MCSTL: Multi-Core Standard Template Library
Practical Implementation of Parallel Algorithms for Shared-Memory Systems

Peter Sanders, Johannes Singler
Institute for Theoretical Computer Science
University of Karlsruhe

December 13th, 2006
Lecture Contents

Introduction

Platform Support

Algorithms

Conclusion
Outline

Introduction

Platform Support

Algorithms

Conclusion
What is this Lecture About?

Theory ⇔ Practice

- machine model ⇔ concrete machine(s)
- pseudo-code ⇔ existing C++ library
What is this Lecture About?

Theory \leadsto Practice

- machine model \leadsto concrete machine(s)
- pseudo-code \leadsto existing C++ library

Communication Network \leadsto Shared Memory

- implicit communication
 - cache hierarchy, NUMA, bandwidth sharing
What is this Lecture About?

Theory \mapsto Practice

- machine model \mapsto concrete machine(s)
- pseudo-code \mapsto existing C++ library

Communication Network \mapsto Shared Memory

- implicit communication
 - cache hierarchy, NUMA, bandwidth sharing

Synchronous PRAM \mapsto Asynchronous PEs

- synchronization a problem itself
- \(n = p \mapsto n \gg p \)
- core allocation not static, other processes interfere
Why Multi-Cores?

- easy use of high transistor budget
- energy efficient (at reduced clock speeds)
- increase in clock speed largely exhausted
- instruction level parallelism exhausted
- SIMD/Vector only for special applications
Why Multi-Cores?

- easy use of high transistor budget
- energy efficient
 (at reduced clock speeds)
- increase in clock speed largely exhausted
- instruction level parallelism exhausted
- SIMD/Vector
 only for special applications

⇝ Multi-cores will be everywhere: mobile devices . . . super computers
Hardware Nowadays

- dual-cores omnipresent
- mainstream **quad-core** available
- Sun T1: 8 cores, **32** threads
- high-end shared-memory servers with many more cores (on multiple chips)
Programming Multicores

- automatic parallelization? only for simple loops
- explicitly parallel? too complicated for everyday use
- libraries of parallelized algorithms!
Programming Multicores

- automatic parallelization? only for simple loops
- explicitly parallel? too complicated for everyday use
- libraries of parallelized algorithms!

natural starting point: standard libraries of programming languages
Basic Approach

Make Using Parallel Algorithms “as easy as winking”.
Functionality of the C++ Standard Template Library
Basic Approach

Make Using Parallel Algorithms “as easy as winking”.
Functionality of the C++ Standard Template Library

Why STL?

- many efficient and useful algorithms included
- simple interface, very well-known among developers
- template mechanism is known to allow low overhead algorithm libraries
- recompilation of existing programs may suffice
- C++ accepted and efficient language
Goals

- parallelize all time consuming STL algorithms
- speedup already for small inputs \(\leadsto\) scale down
- high speedup for medium/large inputs
- dynamically choose algorithms and tuning parameters
- coexist with other forms of parallelization
 \(\leadsto\) load balancing even for regular computations
Special Requirements for a Library

Generality

- genericity (templates)
- only few assumptions about input data types
- good scalability in terms of use cases
Special Requirements for a Library

Generality

- genericity (templates)
- only few assumptions about input data types
- good scalability in terms of use cases

Compatibility to

- existing libraries
- platforms
Layers

<table>
<thead>
<tr>
<th>Application</th>
<th>MCSTL</th>
<th>Threading Support</th>
<th>Hardware</th>
</tr>
</thead>
</table>

Peter Sanders, Johannes Singler

MCSTL - Practical Parallelism
Threading Support

- **OpenMP**: currently used (basic primitives).

