
External Memory Minimum Spanning Trees

Dominik Schultes

August 2003

Bachelor-Arbeit

Fachrichtung 6.2 – Informatik, Universität des Saarlandes
angefertigt unter Betreuung von Priv. Doz. Dr. Peter Sanders, Max-Planck-Institut für Informatik

Hiermit versichere ich, dass ich diese Arbeit selbstständig verfasst und keine anderen als die angegebenen
Quellen und Hilfsmittel benutzt habe.

Saarbr̈ucken, im August 2003

Abstract

While in the last years much theoretical work about external memory minimum spanning trees was done,
the practical realization of the designed algorithms was neglected. It is the goal of my Bachelor thesis to
fill this gap, i.e., we will show that the computation of minimum spanning trees of very large graphs is
possible efficiently not only in theory but also in practice.

Contents

1 Introduction 1
1.1 Minimum Spanning Trees. 1
1.2 External Memory Model. 1
1.3 External Memory Minimum Spanning Trees. 1

2 Dense Graphs 2

3 Sparse Graphs 3
3.1 General Approach. 3
3.2 Boruvka’s Algorithm . 3
3.3 Sibeyn and Meyer’s Algorithm. 4

4 Implementation 8
4.1 <stxxl> Library . 8
4.2 Data Structures. 8
4.3 Base Case. 9
4.4 Node Reduction with Buckets. 9
4.5 Node Reduction with a Priority Queue. 12
4.6 Main Program. .12
4.7 Randomization .13
4.8 Removal of Parallel Edges. 14
4.9 Ideas for Further Improvements. 14

5 Evaluation 15
5.1 Test Data .15
5.2 Test Environment and Settings. 15
5.3 Test Runs and Results. 16

i

Chapter 1

Introduction

1.1 Minimum Spanning Trees
Finding a minimum spanning tree is the graph theoretical notation of a quite natural problem: we want to
connect several objects — not necessarily directly — with each other and the total costs should be as low
as possible. As example we could take a computer network: several computers have to be linked so that
every pair of computers can communicate with each other regardless of possible intermediate stations. The
expense of the used wires should be minimal.

In graph theory the problem can be formalized easily. In a connected, undirected and weighted graph
G = (V,E) with n vertices andm edges a spanning treeT = (V, F) is a connected and acyclic subgraph
of G that contains all nodes ofG. The weight of a spanning tree is the sum of the weights of all edges:
w(T) =

∑
e∈F w(e). A minimum spanning tree (MST) is a spanning tree with minimum weight.

The problem of finding a MST is interesting because of several reasons. First, it appears in praxis.
Second, the problem itself is interesting from a theoretical point of view, and third, the solution of it can be
used in order to solve other problems in graph theory, for instance, to find an approximate solution for the
travelling salesperson problem.

There are two well known algorithms that can be used to detect a MST inO(n2) (if the input is given
as adjacency matrix) resp. inO(m log m) time (if the input is given as adjacency lists), Prim’s algorithm
and Kruskal’s algorithm.

1.2 External Memory Model
In the main, our considerations refer to a simple model that focuses on two levels of the memory hierarchy,
the internal memory (main memory) and the external memory (hard disks). Due to physical reasons (the
access head has to find the right position) a disk access takes comparatively much time, the transfer itself
plays a tangential role [MSS03, p. 3]. Hence, it is reasonable to deal with blocks of data instead of single
items. Theinternal memory sizeis denoted asM and theblock sizeasB [AV88].

The main reason why we have to use external memory algorithms is the simple fact that we do not
possess enough internal memory since main memory isC times more expensive than hard disks; we assume
thatC ≈ 200 and that consequently a balanced system consists of internal and external memory in the ratio
of 1:200.

1.3 External Memory Minimum Spanning Trees
The External Memory MST problem deals with very large graphs, i.e., the graphs are so large that not all
information which are required for the computations fit in internal memory. Finding a minimum spanning
tree of such a graph is more difficult than the internal case since you have to ensure that you take advantage
of both spacial and temporal locality as much as possible. Neither Prim’s nor Kurskal’s algorithm has been
designed with this requirement in mind. Hence, in the worst case the processing of each node resp. edge
requires one external memory access. Therefore, we need a different approach.

1

Chapter 2

Dense Graphs

If we deal with large dense graphs, we are confronted with the following situation: there are so many edges
that they do not fit in internal memory so that we cannot apply an internal algorithm — but there are so
few nodes that we can afford some internal memory for each node, in other words, the internal memory
is in O(n). Generally, this is the precondition for a semi-external algorithm. In our case, we can use a
semi-external version of Kruskal’s algorithm [Ski98] in order to find a minimum spanning tree of a dense
graph. We sort the list of edges (by weight) in external memory and apply Kruskal’s algorithm so that the
sorted edges have to be scanned once. Hence, we needO(sort(m)) + O(scan(m)) = O(sort(m)) I/Os.

A union-find data structure is essential for Kruskal’s algorithm. Basically, we need for each node a
reference to the parent node. Additionally, we want for each canonical node of a set (= root of a tree) a
rank that is used to perform the union operations in such a way that the trees do not degenerate. Thus, the
size of the union-find data structure depends only linearly on the number of nodes so that it can be kept in
internal memory on the above mentioned precondition.

In order to keep the memory usage per node small, we store only the height of a tree (instead of the
size) as rank. Consequently, we use the union-by-height strategy [OW96], i.e., when we unite two trees,
we make the shorter one a subtree of the taller one; if both trees have the same height, an arbitrary one
becomes the subtree of the other one, whose height is increased. This strategy guarantees that the height
of each tree does not exceedlog n so thatlog log n bits are sufficient to store the rank. After each find
operation path compression is applied. (It is possible that the height of one tree is reduced due to path
compression. In this case the stored height isnot adjusted. The expense of a correction would exceed the
advantage of an exact value by far.)

Usually a dense graph is expected to consist ofO(n2) edges. As we want to use the distinction between
“dense” and “sparse” in order to specify the applicability of the semi-external algorithm, we consider
graphs with less edges as dense, too. With this in mind, the boundary between “dense” and “sparse” can
be computed with the help of the estimation of Section1.2 that a balanced system consists of internal and
external memory in the ratio of 1:C. Principally, we can process only graphs that fit in external memory.
If the edges are given as a list, we have to store for each edge the source vertex, the target vertex and the
weight. (To store the edges in adjacency lists or in an adjacency matrix would require more memory.) In
order to keep this calculation simple, we assume that a node identifier, a weight and a rank in the union-find
data structure needs one memory unit each. Hence, we need3m memory units to store the graph, while
the size of the external memory isC · M . This leads to3

C m ≤ M . For each node two memory units
are allocated in the union-find data structure, a reference to the parent node and the rank. As we want to
treat the case that the union-find data structure does not fit in internal memory, we obtain the constraint that
2n > M . If we combine these inequalities, we getm

n < 2
3C. Hence, we consider a graph with at least

2
3Cn edges as dense and a graph with less edges as sparse. Furthermore, we can state that dense graphs
(within this scope) can be processed by our semi-external algorithm.

Actually, a more sophisticated calculation could draw the line even at a smaller average vertex degree.

2

Chapter 3

Sparse Graphs

3.1 General Approach

If we deal with large sparse graphs, we can keep neither the nodes nor the edges in internal memory. Hence,
the semi-external version of Kruskal’s algorithm introduced in chapter2 cannot be applied directly so that
we need an external algorithm. Our basic goal isto reduce the number of nodesof the original graphG
until the union-find data structure of the remaining nodes (graphG′) fits in internal memory so that we can
apply the algorithm of chapter2 to G′. During the node reduction phase we obtain a part of a minimum
spanning tree ofG, which is combined with a minimum spanning tree ofG′ in order to get a complete
MST of G. The following lemma [JaJ92, p. 223] provides the foundation in order to achieve this goal.

