Route Planning in Road Networks
– simple, flexible, efficient –

Peter Sanders Dominik Schultes

Institut für Theoretische Informatik – Algorithmik II
Universität Karlsruhe (TH)

http://algo2.iti.uka.de/schultes/hwy/

Berlin, December 10, 2007
Route Planning

Task:
In a given road network, determine an optimal route from a given source to a given target.

Applications:
- route planning systems in the internet, car navigation systems,
- traffic simulation, logistics optimisation
DIJKSTRA’s Algorithm

the classic solution [1959]

\[O(n \log n + m) \text{ (with Fibonacci heaps)} \]

Dijkstra

not practicable

for large graphs

(e.g. European road network:

\[\approx 18\,000\,000 \text{ nodes} \])

bidirectional Dijkstra

improves the running time,

but still too slow
Speedup Techniques

that are faster than Dijkstra’s algorithm

- require additional data (e.g., node coordinates)
 not always available!

AND / OR

- preprocess the graph and generate auxiliary data (e.g., ‘signposts’)
 can take a lot of time; assume many queries;
 assume static graph or require update operations!

AND / OR

- exploit special properties of the network (e.g., planar, hierarchical)
 fail when the given graph has not the desired properties!

⇒ not a solution for general graphs,

but can be very efficient for many practically relevant cases
Speedup Techniques

- Require additional data (e.g., node coordinates)

AND / OR

- Preprocess the graph and generate auxiliary data (e.g., ‘signposts’)

AND / OR

- Exploit special properties of the network (e.g., planar, hierarchical)
Goals

- fast queries
- accurate results
- scale invariant / support all types of queries
- fast preprocessing / deal with large networks
- low space consumption
- fast update operations
- simple
Overview

Transit Node Routing
very fast queries
[DIMACS 06, ALENEX 07, Science 07]

HH Star
goal–directed
[DIMACS 06]

Highway Hierarchies
foundation
[ESA 05, ESA 06]

Many–to–Many
compute distance tables
[ALLENEX 07]

Hwy–Node Routing
allow edge weight changes
[WEA 07]
Highway Hierarchies

Construction: iteratively alternate between

- removal of low degree nodes
- removal of edges that only appear on shortest paths close to source or target

yields a hierarchy of highway networks in a sense, classify roads / junctions by ‘importance’
Highway Hierarchies

- Foundation for our other methods
- Directly allows point-to-point queries
- 13 min preprocessing
- 0.61 ms to determine the path length
- (0.80 ms to determine a complete path description)
- Reasonable space consumption (48 bytes/node) can be reduced to 17 bytes/node
Highway Hierarchies Star

joint work with D. Delling, D. Wagner

- combination of highway hierarchies with goal-directed search
- slightly reduced query times (0.49 ms)
- more effective
 - for approximate queries or
 - when a distance metric instead of a travel time metric is used
Many-to-Many Shortest Paths

joint work with S. Knopp, F. Schulz, D. Wagner

[ALENEX 07]

Given:

- graph $G = (V, E)$
- set of source nodes $S \subseteq V$
- set of target nodes $T \subseteq V$

Task: compute $|S| \times |T|$ distance table containing the shortest path distances

- e.g., 10 000 \times 10 000 table in 23 seconds
Transit-Node Routing

joint work with H. Bast, S. Funke, D. Matijevic

- very fast queries
 (down to $4 \mu s$, > 1 000 000 times faster than Dijkstra)
- winner of the 9th DIMACS Implementation Challenge
- more preprocessing time (1:15 h) and space (247 bytes/node) needed
Transit Node Routing

Brussels, London

Munich, Rome, Paris

Copenhagen, Berlin, Vienna
Transit-Node Routing

First Observation:
For long-distance travel: leave current location via one of only a few ‘important’ traffic junctions, called access points [in Europe ≈ 10]
(⇒ we can afford to store all access points for each node)

Second Observation:
Each access point is relevant for several nodes. ⇒
union of the access points of all nodes is small, called transit node set [in Europe ≈ 10 000]
(⇒ we can afford to store the distances between all transit node pairs)
Transit-Node Routing

Query: usually only a few table lookups
Highway-Node Routing

1. **basic concepts**: overlay graphs, covering nodes

2. lightweight, efficient **static approach**

3. **dynamic** version
1. Basic Concepts
Overlay Graph: Definition

- graph $G = (V, E)$ is given
- select node subset $S \subseteq V$
Overlay Graph: Definition