 - example
  ```c
  #pragma omp parallel num_threads(p)
  { iam = omp_get_thread_num(); ...
    #pragma omp barrier/single/master
    ...
  }
  ```

 - quite elegant
 - no permanent separation possible
 - still works when compiler ignores pragmas
 - growing compiler support (gcc, Sun, Intel, MS)
Threading Support

- **OpenMP**: currently used (basic primitives).
 - example
    ```
    #pragma omp parallel num_threads(p)
    { iam = omp_get_thread_num(); ...
      #pragma omp barrier/single/master
      ...
    }
    ```
 - quite elegant
 - no permanent separation possible
 - still works when compiler ignores pragmas
 - growing compiler support (gcc, Sun, Intel, MS)

- **atomic operations**
 - fetch-and-add
 - compare-and-swap
Implemented Algorithms

- find, find_if, mismatch, ...
- partial_sum (prefix sum)
- partition
- nth_element/partial_sort
- merge
- sort, stable_sort
- random_shuffle
- embarrassingly parallel (for_each, transform, ...) ≥ 50 % of STL

Extension to STL

- multiway_merge
Dependency Graph of Lecture Contents

MCSTL Overview

- **atomic operations**
- **lock-free DS**
- **fine-grained communication**
- **load-balancing**
- **initial splits**
- **partition**
- **find etc.**
- **sort (quick)**
- **sort (mwms)**
- **(multiway_)merge**
- **exact splitting**
- **multi-sequence selection**
- **tournament trees**
- **partial_sum**
- **placement**
- **placement**
- **random_shuffle**
- **partial_sort**
- **nth_element**
- **for_each etc.**

Platform Support
- Sequential Helper Algorithms
- Parallel Algorithms

Overview
- find etc.
- partial_sum
- (multiway_)merge
- placement
- tournament trees

Peter Sanders, Johannes Singler

MCSTL - Practical Parallelism
Outline

Introduction

Platform Support

Algorithms

Conclusion
Shared-Memory Hardware

- cache coherency protocol makes memory view consistent, introduces implicit communication
 - cores invalidate entries in cache when other core writes (snooping)
 - overhead only for actual transfer of data
 - granularity is one cache-line: avoid false sharing!
Shared-Memory Hardware

- cache coherency protocol makes memory view consistent, introduces implicit communication
 - cores invalidate entries in cache when other core writes (snooping)
 - overhead only for actual transfer of data
 - granularity is one cache-line: avoid false sharing!

- “cache level 0” = registers exempted, variable values not updated in memory (from other core’s point of view)
 - declare variable type volatile (once per variable)
 - #pragma omp flush variable when update suspected (once per update)
Atomic Operations

a few operations are executed without any chance of interference \(\leadsto\) atomically

- **fetch_and_add\(\,(x,\ i)\)**
 - \(t := x;\ r := x;\ r := r + i;\ x := r;\)
 - return \(t;\)
- allows concurrent *iteration* over sequence
Atomic Operations

a few operations are executed without any chance of interference \(\rightsquigarrow\) atomically

-**fetch_and_add**(\(x, \ i\))

  ```
  t := x; r := x; r := r + i; x := r;
  return t;
  ```

- allows concurrent *iteration* over sequence

-**compare_and_swap**(\(x, \ c, \ r\))

  ```
  if(x = c) {
    x := r; return c [true];
  }
  else {
    return r [false];
  }
  ```

- secure state transition, can emulate **fetch_and_add** and others by using in a loop

- slower than usual operation, in particular when concurrent
Outline

Introduction
Platform Support
Algorithms
Conclusion
find, find_if, mismatch,...

find the first position in a sequence satisfying a predicate

Analysis

- $O(n)$ sequential time if first hit is at position n (unknown)
- naïve parallel algorithm needs $\Omega(m/p)$.
- parallelization not worthwhile for small n
find: Algorithm

- start **sequentially** up to position m_0
- dynamic **load balancing** using fetch-and-add
- scale up and down using **geometrically growing block sizes**
- first successful thread **grabs remaining work**
Find n in the sequence $[1, \ldots, 10^8]$ of integers on 4-way Opteron