Lemma 1. LetV =
⋃

Vi be an arbitrary partition ofV with the corresponding subgraphsGi = (Vi, Ei),
where1 ≤ i ≤ t. For eachi, there exists one minimum-weight edgeei connecting a vertex inVi to a vertex
in V \ Vi that belongs to a minimum spanning tree of the graphG = (V,E).

Proof. For an arbitrary subsetVi ⊂ V , let the setRi := {(r, s) ∈ E | r ∈ Vi ∧ s ∈ V \ Vi} contain all
edges that lead from one vertex inVi to a vertex out ofVi, and let the setSi ⊆ Ri contain the shortest
edges ofRi, i.e.,Si := {e ∈ Ri | w(e) = mine′∈Ri w(e′)}. We assume that there is a minimum spanning
treeT = (V, F) with a subsetVi ⊂ V so thatF ∩Si = ∅, i.e.,T doesnotcontain any of the shortest edges
that leaveVi.

Let (u′, v′) ∈ Si be an arbitrary shortest edge that connectsVi with V \ Vi. We add(u′, v′) to F and
obtain a cycle that contains(u′, v′) and a different edge(u, v) ∈ Ri\Si, i.e., an edge that leavesVi, but does
not belong to the shortest ones. We remove(u, v) and get another spanning treeT ′ with w(T ′) < w(T)
sincew((u′, v′)) < w((u, v)). This contradicts the assumption thatT is a minimum spanning tree.

3.2 Boruvka’s Algorithm

The most known node reduction algorithm that uses Lemma1 is Boruvka’s. At the beginning the partition
of G = (V,E) consists of single nodes. For each node a minimum-weight edge incident to it is found so
that the selected edges do not form a cycle. These edges are added to the treeT = (V, F), which initially
contains no edges and eventually will be a MST ofG. The next iteration deals with the partitionV =

⋃
Vi,

where eachVi is a connected component of the subgraphG′ = (V, F). Hence, one iteration, called a
Boruvka step, consists of the following substeps [Liu01]:

• for each node, find and mark an appropriate minimum-weight edge incident to it;

• determine the connected components formed by the marked edges;

• replace each connected component by a single (super-)vertex, in other words, relabel the edges in
such a way that the vertex IDs are replaced with the IDs of the appropriate connected components;

• optionally, eliminate the self-loops and multiple edges created by these contractions.

3

The algorithm terminates when the remaining graph can be processed by the semi-external algorithm or —
if Boruvka’s algorithm is used to find a complete MST — when|F | = n− 1.

In a basic version of this algorithm, we needO(sort(m)) I/Os for one Boruvka step in order to reduce
the number of vertices by a constant factor.O(log(n/M)) steps are required so that the remaining nodes
fit in internal memoryM . This results inO(sort(m) · log(n/M)) [CGG+95]. A top-down variant with the
same I/O complexity is presented in [ABW02].

An improved version [MSS03, p. 80–81] usesO(sort(m) · max{1, log log(nB/m)}) I/Os in order to
find a MST. This improvement is achieved by combining several steps into supersteps, where each superstep
still needsO(sort(m)) I/Os, but reduces more nodes than the basic step. A randomized algorithm, presented
in [ABW02], usesO(sort(m)) I/Os in the expected case.

In spite of the good asymptotic behaviour, an implementation of Boruvka’s algorithm probably would
lead to high constants in the running time. Hence, we will use a different algorithm that has the same
general approach.

3.3 Sibeyn and Meyer’s Algorithm

3.3.1 Informal Description

In a way Sibeyn and Meyer’s algorithm [SM] is a variant of Boruvka’s algorithm. During one step only the
minimum-weight edge incident to a node in the last subsetVt is determined and added to the tree instead
of finding a shortest edge for each subsetVi.

The input is given as a set ofm edges(u, v, c), whereu is the source vertex,v the target andc the
weight. As the graph is undirected an edge(u, v, c) implies that there is also an edge(v, u, c), although it
is not listed explicitly. The edges are stored in adjacency lists; each edge is stored only once, namely in the
list of the node with the higher identifier; self loops are thrown away since they are irrelevant. The chosen
data structure has the feature that only the list of the last node definitely contains all edges incident to it;
but that is quite enough as we concentrate on the last node during each step.

In order to get a new partition after each step, the graph is shrunk. The last node is merged with the
target vertex of the shortest edge incident to the last node, i.e., the target vertex adopts all edges from the
last node and the last node stops existing. Self loops that are created by this action are thrown away. This
merging corresponds with the union of the last node and the target vertex to a new subset ofV that is part of
the partition of the graph. Due to merging edges are relabeled because the former source vertex is replaced
with the target vertex of the shortest edge. In order to be able to restore the original endpoints when an
edge is added to the MST, the original labels are saved at the beginning so that each adjacency list contains
edges(v, c, e1, e2), wherev is the target,c the weight ande1, e2 the original endpoints.

3.3.2 Pseudo Code
Input: a setE of edges(u, v, c) that defines a connected, undirected and

weighted graphG with n nodes,
n′, the number of nodes that should remain

Output: a setT ⊆ E that defines (a part of) a minimum spanning tree ofG

let π bea random permutation over{1, . . . , n}
foreach (u, v, c) ∈ E do

if v < u then add(π(v), c, u, v) to the list ofπ(u)
else ifv > u then add(π(u), c, u, v) to the list ofπ(v);

for u = n down to n′ + 1 do
traverse all(v, c, e1, e2) in the list ofu and
determine thev for which c is minimum;
add(e1, e2, c) to T ;
foreach (w, c, e1, e2) in the list ofu do

if w < v then add(w, c, e1, e2) to the list ofv
else ifw > v then add(v, c, e1, e2) to the list ofw;

4

3.3.3 Correctness

The correctness follows directly from Lemma1.

3.3.4 Complexity

We assume that the input does not contain any self-loop (self-loops would be eliminated anyway during
the first step).

If initially the node indices are randomized (so that we get a uniform distribution), the probability that
an arbitrary edge is incident to the last vertex is1

n + 1
n = 2

n as it is sufficient if one of the endpoints is the
last node (the case that both endpoints are the last node cannot occur due to our assumption that there is no
self-loop). Hence, the expected number of edges in the list of the last node is2

nm.
Since the target vertex of the shortest edge is uniformly distributed, too, we obtain a uniform distribution

over the set{1, . . . , n − 1} after one reduction step if the edges have been uniformly distributed over
{1, . . . , n}: the probability that an endpoint of an edge is a certain nodex ∈ {1, . . . , n − 1} amounts to
1
n + 1

n ·
1

n−1 = 1
n−1 , namely the probability according to the assumed uniform distribution over{1, . . . , n}

plus the probability that the endpoint had been the last node and was then relabeled tox due to a reduction
step.

Using these facts, we can show by induction that the expected number of edges in the list of the currently
last nodeu ∈ {n′ + 1, . . . , n} is always less than (or equal to)2

um. Therefore, we obtain [SM]

Theorem 1. For reducing the number of nodes fromn to n′, the above algorithm processes an expected
number of less than

∑n
u=n′+1

(
2
um

)
' 2 ·m · (lnn− lnn′) edges.