- graph $G = (V, E)$ is given
- select node subset $S \subseteq V$

- overlay graph $G' := (S, E')$

 determine edge set E' s.t. shortest path distances are preserved
Minimal Overlay Graph

- Graph $G = (V, E)$ is given
- Select node subset $S \subseteq V$

- Minimal overlay graph $G' := (S, E')$ where

$$E' := \{(s, t) \in S \times S \mid \text{no inner node of the shortest } s-t\text{-path belongs to } S\}$$
Covering Nodes

Definitions:

- **covered branch**: contains a node from \(S \)
- **covered tree**: all branches covered
- **covering nodes**: on each branch, the node \(u \in S \) closest to the root \(s \)
Query: Intuition

- bidirectional

- perform search in G till search trees are covered by nodes in S
Query: Intuition

- bidirectional
- perform search in G till search trees are covered by nodes in S
- continue search only in G'
for each node $u \in S$

- perform a local search from u in G
- determine the covering nodes
- add an edge (u, v) to E' for each covering node v
Covering Nodes

Conservative Approach:

- stop searching in G when all branches are covered

- can be very inefficient
Covering Nodes

Aggressive Approach:

- do not continue the search in G on covered branches

- can be very inefficient
Covering Nodes

Compromise:

- Introduce parameter p

- Do not continue the search in G on branches that already contain p nodes from S

- In addition: stop when all branches are covered

- $p = 1 \rightarrow$ aggressive

- $p = \infty \rightarrow$ conservative

- Works very well in practice
2. Static Highway-Node Routing
Static Highway-Node Routing

- extend ideas from
 - multi-level overlay graphs [HolzerSchulzWagnerWeiheZaroliagis00–07]
 - highway hierarchies [SS05–06]
 - transit node routing [BastFunkeMatijevicSS06–07]

- use highway hierarchies to classify nodes by ‘importance’
 i.e., select node sets $S_1 \supseteq S_2 \supseteq S_3 \ldots \supseteq S_L$
 (crucial distinction from previous separator-based approach)

- construct multi-level overlay graph

\[
G_0 = G = (V, E), \quad G_1 = (S_1, E_1), \quad G_2 = (S_2, E_2), \ldots, \quad G_L = (S_L, E_L)
\]

(just iteratively construct overlay graphs)
Static Highway-Node Routing

- extend ideas from
 - multi-level overlay graphs [HolzerSchulzWagnerWeiheZaroliagis00–07]
 - highway hierarchies [SS05–06]
 - transit node routing [BastFunkeMatijevicSS06–07]

- use highway hierarchies to classify nodes by ‘importance’
 i.e., select node sets $S_1 \supseteq S_2 \supseteq S_3 \ldots \supseteq S_L$
 (crucial distinction from previous separator-based approach)

- construct multi-level overlay graph
 $G_0 = G = (V, E), G_1 = (S_1, E_1), G_2 = (S_2, E_2), \ldots, G_L = (S_L, E_L)$
 (just iteratively construct overlay graphs)

(experiments with a European road network with ≈ 18 million nodes)
Query: Aggressive Variant

- node level $\ell(u) := \max \{\ell \mid u \in S_\ell\}$
- forward search graph $\vec{G} := (V, \{(u, v) \mid (u, v) \in \bigcup_{i=\ell(u)}^L E_i\})$
- backward search graph $\overleftarrow{G} := (V, \{(u, v) \mid (v, u) \in \bigcup_{i=\ell(u)}^L E_i\})$
- perform one plain Dijkstra search in \vec{G} and one in \overleftarrow{G}
Proof of Correctness

Level 0

Level 1

Level 2

shortest path from s to t in $G = G_0$
Proof of Correctness

overlay graph G_1 preserves distance from $s_1 \in S_1$ to $t_1 \in S_1$
Proof of Correctness

Overlay graph G_2 preserves distance from $s_2 \in S_2$ to $t_2 \in S_2$
Proof of Correctness

Let \(\vec{G} := (V, \{(u, v) \mid (u, v) \in \bigcup_{i=\ell(u)}^{L} E_i\}) \) and \(\vec{G} := (V, \{(u, v) \mid (v, u) \in \bigcup_{i=\ell(u)}^{L} E_i\}) \).