- MCSTL find, 4 threads
- MCSTL find, 3 threads
- MCSTL find, 2 threads
- Sequential
- Naive parallel, 4 threads
- Naive parallel, 3 threads
- Naive parallel, 2 threads
partial_sum

Discrimination to Algorithms Seen so Far

- $n \gg p$: multiple elements per PE, sum must be calculated in \textit{preprocessing} step, prefix sum in \textit{postprocessing} step
- $\leadsto 2n + O(1)$ additions in total, \textit{not optimal}, speedup only $\frac{p}{2}$, particularly bad for \textit{small} p
- $O(\log p)$ communication steps
- shared-memory advantage: can split data \textit{arbitrarily}
partial_sum

Discrimination to Algorithms Seen so Far

- $n \gg p$: multiple elements per PE, sum must be calculated in preprocessing step, prefix sum in postprocessing step
- $\sim 2n + O(1)$ additions in total, not optimal, speedup only $\frac{p}{2}$, particularly bad for small p
- $O(\log p)$ communication steps
- shared-memory advantage: can split data arbitrarily

Practical Algorithm for Shared Memory

- divide input into $p + 1$ pieces
- double calculation for first part can be avoided
partial_sum: Algorithm

Processor $i \in 0 \ldots p - 1$

1. $i = 0$: compute partial sums of part 0, $S[0] :=$ last one

 $i > 0$: compute $S[i] :=$ sum of part i

2. $i = 0$: compute partial sums of $S[i]$ sequentially

3. $i \geq 0$: compute partial sums of part $i + 1$ using $S[i]$
partial_sum: Algorithm

Processor $i \in 0 \ldots p - 1$

1. $i = 0$: compute partial sums of part 0, $S[0] :=$ last one
 $i > 0$: compute $S[i] :=$ sum of part i
2. $i = 0$: compute partial sums of $S[i]$ sequentially
3. $i \geq 0$: compute partial sums of part $i + 1$ using $S[i]$

Analysis

- only 3 synchronizations (constant)
- time complexity $O(n/p + p)$, no hidden factor 2 \leadsto
 speedup $\frac{p+1}{2}$ for $n \gg p$
partial sum: Scheme

```plaintext
input

\[ p_0 \quad p_1 \quad p_2 \]

\[ p_0 \quad p_0 \quad p_1 \quad p_2 \]

Peter Sanders, Johannes Singler

MCSTL - Practical Parallelism
partial_sum: Results

Prefix sum of integers on Sun T1

Speedup vs. n for sequential and parallel implementations with varying thread counts.
**partition**

Sequential Algorithm

- scan from both ends
- swap to desired order when contrary
Parallel Partitioning

[Tsigas Zhang 2003]

1. scan blocks of size $B$ from both ends
   1.1 claim new blocks when running out of data
2. swap the unfinished blocks to the “middle”
3. recurse on the middle