3.3.5 Comparison with Boruvka’s Algorithm

The advantages of Sibeyn and Meyer’s algorithm over Boruvka’s algorithm are the following:

• During one Boruvka step2 ·m edges are processed in order to reduce the number of nodes by only
a factor 2 in the worst case. For a reduction by this factor, the expected number of processed edges
of Sibeyn and Meyer’s algorithm is less than2 ·m · ln 2 ' 1.39 ·m.

• Relabeling the edges due to shrinking of the graph is very easy in Sibeyn and Meyer’s algorithm
because the new identifier need not be looked up — in contrast with Boruvka’s algorithm, where the
new sourceand target vertices of all edges must be looked up. Furthermore, Sibeyn and Meyer’s
algorithm dispenses with finding connected components.

• In Sibeyn and Meyer’s algorithm the reduced graph can directly be taken as input for the semi-
external version of Kruskal’s algorithm since the firstn′ nodes are preserved. In Boruvka’s algorithm
it is more difficult to guarantee that the node identifiers are a sequence without gaps in order to be
able to index the union-find data structure.

• In Boruvka’s algorithm with full adjacency lists2 ·m edges have to be stored in total, in Sibeyn and
Meyer’s algorithm onlym edges are stored at any time.

3.3.6 External Realization with Buckets

In order to implement Sibeyn and Meyer’s algorithm, we need one adjacency list for each node. We cannot
keep all edges in internal memory at the same time, so we have to consider a reasonable disposition of the
data in external memory to obtain an efficient implementation. We read only from the list of the last node,
but the relabeled edges are written to arbitrary nodes (but the last). Of course we can easily read the edges of
the last node blockwise, but it is difficult to write edges blockwise because we cannot afford a write buffer1

for each node. To solve this problem, we distribute the edges to several buckets, so that we can afford a write
buffer for each bucket: we haveb buckets and upper boundsu0 < u1 < u2 < . . . < ub, u0 = 0, ub ≥ n,

1In order to save I/O operations, we must not write the apartly incoming edges immediately. Rather we gather the edges in write
buffers until the disk access is worthwhile.

5

so that bucketi ∈ {1, . . . , b} contains the edges of the nodes with the identifiers fromui−1 + 1 to ui in an
arbitrary sequence. (According to the considerations of Section3.3.1, ”the edges of one node” means only
the edges that lead to nodes with lower identifiers.)

The buckets can be used directly to write relabeled edges because we can add an edge to the appropriate
bucket without worrying about assigning it to the exact node. Nevertheless, we have to worry about the
exact node when we want to read the edges of the currently last node. Therefore, we read the complete last
external bucketi at a single blow and distribute the edges to internal buckets so that one internal bucket
contains all edges of one node. Then the edges of the nodesui down toui−1 + 1 can be processed before
the next external bucketi− 1 is loaded.

The first external bucket contains the edges of the nodes that fit in internal memory, i.e.,u1 = n′. So,
when the second external bucket has been processed, the node reduction is completed and the first bucket
contains the reduced graph and can be used as input for Kruskal’s algorithm.

Figure3.1 represents the two layers of data and the processing of the edges during the node reduction
phase.

3.3.7 External Realization with a Priority Queue

Alternatively, one external priority queue [San00] can be used instead of several external and internal
buckets; in this case only one external bucket is needed in order to store the edges of the firstn′ nodes,
which will be processed by Kruskal’s algorithm. The shortest edge incident to the last node is on top of
the queue, followed at first by the other edges of the last node and then by the shortest edge incident to
the second last node and so on. The elements in the queue are quintuples(u, v, c, e1, e2), whereu is the
source,v the target,c the weight ande1, e2 the original endpoints. Hence, the algorithm can be restated in
the following way:

let π bea random permutation over{1, . . . , n}
foreach (u, v, c) ∈ E do push((π(u), π(v), c, u, v));

s := −1;
while not pqueue.empty()do

(u, v, c, e1, e2) := pqueue.pop();
if u 6= s then

(s, t) := (u, v);
add(e1, e2, c) to T ;

else
push((t, v, c, e1, e2));

procedurepush((u, v, c, e1, e2))
if u 6= v then

if max(u, v) ≤ n′ then bucket.push((u, v, c, e1, e2))
elsepqueue.push((max(u, v),min(u, v), c, e1, e2));

The main advantage of using an external priority queue is the scalability: we expect good results for
any kind of graphs, even for degenerated ones, for instance, graphs with a small average vertex degree
containing some nodes with a very high degree. However, the realization with several buckets (3.3.6) will
be faster in most cases, but can get into trouble if it has to deal with such degenerated graphs.

6

..
.

(u
,v

,c
)

(u
,v

,c
,e

1
,e

2
)

ed
ge

s
of

 n
od

es
1
,.

..
,u

[1
]

ed
ge

s
of

 n
od

es
u

[1
]+

1
,.

..
,u

[2
]

ed
ge

s
of

 n
od

es
u

[b
-1

]+
1
,.

..
,u

[b
]

..
.

ed
ge

s
of

 n
od

e
u

[b
-1

]+
1

ed
ge

s
of

 n
od

e
u

[b
]-

1
ed

ge
s

of
 n

od
e

u
[b

]
..

.

ex
te

rn
al

b
u

ck
et

s

in
te

rn
al

b
u

ck
et

s

in
p
u

t
gr

ap
h

(f
ir

st
 e

xt
.

b
u

ck
et

=
n

od
es

 t
h

at
 f

it
 i
n

in

te
rn

al
 m

em
or

y)

re
ad

 i
n

p
u

t
an

d
d
is

tr
ib

u
te

 e
d
ge

s
to

 e
xt

er
n

al
 b

u
ck

et
s

(u
,v

,c
,u

,v
)

p
ar

t
of

 t
h

e
re

su
lt

in
g

M
S

T

(u
,v

,c
)

re
ad

 c
u

rr
en

tl
y

la
st

ex

te
rn

al
 b

u
ck

et
 a

n
d

d
is

tr
ib

u
te

 e
d
ge

s
to

 i
n

te
rn

al
 b

u
ck

et
s

d
et

er
m

in
e

sh
or

te
st

 e
d
ge

an
d
 r

el
ab

el
al

l
ed

ge
s

(v
,c

,e
1
,e

2
)

(e
1
,e

2
,c

)

re
d
u

ce
d

gr
ap

h

Figure 3.1: Sibeyn and Meyer’s algorithm — external realization

7

Chapter 4

Implementation

4.1 <stxxl> Library

The implementation uses the<stxxl> library, which is developed at the Max-Planck-Institute for Com-
puter Science. “The core of<stxxl> is an implementation of the C++ standard template library STL for
external memory (out-of-core) computations, i.e.,<stxxl> implements containers and algorithms that
can process huge volumes of data that only fit on disks. While the compatibility to the STL supports ease
of use and compatibility with existing applications, another design priority is high performance [...]: trans-
parent support of multiple disks, variable block lengths, overlapping of I/O and computation, prevention of
OS file buffering overhead.” [Dem03]

4.2 Data Structures

The basic data structure is the classEdge that represents an edge consisting of two endpoints
(called source and target) and theweight . Furthermore, we need a classRelabeledEdge
that is a subclass ofEdge and additionally contains theoriginal source and theoriginal
target . Sometimes it is not necessary to store the source vertex because if we look at
the adjacency list of one particular vertex, the source vertex is known implicitly. In this
case we use a classRelabeledEdgeWithoutSource in order to reduce memory usage.
A RelabeledEdgeWithoutSource consists of target , weight , original source and
original target . (In order to avoid multiple inheritanceRelabeledEdgeWithoutSource is
not a superclass ofRelabeledEdge .) A superclassEdgeWithoutSource encapsulates the common
components ofEdge andRelabeledEdgeWithoutSource .