Level 0

Level 1

Level 2
Stall-on-Demand

- A node v can 'wake' an already settled node u

- u can 'stall' v (if $\delta(u) + w(u, v) < \delta(v)$)
 i.e., search is not continued from v

- Stalling can propagate to adjacent nodes

- Does not invalidate correctness (only suboptimal paths are stalled)
Karlsruhe → Bertinoro
NO Stall-on-Demand
search space size: 31,756
Karlsruhe → Bertinoro
Stall-on-Demand
search space size: 1179
const NodeID index = isReached(searchID, v);
if (edge.isDirected(1-dir) && index) {
 const PQData& data = pqData(searchID, index);
 EdgeWeight vKey = data.stalled() ? data.stallKey() : pqKey(searchID, index);
 if (vKey + edge.weight() < parentDist) {
 pqData(searchID, parent.index).stallKey(vKey + edge.weight());
 queue<pair<NodeID, EdgeWeight>> _stallQueue;
 _stallQueue.push(pair<NodeID, EdgeWeight>(parent.nodeID, vKey + edge.weight()));
 while (!_stallQueue.empty()) {
 u = _stallQueue.front().first;
 key = _stallQueue.front().second;
 _stallQueue.pop();
 for (EdgeID e = _graph->firstEdge(u); e < _graph->lastEdge(u); e++) {
 const Edge& edge = _graph->edge(e);
 if (! edge.isDirected(searchID)) continue;
 NodeID index = isReached(searchID, edge.target());
 if (index) {
 const EdgeWeight newKey = key + edge.weight();
 if (newKey < pqKey(searchID, index)) {
 PQData& data = pqData(searchID, index);
 if (! data.stalled()) {
 data.stallKey(newKey);
 _stallQueue.push(pair<NodeID, EdgeWeight>(edge.target(), newKey));
 }
 }
 }
 }
 }
 }
 return;
}
Example: Berlin → Karlsruhe
Local Queries

Dijkstra Rank

Query Time [ms]
Per-Instance Worst-Case Guarantee

max = 2,148 nodes
different trade-offs between memory consumption and query time

for example:

- 9.5 bytes per node overhead \rightarrow 0.89 ms
 store complete multi-level overlay graph

- 0.7 bytes per node overhead \rightarrow 1.44 ms
 store only forward and backward search graph \vec{G} and \vec{G}
 (\vec{G} and \vec{G} are independent of s and t)

numbers refer to the Western European road network with 18 million nodes
3. Dynamic Highway-Node Routing
Dynamic Scenarios

- change entire **cost function**
 (e.g., use different speed profile)

- change a **few edge weights**
 (e.g., due to a traffic jam)
Constancy of Structure

Assumption:

- **structure of road network does not change**

 (no new roads, road removal = set weight to \(\infty\))

 \(\Rightarrow\) **not a significant restriction**

- **classification of nodes by ‘importance’** might be slightly perturbed, but not completely changed

 (e.g., a sports car and a truck both prefer motorways)

 \(\Rightarrow\) **performance** of our approach relies on that

 (not the correctness)
change entire cost function

keep the node sets $S_1 \supseteq S_2 \supseteq S_3 \ldots$

recompute the overlay graphs

<table>
<thead>
<tr>
<th>speed profile</th>
<th>default</th>
<th>fast car</th>
<th>slow car</th>
<th>slow truck</th>
<th>distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>constr. [min]</td>
<td>1:40</td>
<td>1:41</td>
<td>1:39</td>
<td>1:36</td>
<td>3:56</td>
</tr>
<tr>
<td>query [ms]</td>
<td>1.17</td>
<td>1.20</td>
<td>1.28</td>
<td>1.50</td>
<td>35.62</td>
</tr>
<tr>
<td>#settled nodes</td>
<td>1 414</td>
<td>1 444</td>
<td>1 507</td>
<td>1 667</td>
<td>7 057</td>
</tr>
</tbody>
</table>
Dynamic Highway-Node Routing

change a few edge weights

- server scenario: if something changes,
 - update the preprocessed data structures
 - answer many subsequent queries very fast