```
input

p_0 p_1 p_2

swap in parallel

rest recursive or sequential
```

- time complexity $O(n/p + B \log p)$
**partition: Example**

3 processors, B=3, pivot 50, no special cases

\[p_0\] \hspace{1cm} \[p_1\] \hspace{1cm} \[p_2\]

\[
\begin{array}{cccccccccc}
61 & 3 & 91 & 9 & 42 & 81 & 17 & 43 & 93 & 1 & 52 & 51 & 85 & 31 & 8 & 44 & 77 & 5 & 21 & 60 & 67 & 34 & 53 & 88 & 73 & 40 \\
40 & 3 & 91 & 9 & 42 & 34 & 17 & 43 & 21 & 1 & 52 & 51 & 85 & 31 & 8 & 44 & 77 & 5 & 93 & 60 & 67 & 81 & 53 & 88 & 73 & 61 \\
40 & 3 & 44 & 9 & 42 & 34 & 17 & 43 & 21 & 1 & 5 & 51 & 85 & 31 & 8 & 91 & 77 & 52 & 93 & 60 & 67 & 81 & 53 & 88 & 73 & 61 \\
40 & 3 & 44 & 9 & 42 & 34 & 17 & 43 & 21 & 1 & 5 & 8 & 85 & 31 & 51 & 91 & 77 & 52 & 93 & 60 & 67 & 81 & 53 & 88 & 73 & 61 \\
40 & 3 & 44 & 9 & 42 & 34 & 17 & 43 & 21 & 1 & 5 & 8 & 31 & 85 & 51 & 91 & 77 & 52 & 93 & 60 & 67 & 81 & 53 & 88 & 73 & 61 \\
\end{array}
\]
Partitioning of 32-bit integers on Sun T1

Speedup

partitioning of 32-bit integers on Sun T1 sequential

1 thread
2 threads
3 threads
4 threads
8 threads
16 threads
32 threads

n

Peter Sanders, Johannes Singler  
MCSTL - Practical Parallelism
**nth_element, partial_sort, quicksort**

### Algorithms

- **nth_element**: quickselect—linear recursion using `partition`
- **partial_sort**: `nth_element` then `sort`
- **quicksort**: recursion using `partition`, load balancing using work stealing

Parallel implementations profit from each other
Multi-Sequence Selection

Problem Definition
find element with global rank $r$ in $k$ sorted sequences $S_i$
Multi-Sequence Selection

Problem Definition
find element with global rank $r$ in $k$ sorted sequences $S_i$

Usage
split at elements with global rank
$n/p \quad 2n/p \quad 3n/p \quad \ldots \quad (p-1)n/p$
and redistribute elements
$\rightsquigarrow$ sequences of the same length $(\pm 1)$ on each PE
  $\blacktriangleright$ guaranteed even for many equal elements
Multi-Sequence Selection

Problem Definition
find element with global rank $r$ in $k$ sorted sequences $S_i$

Usage
split at elements with global rank $n/p$, $2n/p$, $3n/p$, … $(p-1)n/p$
and redistribute elements
$\rightsquigarrow$ sequences of the same length ($\pm 1$) on each PE
  ▶ guaranteed even for many equal elements

Solution
[Varman et al. 1991] see next slide
Multi-Sequence Selection: Algorithm

Idea

- partition into two sets with desired ratio (corresponds to rank)
- start with middle element
- refine partition by recursively adding the elements in the middle of both sides, taking $O(k)$ time for each step only
- running time $O(k \log |S_i|)$
  $O(k \log k \log |S_i|)$ practical variant
Multi-Sequence Selection: Example

\[ k = 4, \, N = k \cdot n = 4 \cdot 7 = 28; \text{ select global rank 14} \]

1  2  6  7  9  11  15
2  8  9  17  23  24  25
6  7  9  12  23  24  25
3  8 10 13 14 17 19
Multi-Sequence Selection: Example

$k = 4$, $N = k \cdot n = 4 \cdot 7 = 28$; select global rank 14

\[
\begin{array}{cccccccc}
1 & 2 & 6 & 7 & 9 & 11 & 15 \\
2 & 8 & 9 & 17 & 23 & 24 & 25 \\
6 & 7 & 9 & 12 & 23 & 24 & 25 \\
3 & 8 & 10 & 13 & 14 & 17 & 19 \\
\end{array}
\]
Multi-Sequence Selection: Example

$k = 4$, $N = k \cdot n = 4 \cdot 7 = 28$; select global rank 14

\[
\begin{array}{ccc}
