana} \\
4 & \text{na} \\
5 & \text{a} \\
\end{array}
\quad \Rightarrow \quad
\begin{array}{c|c}
5 & \text{a} \\
3 & \text{ana} \\
1 & \text{anana} \\
0 & \text{banana} \\
4 & \text{na} \\
2 & \text{nana} \\
\end{array}
\]
Suffix sorting problem

Sort the set \{S_0, S_1, \ldots, S_{n-1}\} of the suffixes of a string \(S\) of length \(n\) (alphabet \([1,n] = \{1, \ldots, n\}\)) into the lexicographic order.

- suffix \(S_i = S[i, n]\) for \(i \in [0 : n - 1]\)

Applications

- full text indexing
- Burrows-Wheeler transform (\texttt{bzip2} compressor)
- replacement for more complex suffix tree
Full text search

Search pattern $P[0 : m]$ in text $S[0 : n]$ using suffix array SA of S.

Binary search: $O(m \log n)$ good for short patterns

Binary search with lcp: $O(m + \log n)$ if we precompute the longest common prefix between compared strings

Suffix tree: $O(m)$ can be build from SA
Suffix tree

- compact trie of the suffixes
 - $O(n)$ time [Farach 97] for integer alphabets
- Most potent tool of stringology?
 - Space consuming
 - Efficient construction is complicated

$S = \text{banana0}$
Alphabet model

Ordered alphabet
 - only comparisons of characters allowed

Constant alphabet
 - ordered alphabet of constant size
 - multiset of characters can be sorted in linear time

Integer alphabet
 - alphabet is $\{1, \ldots, \sigma\}$ for integer $\sigma \geq 2$
 - multiset of k characters can be sorted in $O(k + \sigma)$ time
Ordered → Integer Alphabet

sort the characters of S
replace $S[i]$ by its rank among the characters

012345 125024
banana -> aaabnn
213131 ← 111233
sort the k-tuples $S[i : i + k)$ for $i \in 1 : n$

replace $S[i]$ by the rank of $S[i : i + k)$ among the tuples
A First Divide-and-Conquer Approach

1. \(SA^1 = \text{sort } \{S_i : i \text{ is odd} \} \) (recursion)
2. \(SA^0 = \text{sort } \{S_i : i \text{ is even} \} \) (easy using \(SA^1 \))
3. merge \(SA^0 \) and \(SA^1 \) (very difficult)

Problem: its hard to compare odd and even suffixes. [Farach 97] developed a linear time suffix tree construction algorithm based on that idea. Very complicated.

Was only known linear time algorithm for suffix arrays
Skewed Divide-and-Conquer

1. $SA^{12} = \text{sort } \{S_i : i \mod 3 \neq 0\}$ (recursion)
2. $SA^0 = \text{sort } \{S_i : i \mod 3 = 0\}$ (easy using SA^{12})
3. merge SA^{12} and SA^0 (easy!)

$S = \text{banana}$

\[
\begin{array}{c|c|c|c}
5 & a & 5 & a \\
1 & \text{anana} & 3 & \text{ana} \\
4 & \text{na} & 0 & \text{banana} \\
2 & \text{nana} & & \rightarrow
\end{array}
\]

\[
\begin{array}{c|c|c|c}
5 & a & 5 & a \\
3 & \text{ana} & 3 & \text{ana} \\
1 & \text{anana} & 1 & \text{anana} \\
0 & \text{banana} & 0 & \text{banana} \\
4 & \text{na} & 4 & \text{na} \\
2 & \text{nana} & 2 & \text{nana} \\
\end{array}
\]
Recursion Example

S ananananas.

sort
nananas.0
3 2 5
anananas.00
2 4 1

S^{12} 3 2 5 2 4 1

recursive call

5 3 1 0 4 2

suffix array

4 3 6 2 5 1

lex. names (ranks) among 23 suffixes

a 4 n 2 a n 3 a 5 n a 6 s 1.
Recursion

- sort triples $S[i : i + 2]$ for $i \mod 3 \neq 0$ (LSD-first radix sort)
- $S^{12} = [S'[i] : i \mod 3 = 1] \circ [S'[i] : i \mod 3 = 2]$, suffix S^{12}_i of S^{12} represents S_{3i+1}
 suffix $S^{12}_{n/3+i}$ of S^{12} represents S_{3i+2}
- recurseOn(S^{12}) (alphabet size $\leq 2n/3$)
- Annotate the 23-suffixes with their position in rec. sol.
Least Significant Digit First Radix Sort