The classEdgeVector extends thestxxl::vector -class and can be used to save a sequence of
edges. AsEdgeVector is a template class, it can be used for both edges and relabeled edges. The main
feature ofstxxl::vector is the storage of the data in external memory while some blocks of data stay
in internal memory so that reading and writing is always done blockwise. As the subclassEdgeVector
should be able to represent a graph, it additionally stores the number of nodes of the graph. Furthermore,
there is a methodsortByWeight() that usesstxxl::ksort [DS03] in order to sort the edges by
weight.

Finally, the classMST represents a (part of a) minimum spanning tree and mainly consists of
an EdgeVector<Edge> . There are several methods toadd an Edge, a RelabeledEdge or a
RelabeledEdgeWithoutSource to the MST. Polymorphism is avoided due to efficiency reasons.

Figure4.1summarizes these data structures.

8

EdgeWithoutSource

+target(): NodeID
+weight(): EdgeWeight

Edge

+source(): NodeID
+swap()
+isSelfLoop(): bool

RelabeledEdgeWithoutSource

+originalSource(): NodeID
+originalTarget(): NodeID

RelabeledEdge

+originalSource(): NodeID
+originalTarget(): NodeID

EdgeVector<Edge>

+noOfEdges(): EdgeCount
+noOfNodes(): NodeCount
+sortByWeight()

EdgeVector<RelabeledEdge>

+noOfEdges(): EdgeCount
+noOfNodes(): NodeCount
+sortByWeight()

MST

+noOfEdges(): EdgeCount
+totalWeight(): EdgeWeightBig
+add(edge:Edge&)
+add(edge:RelabeledEdge&)
+add(edge:RelabeledEdgeWithoutSource&)

stxxl::vector

 *

 1

 *

 1

 1

 1

Figure 4.1: UML class diagram [BRJ99] — data structures

4.3 Base Case

We can apply the base case when the union-find data structure of all (remaining) nodes fit in internal mem-
ory. For this case the classKruskal provides data structures and methods to apply a semi-external version
of Kruskal’s algorithm. The constructor is given a reference to a graph represented by anEdgeVector
and a reference to theMST-object that stores the resulting MST. SinceKruskal is a template class, it can
deal with both anEdgeVector<Edge> and anEdgeVector<RelabeledEdge> .

First the edges are sorted (using thesortByWeight() -method ofEdgeVector) and then the edges
are scanned and appropriate union-find operations are performed.

Figure4.2 is an overview of the interface of theKruskal -class.

4.4 Node Reduction with Buckets

4.4.1 External Buckets

We have to be able to add edges to an external bucket and read all edges of the currently last bucket, so the
functionality of a stack is sufficient. Therefore, we use astxxl::stack for each external bucket. The

9

EdgeVector<Edge> EdgeVector<RelabeledEdge>

MST

+noOfEdges(): EdgeCount
+totalWeight(): EdgeWeightBig
+add(edge:Edge&)
+add(edge:RelabeledEdge&)
+add(edge:RelabeledEdgeWithoutSource&)

 1

 1

Kruskal<Edge>

+Kruskal(graph:EdgeVector<Edge>&,result:MST&)
-initUnionFind()
-computeMST()
-find(node:NodeID): NodeID
-unite(node1:NodeID,node2:NodeID): bool

Kruskal<RelabeledEdge>

+Kruskal(graph:EdgeVector<RelabeledEdge>&,result:MST&)
-initUnionFind()
-computeMST()
-find(node:NodeID): NodeID
-unite(node1:NodeID,node2:NodeID): bool

 result
 1

 1

 graph
 1

 1

 result
 1

 1

 graph
 1

 1

Figure 4.2: UML class diagram — Kruskal’s algorithm

first bucket is an exception as we want to use it as input for Kruskal’s algorithm that needs a more flexible
access since it has to sort the edges. Hence, we use anEdgeVector as the first bucket.

The size of the first bucket is the number of nodes that fit in internal memory. The size of the other
buckets should be not too small (otherwise too many buckets are needed and the buffers of the buckets
exceed the memory limit) and not too large (otherwise the edges of one external bucket do not fit in internal
memory). It is convenient to choose the same size for all (but the first) buckets as the computation of the
appropriate bucket identifier for a given node is simplified. At first sight this seems not to be the best choice
since the buckets with lower IDs probably contain much more edges than the buckets with higher IDs if all
buckets have the same size (cp.3.3.4). But, on the other hand, when the buckets with the higher IDs have
been processed, their buffers are not needed any more, and so the released memory can be used to store
more edges in internal memory.

4.4.2 Internal Buckets

The internal buckets have to be very flexible as for each node the number of edges can be very different
and is not known in advance. Furthermore, the internal buckets are reused several times. For instance, the
last internal bucket contains the edges ofub, then the edges ofub−1 and finally the edges ofu1. When it
has adapted its size toub, it is possible that this size is entirely improper forub−1.

The usage of one std::vector for each internal bucket would lead to a waste of either memory or time:
if the vectors are not reinitialized after the processing of each external bucket, the total capacity increases
continuously so that it exceeds the total number of edges by a high factor. On the other hand, the reinitial-
ization takes time.

To avoid these problems, we use aCommonPoolOfBlocks , which is shared by all internal buckets.
The CommonPoolOfBlocks manages a linked list of free blocks. Each block has a small constant
capacity to store edges. By invoking therequest -method a internal bucket can get a pointer to a free

10

block, which is removed from the free list and can be used exclusively by the requesting internal bucket
to store its edges. An internal bucket can give a block back to the pool by calling therelease -method.
Due to these measures the unused capacity is at any time less than the number of internal bucketstimesthe
capacity of one block because for each internal bucket less than one whole block is unused.

Basically, we need to add edges to internal buckets (when the edges of an external bucket are dis-
tributed to the internal buckets) and remove them later (in order to relabel them). The functionality of
a stack that uses theCommonPoolOfBlocks is encapsulated by the classSparingStack . In our
case we additionally need a methoddetermineMinEdge in order to iterate through all edges to find
the shortest one. This method is provided by the subclassREWSSparingStack that is specialized in
storingRelabeledEdgeWithoutSource -objects. Thus, each internal bucket is represented by one
REWSSparingStack .

A SparingStack consists of at least one block that does not belong to theCommonPoolOfBlocks
and therefore is never released. This saves time because the first block does not have to be requested, and
usually an internal bucket is not empty so that at least one block is needed.

Figure4.3outlines the data structures that are used to implement the internal buckets.

CommonPoolOfBlocks

+request(): Block*
+release(block:Block*)
+increaseReserveMemory(newMemory:int)

value_type:typename

CommonPoolOfBlocks<value_type>::Block

+push(element:value_type&)
+top(): value_type&
+pop()
+clear()
+empty(): bool
+full(): bool
+size(): int
+operator[](index:int): value_type&
+setPrevBlock(prevBlock:Block*)
+prevBlock(): Block*

value_type:typename

SparingStack

+setPool(pool:CommonPoolOfBlocks<value_type>*)
+empty(): bool
+push(element:value_type&)
+top(): value_type&
+pop()
+size(): int

value_type:typename

REWS_SparingStack

+determineMinEdge(result:MST&): NodeID

 *

 1

 uses
 *

 1

 1..*

 1

<RelabeledEdgeWithoutSource>

Figure 4.3: UML class diagram — internal buckets

11

4.4.3 Interface

The classBuckets provides an interface for the node reduction. The constructor is given (among others)
a reference to a graph represented by anEdgeVector and a reference to theMST-object that stores the
resulting MST. The classBuckets aggregates both the external and internal buckets, and it performs the
node reduction. After the node reduction has been completed, the methodgetIntMemBucket returns a
pointer to the first external bucket that contains the reduced graph (= the nodes that fit in internal memory).
Figure4.4represents the classBuckets .