2 & 7 & 11 \\
8 & 17 & 24 \\
7 & 12 & 24 \\
8 & 13 & 17 \\
\end{array}
\]
Multi-Sequence Selection: Example

\[ k = 4, \quad N = k \cdot n = 4 \cdot 7 = 28; \text{ select global rank 14} \]
Multi-Sequence Selection: Remarks

Implementation Problems

- non-uniform length, length not equal to $2^i - 1$: “conceptual padding” $\rightsquigarrow$ running time $\sim \log \max_i |S_i|$
- finding ranks $\neq \frac{1}{2} \sum_i |S_i|$, short sequences: complicated special cases at ends of sequences
- equal elements: find partition directly, not element with specified global rank
Sequential \textit{multiway} merge

\textbf{Problem Definition}

merge $k$ sorted sequences into one sorted sequence
Sequential multiway merge

Problem Definition
merge $k$ sorted sequences into one sorted sequence

Solution
use a tournament tree, usually implemented as loser tree
  ▶ binary tree in array
  ▶ optimal $O(\log k)$ running time per merge step
  ▶ efficient computation of indices
  ▶ downside: tricky without sentinels and/or $k$ not being a power of 2
Loser Tree

deleteMin+
insertNext
Parallel (multiway-)merge

How to divide the problem?

- find slabs, i.e. consistent sets of sections from the sequences
- two possibilities:
  - (randomized) splitting by sampling
  - exact splitting into parts of equal size (using multi-sequence selection)
Parallel (multiway) merge: Analysis

- time complexity $O\left(\frac{1}{p}(n \log k + k \log k \cdot \log \max_j |S_j|)\right)$
- no full linear speedup
- good in practice
- special case $k = p$: $O\left(\frac{n}{p} \log k + \log p \cdot \log \max_j |S_j|\right)$
Parallel (multiway) merge: Results

Multiway merging of pairs of 64-bit integers on Sun T1

- Sequential
- 1 thread
- 2 threads
- 3 threads
- 4 threads
- 8 threads
- 16 threads
- 32 threads

Peter Sanders, Johannes Singler

MCSTL - Practical Parallelism
sort, stable_sort

Parallel Multiway Mergesort

+ few, cache-efficient local memory accesses
+ stable variant easy
− needs twice the space
sort, stable_sort

Parallel Multiway Mergesort

+ few, cache-efficient local memory accesses
+ stable variant easy
- needs twice the space

Quicksort

+ in-place
± dynamic load-balancing due to unequal splitting
  - more global memory access
  - not stable

both variants implemented in the MCSTL
Parallel Multiway Mergesort

Procedure

1. divide sequence into \( p \) parts of equal size
2. in parallel sort the parts locally
3. use parallel \( p \)-way merging to compute the final sequence
4. copy result back to original position
Parallel Multiway Mergesort: Analysis

Running Time

- time complexity \( O\left(\frac{n \log n}{p} + p \log p \cdot \log \frac{n}{p}\right) \)
- one multi-sequence partition per PE
Parallel Multiway Mergesort: Analysis

Running Time

- time complexity $O\left(\frac{n \log n}{p} + p \log p \cdot \log \frac{n}{p}\right)$
- one multi-sequence partition per PE

Comparison to (Deterministic) Sample Sort

- very similar, only splitting differs
- exact splitting $\leftrightarrow$ approximation guaranteed
- DSS’ time complexity: $O\left(\frac{n \log n}{p} + p \log p\right)$
- tradeoff possible using oversampling
- global communication volume: $2n$ (copy back)
- local memory movement: $\frac{n}{p} \log_2 \frac{n}{p}$