Here: Sort n 3-tuples of integers $\in [0 : n]$ in lexicographic order

Sort by 3rd position

Sort stably by 2nd position

Sort stably by 1st position

Elements are sorted by pos 3

Elements are sorted by pos 2,3

Elements are sorted by pos 1,2,3
Stable Integer Sorting

Sort $a[0 : n]$ to $b[0 : n]$ where $\text{key}(a[i]) \in [0 : n]$

c[0 : n] := [0, \ldots, 0]

for $i \in [0 : n)$ do $c[a[i]]++$

$s := 0$

for $i \in [0 : n)$ do $(s, c[i]) := (s + c[i], s)$

for $i \in [0 : n)$ do $b[c[a[i]]++] := a[i]$

Time $O(n)$!
Recursion Example: Easy Case

012345678

S chihuahua

ihat

sort a00 ahu hihihuua0 uah

1 2 3 4 5 6

lexicographic triple names

names already unique

a00 ahu hihihuua0 uah

Sorting Suffixes – p.15
Sorting mod 0 Suffixes

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>c 3(h 4i h 6u 2a h 5u 1a)</td>
<td></td>
<td></td>
<td>h 6(u 2a h 5u 1a)</td>
<td></td>
<td></td>
<td>h 5(u 1a)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Use radix sort (LSD-order already known)
Merge \(SA^{12} \) and \(SA^{0} \)

<table>
<thead>
<tr>
<th>0 < 1 (\iff) (c^n < c^n)</th>
<th>4: ((6)u^2(ahua))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 < 2 (\iff) (cc^n < cc^n)</td>
<td>7: ((5)u^1(a))</td>
</tr>
<tr>
<td></td>
<td>2: ((4)i^6(uahua))</td>
</tr>
<tr>
<td>3: (h^6u^2(ahua))</td>
<td>1: ((3)i^4(ihuahua))</td>
</tr>
<tr>
<td>6: (h^5u^1(a))</td>
<td>5: ((2)a^5(ua))</td>
</tr>
<tr>
<td>0: (c^3h^4(ihuahua))</td>
<td>8: ((1)a^000(0))</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
8: & \quad a \\
5: & \quad ahua \\
0: & \quad chihuahua \\
1: & \quad hihuahua \\
6: & \quad hua \\
3: & \quad huahua \\
2: & \quad ihuahua \\
7: & \quad ua \\
4: & \quad uahua
\end{align*}
\]
Analysis

1. Recursion: $T(2n/3)$ plus

 Extract triples: $O(n)$ (forall $i, i \mod 3 \neq 0$ do . . .)

 Sort triples: $O(n)$

 (e.g., LSD-first radix sort — 3 passes)

 Lexicographic naming: $O(n)$ (scan)

 Build recursive instance: $O(n)$ (forall names do . . .)

2. $SA^0 = \text{sort} \{S_i : i \mod 3 = 0\}$: $O(n)$ (1 radix sort pass)

3. merge SA^{12} and SA^0: $O(n)$ (ordinary merging with strange comparison function)

All in all: $T(n) \leq cn + T(2n/3)$

$\Rightarrow T(n) \leq 3cn = O(n)$
inline bool leq(int a1, int a2, int b1, int b2) {
 return(a1 < b1 || a1 == b1 && a2 <= b2);
}
inline bool leq(int a1, int a2, int a3, int b1, int b2, int b3) {
 return(a1 < b1 || a1 == b1 && leq(a2,a3, b2,b3));
}
Implementation: Radix Sorting