Buckets

+Buckets(graph:EdgeVector<Edge>*,result:MST&,...)
+getIntMemBucket(): EdgeVector<RelabeledEdge>*

EdgeVector<Edge>

MST

REWS_SparingStack

EdgeVector<RelabeledEdge>

stxxl::stack

 graph
 1

 1

 internal buckets
 *

 1

 result
 1

 1

 first external bucket
 1

 1

 external buckets
 *

 1

Figure 4.4: UML class diagram — node reduction with buckets

4.5 Node Reduction with a Priority Queue

We use anEdgeVector as the first external bucket (cp.4.4.1) and astxxl::priority queue . An
implementation of the node reduction algorithm presented in Section3.3.7is straightforward with the help
of these data structures.

The interface of thePQueue class, which performs the node reduction and aggregates for this purpose
both the first external bucket and the priority queue, is virtually identical with the interface of theBuckets
class (4.4.3). Therefore, the following sections and figures apply to both theBuckets and thePQueue
implementation, although they refer only to the first one (to simplify matters).

4.6 Main Program

The sequence of the main program is quite simple:

1. import or generate the graph

2. perform the node reduction

3. use the reduced graph as input for Kruskal’s algorithm

Figure4.5represents this sequence by a diagram. The second step is skipped if the input graph is so small
that it can be processed by Kruskal’s algorithm immediately.

12

main

new(firstExtBucket,result)

new()

import / generate new()

graph

new(graph,result,...)

new()

add(edge)

*[node reduction]

getIntMemBucket()

firstExtBucket

add(edge)

*[Kruskal's algorithm]

buckets:Buckets

kruskal:Kruskal

import/generate graph

graph
:EdgeVector<Edge>

firstExtBucket
:EdgeVector
 <RelabeledEdge>

result:MST

Figure 4.5: UML sequence diagram

4.7 Randomization

The randomization of the node indices is essential for the expected running time (cp.3.3.4). Hence, we
apply a (pseudo-)random permutation on the node indices before the nodes are distributed to the external
buckets. As not all node indices fit in internal memory at the same time, we cannot use a standard procedure
that swaps random elements. Instead, we apply a bijection on each node index, so each edge can be
randomized independently (without looking at other edges, just by a relatively simple computation). Of
course we need a special bijection that leads to a (pseudo-)random permutation.

We use a variant of aFeistel permutation[NR99]. Let x be the node index that should be randomized.
We splitx into two partsa := x div r andb := x modr, wherer := d

√
ne. During one iterationi we

perform the following operation:a′ := b, b′ := (a + fi(b)) modr, wherefi(b) ∈ {0, . . . , r − 1} is a
random number taken from a table that has been computed once. This step is executed twice (we geta′′

andb′′). Finally,a′′ andb′′ are recombined to obtain the randomized node indexx′ = a′′ · r + b′′.

Originally, this is a bijection over{0, . . . , r2 − 1}, but we want a bijection over{0, . . . , n− 1}1, so we
repeat the application of the bijection, if necessary, untilx′ ∈ {0, . . . , n− 1}.

1In Section3.3 we use node indices from 1 ton for the abstract descriptions. However, node indices from 0 ton − 1 are more
convenient for the implementation.

13

4.8 Removal of Parallel Edges

By relabeling it is possible that parallel edges are created, i.e., edges that lead from the same source vertex to
the same target vertex. As a minimum spanning tree contains at the most the shortest one of several parallel
edges, the redundant duplicates can and should be ignored for further processing. Hence, it is reasonable
to remove these duplicates. As the removal of parallel edges is not very expensive, the disadvantage of
looking for them in graphs that do not have many of them is small; but, on the other hand, the advantage
for special graphs, grid graphs for example, is clearly noticeable.

The removal of duplicates is integrated in the relabeling step. Instead of adding the relabeled edges
of the last node directly to the appropriate external or internal bucket, they are first added to a hash map
by calling theinsert -method of theDuplicatesRemover -class, which aggregates the hash map. If
an edge with the same source and the same target vertex is already stored in the hash map, it is replaced
with the new edge if the new edge is shorter, otherwise the new edge is discarded. If the capacity of the
hash map is exhausted, further edges are written to the appropriate external or internal bucket directly; this
limits the waste of time when there are many different edges.

When all edges of the last node have been inserted in the hash map, it has to be cleared and the edges
have to be written to the appropriate bucket. In order to be able to clear a hash map fast (especially if it
contains only few elements), the inserted elements are additionally stored in an array without gaps. Each
entry in the hash map consists of the edge and the index in the array where the edge is additionally stored,
so the element in the array can be updated in constant time when the corresponding element in the hash
map is replaced by a shorter edge. Due to this data structure the hash map can be cleared by iterating
through the array (instead of the whole map) and deleting the elements in the map selectively.

4.9 Ideas for Further Improvements

There are several possible improvements that have not been implemented (yet).

• Pipelining. Some I/Os could be saved, if the sort and the scan part of Kruskal’s algorithm were
combined by a pipeline. Instead of writing the first sorted elements back and reading them later, we
could process the sorted elements immediately. Furthermore, we could join the node reduction and
the sorting: instead of writing all edges in an unsorted sequence to the first external bucket, we could
gather a certain amount of edges in order to build sorted runs. Then we only have to merge these
sorted runs. Planned enhancements of the<stxxl> library will make such improvements possible.

• Exception handling in the buckets implementation.Currently, the buckets implementation cannot
deal with every imaginable graph. As mentioned in Section3.3.7, we get into trouble if the graph
has a small average vertex degree, but contains some nodes with a very a high degree. In this case
reading the external bucket that contains these exceptional nodes could fail because not all edges of
this external bucket fit in the internal buckets. In order to handle this exceptional cases, we could
switch temporarily to the priority queue implementation when we realize that the current external
bucket would not fit in internal memory.
This improvement has not been implemented since such degenerated graphs are quite rare and, if
necessary, the priority queue implementation could be used right from the start.

• Adaptive bucket sizes.In our buckets implementation all external buckets (but the first) have the same
size. As described in Section4.4.1, this has some advantages. However, it could be worthwhile to
try using adaptive bucket sizes, i.e., the buckets with lower IDs contain the edges of less nodes as the
average vertex degree increases from the last to the first bucket.

• Intermediate buckets.When an external bucket is read and when edges are relabeled, they are dis-
tributed to random internal buckets. This leads to many cache misses. In order to reduce the number
of cache misses, it could be reasonable to install some intermediate buckets between the existing ex-
ternal and internal buckets, so the concept of two layers of data (introduced in Section3.3.6) would
be extended to three layers and memory accesses would be no longer distributed over the whole
internal memory.

14

Chapter 5

Evaluation

5.1 Test Data

As there is a lack of real-world data, we use generated graphs to measure the runtime performance. Three
different graph families are examined [MS94]1.

1. random graphs with a given number of vertices and a given number of edges: for each edge a random
weight and two random endpoints are selected,

2. grid graphs withnodesX ·nodesY vertices: each vertex is connected with its four neighbours (except
the marginal nodes, which are connected with three resp. two neighbours), the edges have random
weights,

3. geometric graphs: the given number of vertices is placed in a square, each vertex is connected with
the given number of nearest neighbours, the distance between two nodes is the square of the Eu-
clidean distance (the extraction of the root is insignificant in respect of the sequence of the algorithm
and would slow down the graph generation unnecessarily), parallel edges are removed.