- mobile scenario: if something changes,
 - it does not pay to update the data structures
 - perform single ‘prudent’ query that takes changed situation into account
Dynamic Highway-Node Routing

change a few edge weights, server scenario

- keep the node sets \(S_1 \supseteq S_2 \supseteq S_3 \ldots \)
- recompute only possibly affected parts of the overlay graphs
 - the computation of the level-\(\ell \) overlay graph consists of \(|S_\ell|\) local searches to determine the respective covering nodes
 - if the initial local search from \(v \in S_\ell \) has not touched a now modified edge \((u, x)\), that local search need not be repeated
 - we manage sets \(A^\ell_u = \{ v \in S_\ell \mid v's \level-\ell \text{ preprocessing might be affected when an edge } (u, x) \text{ changes} \} \)
Dynamic Highway-Node Routing

change a few edge weights, server scenario

<table>
<thead>
<tr>
<th>Road Type</th>
<th>Update Time [ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>any</td>
<td>0.1 1 10 100</td>
</tr>
<tr>
<td>motorway</td>
<td>0.1 1 10 100</td>
</tr>
<tr>
<td>national</td>
<td>0.1 1 10 100</td>
</tr>
<tr>
<td>regional</td>
<td>0.1 1 10 100</td>
</tr>
<tr>
<td>urban</td>
<td>0.1 1 10 100</td>
</tr>
</tbody>
</table>

- add traffic jam
- cancel traffic jam
- block road
Dynamic Highway-Node Routing

change a **few edge weights**, mobile scenario

1. keep the node sets \(S_1 \supseteq S_2 \supseteq S_3 \ldots \)

2. keep the overlay graphs

3. \(C := \) all changed edges

4. use the sets \(A^\ell_u \) (considering edges in \(C \)) to determine for each node \(v \) a **reliable level** \(r(v) \)

5. during a query, at node \(v \)
 - do not use edges that have been created in some level \(> r(v) \)
 - instead, **downgrade** the search to level \(r(v) \) (forward search only)
Dynamic Highway-Node Routing

change a few edge weights, mobile scenario

reliable levels: $r(x) = 0$, $r(s_2) = r(t_2) = 1$
Dynamic Highway-Node Routing

change a few edge weights, mobile scenario

iterative variant (provided that only edge weight increases allowed)

1. keep everything (as before)

2. $C := \emptyset$

3. use the sets A^ℓ_u (considering edges in C) to determine for each node v a reliable level $r(v)$ (as before)

4. ‘prudent’ query (as before)

5. if shortest path P does not contain a changed edge, we are done

6. otherwise: add changed edges on P to C, repeat from 3.
Dynamic Highway-Node Routing

change a few edge weights, mobile scenario

<table>
<thead>
<tr>
<th>change set (motorway edges)</th>
<th>affected queries</th>
<th>single pass query time [ms]</th>
<th>iterative query time [ms]</th>
<th>#iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.4 %</td>
<td>2.3</td>
<td>1.5</td>
<td>1.0</td>
</tr>
<tr>
<td>10</td>
<td>5.8 %</td>
<td>8.5</td>
<td>1.7</td>
<td>1.1</td>
</tr>
<tr>
<td>100</td>
<td>40.0 %</td>
<td>47.1</td>
<td>3.6</td>
<td>1.4</td>
</tr>
<tr>
<td>1000</td>
<td>83.7 %</td>
<td>246.3</td>
<td>25.3</td>
<td>2.7</td>
</tr>
</tbody>
</table>
Unidirectional Queries

1. keep everything (as before)

2. \(C := \{\text{some edge } (t, x) \} \)

3. use the sets \(A_{\ell}^u \) (considering edges in \(C \)) to determine for each node \(v \) a reliable level \(r(v) \) (as before)

4. ‘prudent’ query (as before)
Unidirectional Queries

$\in \vec{G}$

Level 2

Level 1

Level 0

reliable levels: $r(t_1) = 0$, $r(t_2) = 1$
Summary

☐ efficient static approach

- fast preprocessing / fast queries
 15 min / 0.9 ms
- outstandingly low memory requirements
 0.7 bytes/node \Rightarrow 1.4 ms

☐ can handle practically relevant dynamic scenarios

- change entire cost function
 typically < 2 minutes
- change a few edge weights
 * update data structures
 2–40 ms per changed edge
 OR
 * iteratively bypass traffic jams
 e.g., 3.6 ms in case of 100 traffic jams

numbers refer to the Western European road network with 18 million nodes and
to our 2.0 GHz AMD Opteron machine
find simpler / better ways to determine the node sets

\[S_1 \supseteq S_2 \supseteq S_3 \ldots \]

parallelise the preprocessing

implementation for a mobile device
Future Work

☐ handle a massive amount of updates

☐ deal with time-dependent scenarios
 (where edge weights depend on the time of day)

☐ allow multi-criteria optimisations