Parallel Multiway Mergesort: Practical Issues

- copy to temporary memory **first**? or merge to temporary memory and copy back **later**?
- compute **starting positions** sequentially
Multiway Mergesort of 64-bit integers on Sun T1

![Graph showing speedup for different thread counts](image-url)
Parallel Quicksort

Basic Algorithm

1. **partition** the sequence in parallel
Parallel Quicksort

Basic Algorithm

1. partition the sequence in parallel
2. if group consists of more than one processor:
   2.1 divide group according to data balance
   2.2 continue with 1. recursively
Parallel Quicksort

Basic Algorithm

1. **partition** the sequence in parallel
2. if group consists of more than one processor:
   2.1 divide group according to data balance
   2.2 continue with 1. recursively
3. otherwise: sort the piece sequentially

Problem
load balancing may be very poor, in particular with small $p$, bad splitters

Solution
keep basic algorithm, **dynamically balance work** in last step
Parallel Load-Balanced Quicksort

1. **partition** the sequence in parallel
Parallel Load-Balanced Quicksort

1. **partition** the sequence in parallel

2. if group consists of more than one processor:
   2.1 **divide** group according to data balance
   2.2 continue with 1. recursively
Parallel Load-Balanced Quicksort

1. **partition** the sequence in parallel
2. if group consists of more than one processor:
   2.1 **divide** group according to data balance
   2.2 continue with 1. recursively
3. otherwise: quicksort the piece sequentially
   push the piece onto a **local stack**
   while unsorted elements exist
   3.1 if non-empty: pop a piece from **local stack**
   3.2 otherwise: take (large) piece from **bottom of other PE’s stack** (work-stealing)
   3.3 partition piece
   3.4 push **right** part onto stack, sort **left** part recursively
Parallel Load-Balanced Quicksort: Scheme

partition in parallel \( p_0 \) \( p_1 \) \( p_2 \)

sequential sorting

steal

\( p_0 \)
\( p_1 \)
\( p_2 \)
Parallel Load-Balanced Quicksort: Practice

- omit stack operations for small parts
- use lock-free stack data structure
  - every thread makes progress in every step
  - no mutexes or semaphores are used
  - many lock-free data-structures known, many use linked lists
    - simple one used here
- how to detect termination?
- erratic performance if more threads than processors: why?
Lock Free (Restricted) Double-Ended Queue

Requirements

▶ `push_front`, `pop_front` *not concurrently*, issued only by one specific thread
▶ `pop_back` *concurrently* from all other threads
▶ number of elements is limited (logarithmic)
▶ `no is_empty`, `no top`, because *semantics unclear*
▶ `pop_*` *may fail*
Lock Free (Restricted) Double-Ended Queue

Requirements

- **push_front, pop_front** not concurrently, issued only by one specific thread
- **pop_back** concurrently from all other threads
- number of elements is limited (logarithmic)
- no is_empty, no top, because semantics unclear
- **pop_*** may fail

Solution

- **circular buffer** with front and back pointer
- encode front and back pointer into one word to allow synchronous atomic update using compare-and-swap
Lock Free (Restricted) Double-Ended Queue

Code for pop_back