Apart from the grid graphs it is possible that the generated graphs are not connected. Especially (very)
sparse random or geometric graphs, which have been generated that way, are almost never connected. We
do not take any measures to remedy this unwanted state because, in the main, the sequence of the program
is independent of the connectivity of the graph: if a connected graph is given, a minimum spanningtree
will be determined; if an unconnected graph is given, a minimum spanningforestwill be found. Actually,
the only difference is the chance of an earlier abort ifn − 1 edges have been added to the resulting MST:
if we deal with an unconnected graph, we will never be able to fulfill this abort condition, so we will have
to scan through all edges. Hence, the fact that we do not make the generated graphs connected in any case
leads at the most to a slight slowdown.

5.2 Test Environment and Settings

The evaluation is done on a machine with two 2GHz Intel Xeon processors, 1 GB RAM and four disks (80
GB each) with a total I/O bandwidth of up to 180 MB/s [DS03]. Debian Linux with kernel version 2.4.20
is used as operating system. The chosen filesystem is XFS and the swap file has been disabled.

Unless otherwise specified, we use the buckets implementation with the following parameters:

• 4 hard disks (and appropriate parameters to take advantage of the parallelism),

1Moret and Shapiro additionally use graphs that represent the worst case for Prim’s resp. Kruskal’s algorithm. As our imple-
mentation has nothing to do with Prim’s algorithm, we could not expect informative results if we evaluated the former. We do not
explicitly use the latter, either, because, in contrast to Moret and Shapiro, we also process unconnected graphs so that the worst case
for Kruskal’s algorithm (namely that all edges have to be sorted and scanned) occurs anyway.

15

• 2 MB block size forstxxl::vectors (particularly for the first external bucket) and 512 KB
block size forstxxl::stacks (i.e., for all other external buckets),

• the first external bucket contains the edges of the first 160,000,000 nodes (the union find data struc-
ture of these nodes fits in internal memory), the other external buckets contain the edges of 1,800,000
nodes,

• consequently, there are 1,800,000 internal buckets (each of them possesses one block that can store
up to 8 edges2), initially the common pool, which can be used by all internal buckets, consists of
1,500,000 blocks (8 edges each),

• 650 MB of internal memory are used for sorting,

• randomization and removing of parallel edges are switched on.

5.3 Test Runs and Results

5.3.1 Main Results

Table5.1 represents the main results, namely the results of test runs with the three graph families, several
sizes and densities. Ifn ≤ 160,000,000, we are involved with a semi-external test case, otherwise with an
external one. The number of processed edgesp and the number of removed parallel edges (duplicates)d
refer to the node reduction phase, so these columns are blank in semi-external cases.

Most of these test runs were done with the above mentioned settings, only the external bucket size was
decreased for test cases withm ≈ 4 · n resp. m ≈ 8 · n3 so that all edges of one external bucket fit in
internal memory in any case.4

The results of the semi-external test runs do not show wide differences. It is not possible to distinguish
between the different graph families. The more edges are processed the more time per edge is spent, but this
complies with the expected behaviour as the time complexity of Kruskal’s algorithm is inO(m lnm). For
example, if you compare the random graph with10·106 nodes and80·106 edges with the random graph with
160 ·106 nodes and1, 280 ·106 edges, the time per edge differs (1.77µs to 2.05µs), butt/(m lnm) ≈ 97ns
in both cases. The denser the graph the less time per edge is taken. A denser graph with the same number
of edges consists of less nodes, so a MST of a denser graph consists of less edges. Hence, there are more
find operations with negative results (i.e., both nodes already belong to the same set) so that less union
operations are needed and the height of the trees becomes very small due to path compression. Therefore,
less time is needed when we deal with denser graphs.

Obviously, the external test runs are slower than the semi-external ones, but fortunately the differences
keep within reasonable limits. When we look at grid resp. geometric graphs, the differences even decrease
when the graph size increases. Mainly, this effect is due to the removal of parallel edges. The more edges
in a grid or geometric graph the greater the rate of removed edges (cp. columnd/m). Hence, the number
of edges that have to be processed by Kruskal’s algorithm is kept small. For example,5.6 · 108 edges of
a grid graph with640 · 106 nodes survive the node reduction, and6.3 · 108 edges of a graph that is twice
this size. Furthermore, the removal of duplicates is one of two reasons why the number of processed edges
is distinctly less than the expected number of processed edges (cp. columnp/E(p)) when we deal with
large instances. The other reason is the fact that the analysis of the time complexity (Section3.3.4) is rather
cautious. For instance, it is not regarded that for each node at least one edge, which is added to the MST,
is eliminated. Unfortunately, only the second reason applies to random graphs as the removal of parallel
edges is not effective. (There are some multiple edges, but distinctly less than 1%.) Hence, the number of

2The more edges in one block the greater the extent of unused capacity (cp.4.4.2) and the smaller the temporal overhead of
operations on linked lists of blocks — and vice versa. Hence, 8 edges is a compromise.

3Originally, we wanted to evaluate test cases withm = 2 · n, m = 4 · n andm = 8 · n, but we had to restrict ourselves to
approximate values as the average vertex degree of a grid graph is slightly less than four and the average vertex degree of a geometric
graph depends on the given number of nearest neighbours and cannot be set to an exact value.

4Furthermore, the size of the first external bucket was reduced to 150,000,000 for large geometric graphs due to a slight misfeature
of the memory management caused by the expensive geometric graph generator.

16

type n/106 m/106 t[s] t/m[µs] p/106 p/E(p) d/m

grid 40 80 177 2.21
grid 80 160 362 2.27
grid 160 320 738 2.31
grid 320 640 2 535 3.96 750 85 % 4 %
grid 640 1 280 4 712 3.68 2 492 70 % 13 %
grid 1 280 2 560 9 056 3.54 6 167 58 % 22 %

random 40 80 185 2.32
random 80 160 388 2.42
random 160 320 813 2.54
random 320 640 2 773 4.33 766 86 % 0 %
random 640 1 280 6 098 4.76 2 752 78 % 0 %
random 1 280 2 560 14 202 5.55 7 676 72 % 0 %
random 20 80 155 1.94
random 40 160 318 1.99
random 80 320 676 2.11
random 160 640 1 427 2.23
random 320 1 280 5 889 4.60 1 651 93 % 0 %
random 640 2 560 14 248 5.57 6 284 89 % 0 %
random 10 80 142 1.77
random 20 160 286 1.79
random 40 320 591 1.85
random 80 640 1 242 1.94
random 160 1 280 2 627 2.05
random 320 2 560 12 370 4.83 3 426 97 % 0 %

geometric 40 75 183 2.45
geometric 80 149 377 2.53
geometric 160 298 787 2.64
geometric 320 596 2 175 3.65 644 78 % 7 %
geometric 640 1 190 3 797 3.18 1 949 59 % 13 %
geometric 1 280 2 390 7 278 3.05 4 575 45 % 15 %
geometric 20 71 148 2.09
geometric 40 141 300 2.13
geometric 80 282 627 2.22
geometric 160 564 1 333 2.36
geometric 320 1 130 4 126 3.66 1 275 82 % 18 %
geometric 640 2 260 7 004 3.10 3 975 61 % 34 %
geometric 10 68 124 1.84
geometric 20 135 246 1.82
geometric 40 270 511 1.89
geometric 80 540 1 067 1.98
geometric 160 1 080 2 209 2.04
geometric 320 2 160 7 549 3.49 2 650 81 % 30 %

n nodes,m edges,t elapsed time,p processed edges,E(p) expected value ofp according
to 3.3.4, d duplicates (parallel edges) removed

Table 5.1: (Semi-)External test cases

17

processed edges is less than the expected number, but greater than the corresponding number at test runs
with grid resp. geometric graphs. Therefore, the time per edge increases when we deal with larger random
graphs. This is the “normal” behaviour as the time complexity of the node reduction algorithm is not in
O(m). If you regard the time per processed edge, you can find out that this quantity even decreases when
the graph size increases.