// stably sort a[0..n-1] to b[0..n-1] with keys in 0..K from r
static void radixPass(int* a, int* b, int* r, int n, int K)
{
 // count occurrences
 int* c = new int[K + 1]; // counter array
 for (int i = 0; i <= K; i++) c[i] = 0; // reset counters
 for (int i = 0; i < n; i++) c[r[a[i]]]++; // count occurrences
 for (int i = 0, sum = 0; i <= K; i++) { // exclusive prefix sums
 int t = c[i];
 c[i] = sum;
 sum += t;
 }
 for (int i = 0; i < n; i++) b[c[r[a[i]]]] = a[i]; // sort
 delete [] c;
}
Implementation: Sorting Triples

void suffixArray(int* s, int* SA, int n, int K) {
 int n0=(n+2)/3, n1=(n+1)/3, n2=n/3, n02=n0+n2;
 int* s12 = new int[n02 + 3]; s12[n02]= s12[n02+1]= s12[n02+2]=0;
 int* SA12 = new int[n02 + 3]; SA12[n02]=SA12[n02+1]=SA12[n02+2]=0;
 int* s0 = new int[n0];
 int* SA0 = new int[n0];

 // generate positions of mod 1 and mod 2 suffixes
 // the "+(n0-n1)" adds a dummy mod 1 suffix if n%3 == 1
 for (int i=0, j=0; i < n+(n0-n1); i++) if (i%3 != 0) s12[j++]= i;

 // lsb radix sort the mod 1 and mod 2 triples
 radixPass(s12 , SA12, s+2, n02, K);
 radixPass(SA12, s12 , s+1, n02, K);
 radixPass(s12 , SA12, s , n02, K);
}
Implementation: Lexicographic Naming

// find lexicographic names of triples
int name = 0, c0 = -1, c1 = -1, c2 = -1;
for (int i = 0; i < n02; i++) {
 if (s[SA12[i]] != c0 || s[SA12[i]+1] != c1 || s[SA12[i]+2] != c2) {
 name++; c0 = s[SA12[i]]; c1 = s[SA12[i]+1]; c2 = s[SA12[i]+2];
 }
 if (SA12[i] % 3 == 1) { s12[SA12[i]/3] = name; } // left half
 else { s12[SA12[i]/3 + n0] = name; } // right half
Implementation: Recursion

// recurse if names are not yet unique
if (name < n02) {
 suffixArray(s12, SA12, n02, name);
 // store unique names in s12 using the suffix array
 for (int i = 0; i < n02; i++) s12[SA12[i]] = i + 1;
} else // generate the suffix array of s12 directly
 for (int i = 0; i < n02; i++) SA12[s12[i] - 1] = i;
for (int i=0, j=0; i < n02; i++) if (SA12[i] < n0) s0[j++] = 3*SA12[i];
radixPass(s0, SA0, s, n0, K);
Implementation: Merging

for (int p=0, t=n0-n1, k=0; k < n; k++) {
 #define GetI() (SA12[t] < n0 ? SA12[t] * 3 + 1 : (SA12[t] - n0) * 3 + 2)
 int i = GetI(); // pos of current offset 12 suffix
 int j = SA0[p]; // pos of current offset 0 suffix
 if (SA12[t] < n0 ?
 leq(s[i], s12[SA12[t] + n0], s[j], s12[j/3]) :
 leq(s[i], s[i+1], s12[SA12[t]-n0+1], s[j], s[j+1], s12[j/3+n0]))
 { // suffix from SA12 is smaller
 SA[k] = i; t++;
 if (t == n02) { // done --- only SA0 suffixes left
 for (k++; p < n0; p++, k++) SA[k] = SA0[p];
 }
 } else {
 SA[k] = j; p++;
 if (p == n0) { // done --- only SA12 suffixes left
 for (k++; t < n02; t++, k++) SA[k] = GetI();
 }
 }
}
delete [] s12; delete [] SA12; delete [] SA0; delete [] s0;
Generalization: Difference Covers

A difference cover D modulo v is a subset of $[0, v)$ such that for all $i \in [0, v)$ there exist $j, k \in D$ with $i \equiv k - j \pmod{v}$.

Example:

- $\{1, 2\}$ is a difference cover modulo 3.
- $\{1, 2, 4\}$ is a difference cover modulo 7.

- Leads to space efficient variants
- Faster for small alphabets
Improvements / Generalization

- tuning
- use larger difference covers
- external memory implementation
- parallel implementation
- combine with best algorithms for easy inputs

[Manzini Ferragina 02, Schürmann Stoye 05]
Suffix Array Construction: Conclusion

- simple, direct, linear time suffix array construction
- easy to adapt to advanced models of computation
- generalization to cycle covers yields space efficient implementation

Future/Ongoing Work

- Implementation (internal/external/parallel)
- Large scale applications