```c
before := pointers
while(before.front > before.back)
{
 after := (before.front , before.back + 1)
 if(cas(pointers, before, after))
 {
 item := *(before.back)
 return true
 }
}
return false
```

Peter Sanders, Johannes Singler
MCSTL - Practical Parallelism
Lock Free (Restricted) Double-Ended Queue

Code for `pop_front`

```c
before := pointers
while(before.front > before.back)
{

 after := (before.front - 1, before.back)

 if(cas(pointers, before, after))
 {
 item := *(before.back)
 return true
 }
}
return false
```
Lock Free (Restricted) Double-Ended Queue

Code for pop_front

before := pointers
while(before.front > before.back)
{

    after := (before.front - 1, before.back)

    if(cas(pointers, before, after))
    {
        item := *(before.back)
        return true
    }
}
return false

Code for push_front

*(pointers.front) := item
fetch_and_add(pointers.front, 1)
Lock Free (Restricted) Double-Ended Queue

Properties

- lock-free, but not wait-free
- pointer back increases monotonically
  \( \Rightarrow \) no concurrency problems at queue back
- pointer front does not increase monotonically
  \( \Rightarrow \) no problem, since no concurrent push and pop
    allowed at queue front
- in case of failure: retry or done
Balanced Quicksort: Analysis

- time complexity $O\left(\frac{n \log n}{p} + B \log p\right)$
- communication volume + local memory movement: $n \log_2 n$
- good speedups require fast random-access across PE boundaries
Balanced Quicksort: Results

Balanced Quicksort for 32-bit integers on 2 Dual-Core-Xeons

Speedup vs. n for different thread counts:
- Sequential
- 1 thread
- 2 threads
- 3 threads
- 4 threads
- 8 threads

Peter Sanders, Johannes Singler

MCSTL - Practical Parallelism
Balanced Quicksort: Problem Analysis

Problem

- not so nice performance
- particularly bad with too little processors
- where is the problem?
- processor fully loaded while stealing when there is no piece available
Balanced Quicksort: Problem Analysis

Problem

- not so nice performance
- particularly bad with too little processors
- where is the problem?
- processor fully loaded while stealing when there is no piece available

Solution

- switch to other processor if no work found $\Rightarrow$ yield
Balanced Quicksort: Results with \texttt{yield}

Balanced Quicksort with Yield for 32-bit integers on 2 Dual-Core-Xeons

![Graph showing speedup with different thread counts](image)
Balanced Quicksort: Comparison to PMWMS

Multiway Mergesort for 32-bit integers on 2 Dual-Core-Xeons

Speedup vs. n for sequential, 1, 2, 3, 4, and 8 threads.
Random Permutation (random_shuffle)

Standard Sequential Algorithm (e.g. STL)
for $0 \leq i < n$ swap $(a[i], a[\text{rand}(i + 1, n - 1)])$

Cache efficient (parallel) algorithm
1. distribute randomly to (local) buckets
1b. (copy local buckets to global buckets)
2. permute buckets
Random Permutation (*random_shuffle*)

- **time complexity** $O\left(\frac{n}{p} + p\right)$, global communication volume $n$
- **cache efficiency** very important (factor 2)

Cache-aware random shuffling of integers on 4-way Opteron sequential 1 thread 2 threads 3 threads 4 threads

Peter Sanders, Johannes Singler

MCSTL - Practical Parallelism
Embarrassingly Parallel Computation

- **semantics**
  - process a set of elements completely independently
  - atomic units called *jobs*, running time unknown

- **parallelization**
  - easy *in principle* (uniform workload)
    - static load-balancing
  - interesting for non-uniform workload
    - dynamic load-balancing

- **possible solutions**
  - equal splitting: perfect for uniform workload
  - master-worker: possibly considerable overhead (communication in each step)
  - work-stealing: communication only when necessary
Dynamic Load Balancing for for_each etc.

- using work-stealing
- divide iteration range into equal intervals initially
- idle threads steal half the interval from random victim
  - no explicit synchronization with victims needed (using fetch_and_add)
  - adaptive granularity control (cache!)
  - logarithmic number of steals suffice with high probability
Mandelbrot on 4-way Opteron, at most 1000 iterations per pixel

- 4 bal.
- 3 bal.
- 4 unbal.
- 2 bal.
- 3 unbal.
- 2 unbal.
- seq.

Speedup vs. Number of pixels
Outline

Introduction

Platform Support

Algorithms

Conclusion
MCSTL provides a very easy way to incorporate parallelism into programs on an algorithmic level
- performance is excellent for large inputs
- basic algorithms known but detailed design and performance engineering nontrivial
- successful integration into STXXL (external memory)
Future Work

- complete STL functionality
- better automatic algorithm and parameter selection
- machine model adequate for design and analysis of multithreaded algorithms
- beyond STL
Algorithms & DS to be Implemented

- containers: initialization, bulk operations
- priority queues
- some embarrassingly parallel functions (e.g. `valarray`)
- memory transfer operations (reverse, copy)?
- set operations (set_union,..)
More About All That

- MCSTL website:
  http://algo2.iti.uni-karlsruhe.de/singler/mcstl/

- Praktikum next semester:
  extension/usage of MCSTL

- Studien-/Diplomarbeiten