At first sight it is surprising that test runs with denser graphs are partly as slow as test runs with sparser
graphs. For instance, the time per edge for a random graph with2, 560 · 106 edges andm = 2 · n and for
a random graph with the same number of edges, butm = 4 · n, is almost identical (about 5.5µs each). As
the number of processed edges depends not only onm, but also onn, we would have expected that the
test run withm = 4 · n is faster. However, the sparser graphs benefit from another fact: due to the larger
number of nodes the node reduction phase actually takes a longer time (10,571s instead of 9,177s, for the
above mentioned example), but, on the other hand, more edges are eliminated because for each node at
least the shortest edge is removed, so there are less edges that have to be processed by Kruskal’s algorithm
(about1.5 · 109 instead of2.1 · 109). Hence, Kruskal’s algorithm is faster (3,631s instead of 5,071s) and
compensates for the slower node reduction phase.

5.3.2 Comparison with Internal Implementations

In order to be able to judge the performance of our implementation, we need comparison values. Therefore,
we fall back on internal implementations of Kruskal’s and of Prim’s algorithm developed at the Max-
Planck-Institute for Computer Science by Irit Katriel. We used random graphs generated by Irit’s program
and grid and geometric graphs generated by our program. As the implementation of Prim’s algorithm
requires more memory, some instances were processed only by Kruskal’a algorithm. Table5.2 contains
the results of the internal test runs.

Kruskal Prim
type n/106 m/106 t[s] t/m[µs] t[s] t/m[µs]
grid 2.5 5.0 7.5 1.50 3.8 0.75
grid 5.0 10.0 15.2 1.52 8.2 0.82

random 2.5 5.0 6.5 1.30 10.0 1.99
random 5.0 10.0 13.5 1.35 22.1 2.21
random 10.0 20.0 28.2 1.41
random 1.3 5.0 5.3 1.07 6.1 1.22
random 2.5 10.0 10.9 1.09 12.9 1.29
random 5.0 20.0 22.4 1.12
random 0.6 5.0 4.7 0.94 3.7 0.73
random 1.3 10.0 9.6 0.96 7.5 0.75
random 2.5 20.0 19.9 1.00

geometric 2.5 4.7 7.3 1.56 5.6 1.19
geometric 5.0 9.3 14.5 1.56 13.1 1.41
geometric 1.3 4.4 6.3 1.42 2.9 0.66
geometric 2.5 8.8 12.6 1.43 6.4 0.73
geometric 0.6 4.2 5.3 1.26 1.7 0.41
geometric 1.3 8.4 10.8 1.27 3.6 0.43

Table 5.2: Internal test cases

In the main, both implementations show the expected behaviour. Kruskal’s algorithm is quite inde-
pendent of the graph type. When denser graphs are processed, Kruskal’s algorithm gets faster due to the
same reasons that applied to the semi-external test cases described in Section5.3.1. One basic feature of
Prim’s algorithm is the fact that the time per edge decreases when the density increases. This feature is
confirmed by our results. Furthermore, Prim’s algorithm is more efficient when grid or geometric graphs
are processed.

18

In Table5.3, we compare external test runs with internal ones. For each graph type and for each density,
the last entry in Table5.1is compared with the last entry in Table5.2. The time per edge of the external test
case is divided by the time per edge of the corresponding internal test case for both algorithms, Kruskal’s
and Prim’s.

(t/m)ext : (t/m)int
type density Kruskal Prim

grid m ≈ 2 · n 2.3 4.3
random m ≈ 2 · n 3.9 2.5
random m ≈ 4 · n 5.0 4.3
random m ≈ 8 · n 4.8 6.4
geometric m ≈ 2 · n 2.0 2.2
geometric m ≈ 4 · n 2.2 4.2
geometric m ≈ 8 · n 2.7 8.1

Table 5.3: Comparison between external and internal test cases

With regard to the internal implementation of Kruskal’s algorithm, our external implementation is
between two and five times slower. When we compare our implementation with Prim’s algorithm, the
factor ranges between 2.2 and 8.1. When we make the analogous comparison between the semi-external
version of Kruskal’s algorithm and the internal one, we obtain a factor between 1.5 and 2.5 However, we
have to consider that these comparisons aredisadvantageous to our implementation as we cannot expect
that the expense grows only linearly.

Figure 5.1 illustrates the results of internal, semi-external and external test runs withm ≈ 2 · n.
Analogically, the Figures5.2and5.3show the results of the test runs withm ≈ 4 · n resp.m ≈ 8 · n. To
keep the figures easy to survey, we omit the internal test runs with grid and geometric graphs.

5.3.3 Randomization and Removal of Parallel Edges

As we wanted to evaluate the benefit of the removal of parallel edges, we reran the external test cases of
grid graphs withdeactivatedDuplicatesRemover (cp. 4.8). Table5.4 shows both the results with
activated and with deactivatedDuplicatesRemover .

parallel edges n/106 m/106 t[s] t/m[µs] p/106 p/E(p) d/m

removed 320 640 2 535 3.96 750 85 % 4 %
removed 640 1 280 4 712 3.68 2 492 70 % 13 %
removed 1 280 2 560 9 056 3.54 6 167 58 % 22 %

not removed 320 640 2 539 3.97 760 86 %
not removed 640 1 280 5 006 3.91 2 642 74 %
not removed 1 280 2 560 10 171 3.97 6 969 65 %

Table 5.4: Grid graphs — removal of parallel edges

From these results, we can conclude that the removal of parallel edges becomes worthwhile when the
graph size increases. For instance, theDuplicatesRemover eliminates 22% (≈ 5.7 · 108) of all edges
from a grid graph with1.28·109 nodes and about2.56·109 edges. When these edges are not removed, most
of them are processed more than once, so the number of processed edges even increases from6.2 · 109 to
7.0·109. Hence, the test run with activatedDuplicatesRemover is more than 10% faster. Furthermore,
less internal memory is allocated, so the external bucket size could be increased.

5Both the internal and the semi-external algorithm have a number of opportunities for further tuning. Currently, the external
sorter benefits from the fact that only integer keys are used, while the internal sorter is comparison based. Hence, bucket sort could
accelerate the internal sorter. On the other hand, the external sorter is not optimized for small elements. Furthermore, pipelining (cp.
4.9) has not been implemented, yet. But none of these measures is likely to yield more than a factor of 2.

19

1

2

3

4

5

6

5 10 20 40 80 160 320 640 1280 2560

t /
 m

 [µ
s]

m / 1 000 000

Kruskal
Prim

random
geometric

grid

KruskalandPrim denote the internal test runs with random graphs,random, geometricand
grid label the (semi-)external test runs with the corresponding graph type.

Figure 5.1:m ≈ 2 · n

1

2

3

4

5

6

5 10 20 40 80 160 320 640 1280 2560

t /
 m

 [µ
s]

m / 1 000 000

Kruskal
Prim

random
geometric

Figure 5.2:m ≈ 4 · n

20

1

2

3

4

5

6

5 10 20 40 80 160 320 640 1280 2560

t /
 m

 [µ
s]

m / 1 000 000

Kruskal
Prim

random
geometric

Figure 5.3:m ≈ 8 · n

The randomization of a random graph is redundant as the node indices are uniformly distributed any-
way. Furthermore, the removal of duplicates is not worthwhile since a random graph contains only few
parallel edges. Hence, we wanted to find out the extent of the overhead. Table5.5represents the results of
two test runs with a random graph, one with randomization and removal of parallel edges and one without
these measures.

parallel edges randomization n/106 m/106 t[s] t/m[µs] p/106 p/E(p) d

removed activated 1 280 2 560 14 202 5.55 7 676 72 % 555
not removed deactivated 1 280 2 560 12 465 4.87 7 675 72 %

Table 5.5: Random graph — randomization and removal of parallel edges

Firstly, these results confirm our conjecture that the randomization of a random graph is superfluous.
The number of processed edges is almost identical. Secondly, it is obvious that the removal of duplicates is
not worthwhile because only 555 (≈ 0.00002%) parallel edges are eliminated. Finally, the test run without
randomization and withoutDuplicatesRemover is about 12% faster. As both measures do not speed
up the processing, this difference exactly reflects the expense of the randomization and the removal of
parallel edges.

5.3.4 Buckets vs. Priority Queue

In order to compare both implementations, we selected three representative instances and applied both
versions one after the other. Table5.6shows the different execution times.

The results demonstrate that currently the buckets implementation needs less than half the time of the
priority queue implementation. There are two reasons for this. Firstly, the buckets implementation is
optimized for the MST problem, while the priority queue of the<stxxl> library is a very general data
structure. Secondly, the priority queue is not fully developed yet.

21

implementation type n/106 m/106 t[s] t/m[µs]
buckets grid 320 640 2 535 3.96
priority queue grid 320 640 6 156 9.62
buckets random 320 640 2 773 4.33
priority queue random 320 640 6 013 9.40
buckets random 1 280 2 560 14 202 5.55
priority queue random 1 280 2 560 54 497 21.29

Table 5.6: Buckets vs. priority queue

5.3.5 Large Instances

To sound the limits of the program, we processed grid graphs with231 and with232 nodes. As the number
of external buckets increased, the block size forstxxl::stacks had to be reduced.6 Table5.7 shows
the external test cases of grid graphs including the above mentioned large instances.

block size n/106 m/106 t[s] t/m[µs] p/106 p/E(p) d/m

512 KB 320 640 2 535 3.96 750 85 % 4 %
512 KB 640 1 280 4 712 3.68 2 492 70 % 13 %
512 KB 1 280 2 560 9 056 3.54 6 167 58 % 22 %
256 KB 2 150 4 290 15 803 3.68 11 230 50 % 27 %
128 KB 4 290 8 590 31 081 3.62 26 260 46 % 29 %

Table 5.7: Grid graphs — large instances

Although the block size is halved twice, the time per edge is almost constant and does not increase when
very large graphs are processed. The reduced block size is compensated by theDuplicatesRemover ,
which is very efficient for large instances. For example, the number of processed edges is less than half
the expected number if we regard the grid graph with232 nodes. This is achieved by removing 29% of all
edges.

6Furthermore, the sizes of the external buckets were adapted for the last test run so that they were particularly appropriate for a
large grid graph: the first external bucket contained the edges of 150,000,000 nodes (instead of 160,000,000) and all other external
buckets contained the edges of 2,500,000 nodes (instead of 1,800,000).

22

Acknowledgements

First of all, I like to thank my supervisor, Peter Sanders, for the numerous fertile discussions. His sugges-
tions and his optimism were very helpful.

Roman Dementiev always provided an up-to-date version of the<stxxl> -library and made sure that
the test environment worked. Furthermore, he enhanced the library according to my requirements and
supported my hunt for bugs (particularly memory leaks) with great patience.

Job Sibeyn kindly made his not yet published external memory MST algorithm available. Irit Katriel
provided internal implementations of Prim’s and of Kruskal’s algorithm so that I was able to do comparative
measurements.

23

Bibliography

[ABT00] L. Arge, G. Brodal, and L. Toma. On external memory MST, SSSP and multi-way planar
graph separation. In7th Scandinavian Workshop on Algorithm Theory, volume 1851 ofLNCS,
pages 433–447. Springer, 2000.

[ABW02] J. Abello, A. L. Buchsbaum, and J. R. Westbrook. A functional approach to external graph
algorithms.Algorithmica, 32(3):437–458, 2002.4

[AV88] A. Aggarwal and J. S. Vitter. The input/output complexity of sorting and related problems.
Communications of the ACM, 31(9):1116–1127, 1988.1

[BRJ99] G. Booch, J. Rumbaugh, and I. Jacobson.The Unified Modeling Language User Guide.
Addison-Wesley, 1999.9

[CGG+95] Y.-J. Chiang, M. T. Goodrich, E. F. Grove, R. Tamassia, D. E. Vengroff, and J. S. Vitter.
External-memory graph algorithms. InProc. ACM-SIAM Symp. on Discrete Algorithms, pages
139–149, 1995.4

[Dem03] R. Dementiev.<stxxl> home page. http://www.mpi-sb.mpg.de/∼rdementi/stxxl.html, July
2003. 8

[DS03] R. Dementiev and P. Sanders. Asynchronous parallel disk sorting. In15th ACM Symposium
on Parallelism in Algorithms and Architectures, pages 138–148, 2003.8, 15

[JaJ92] J. JaJa.An Introduction to Parallel Algorithms. Addison-Wesley, 1992.3

[Knu98] Donald E. Knuth.The Art of Computer Programming, volume 2. Addison-Wesley, 3rd edition,
1998.

[Liu01] Yan Liu. Minimum spanning trees.
http://www.csee.wvu.edu/∼ksmani/courses/fa01/random/lecnotes/lecture11.pdf, Fall 2001.
Lecture notes, “Randomized Algorithms” course, LDCSEE, West Virginia University.3

[MS94] B.M.E. Moret and H.D. Shapiro. An empirical assessment of algorithms for constructing a
minimum spanning tree.DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, 15:99–117, 1994.15

[MSS03] U. Meyer, P. Sanders, and J. Sibeyn, editors.Algorithms for Memory Hierarchies, volume
2625 ofLNCS Tutorial. Springer, 2003.1, 4

[NR99] Moni Naor and Omer Reingold. On the construction of pseudorandom permutations: Luby-
Rackoff revisited. Journal of Cryptology: the journal of the International Association for
Cryptologic Research, 12(1):29–66, 1999.13

[OW96] T. Ottmann and P. Widmayer.Algorithmen und Datenstrukturen. Spektrum Akademischer
Verlag, 3rd edition, 1996.2

[San00] P. Sanders. Fast priority queues for cached memory.ACM Journal of Experimental Algorith-
mics, 5(7), 2000. 6

24

[Sed92] R. Sedgewick.Algorithmen. Addison-Wesley, 1992.

[Ski98] Steven S. Skiena.The Algorithm Design Manual. Springer, 1998.2

[SM] J. Sibeyn and U. Meyer. External connected components and beyond.unpublished. 4, 5

25

	Introduction
	Minimum Spanning Trees
	External Memory Model
	External Memory Minimum Spanning Trees

	Dense Graphs
	Sparse Graphs
	General Approach
	Boruvka's Algorithm
	Sibeyn and Meyer's Algorithm

	Implementation
	<stxxl> Library
	Data Structures
	Base Case
	Node Reduction with Buckets
	Node Reduction with a Priority Queue
	Main Program
	Randomization
	Removal of Parallel Edges
	Ideas for Further Improvements

	Evaluation
	Test Data
	Test Environment and Settings
	Test Runs and Results

