
Better Approximation of Betweenness Centrality∗

Robert Geisberger† Peter Sanders† Dominik Schultes†

Abstract

Estimating the importance or centrality of the nodes
in large networks has recently attracted increased inter-
est. Betweenness is one of the most important central-
ity indices, which basically counts the number of short-
est paths going through a node. Betweenness has been
used in diverse applications, e.g., social network analy-
sis or route planning. Since exact computation is pro-
hibitive for large networks, approximation algorithms
are important. In this paper, we propose a framework
for unbiased approximation of betweenness that gener-
alizes a previous approach by Brandes. Our best new
schemes yield significantly better approximation than
before for many real world inputs. In particular, we also
get good approximations for the betweenness of unim-
portant nodes.

1 Introduction

One of the most important aspects of automatic analysis
of networks is the computation of centrality indices that
measure the importance of a node in some well defined
way. Recently, the focus of attention in network anal-
ysis has shifted to the analysis of ever larger networks
that are rapidly becoming available in such diverse areas
as transportation networks (e.g., public transportation
or road networks), social networks (e.g., friendship cir-
cles, recommendation networks, or citation networks),
computer networks (e.g., the internet or peer-to-peer
networks), or networks in bioinformatics (e.g., protein
interaction networks).

In this paper we consider betweenness centrality

[8, 1], which is one of the most frequently considered
centrality indices. Our results might also be applicable
to related concepts such as stress centrality [15] that
are also based on counting shortest paths. Consider
a weighted directed (multi)-graph G = (V, E) with
n = |V |, m = |E|. Let SPst denote the set of shortest
paths between source s and target t and SPst(v) the
subset of SPst consisting of paths that have v in their

∗Partially supported by DFG grant SA 933/1-3.
†Universität Karlsruhe (TH), 76128 Karlsruhe, Germany,

{robert.geisberger, sanders, schultes}@ira.uka.de

interior. Then, the betweenness centrality for node v is

cB(v) :=
∑

s,t∈V

σst(v)

σst
, (1.1)

where σst := |SPst| and σst(v) := |SPst(v)|.
This definition counts the number of shortest paths

through v, counting paths with alternatives only frac-
tionally.

Our original motivation for considering betweenness
was to identify sets of important nodes that can define
a highway-node hierarchy [14], which is used for (dy-
namic) routing in road networks. For this application,
the requirement is to process huge networks with many
million nodes in a few minutes. In this context, we also
need reasonable approximations for the betweenness of
all nodes since we have to decide which of several neigh-
boring unimportant nodes will make it to the first level
of the hierarchy.

1.1 Related Work. Brandes [4] gives an exact algo-
rithm for computing betweenness of all nodes that is
based on solving a single source shortest path problem
(SSSP) from each node. An SSSP computation from s
produces a directed acyclic graph (DAG) encoding all
shortest paths starting at s. By backward aggregation of
counter values, the contributions of these paths to the
betweenness counters can be computed in linear time
(Section 3 gives more details). Depending on the graph
model, the exact algorithm takes time between Θ(nm)
(e.g., for unit edge weights) and Θ

(
nm + n2 log(n)

)

(comparison based general edge weights). Although this
is polynomial time, it is prohibitive for networks with
many millions of nodes and edges. Bader and Madduri
[2] present a massively parallel implementation of the
exact algorithm that can handle a few million nodes.

Brandes and Pich [5] investigate how the exact al-
gorithm can be turned into an approximation algorithm
by extrapolating from a subset of k starting nodes (piv-
ots), otherwise using the same aggregation strategy as
the exact algorithm. Subsequently, we refer to this ap-
proximation algorithm as “Brandes’ algorithm”. A ran-
dom sample of starting nodes turns out to work well.
In particular, the randomized method yields an unbi-

ased estimator1 for betweenness. Unfortunately, this
method produces large overestimates for unimportant
nodes that happen to be near a pivot. For example,
consider a degree-two node v connecting a degree-one
node u to the rest of the network. If u is selected as a
pivot, the betweenness of v is overestimated by a factor
of n/k.

1.2 Our Contributions. Our main idea is to solve
the problem described above by changing the scheme for
aggregating betweenness contributions so that nodes do
not unduly ‘profit’ from being near a pivot. Section 2
describes a general framework for this idea that yields
unbiased estimators for betweenness.

Our framework also applies to a simpler variant
of betweenness, canonical-path betweenness centrality

cC(v), which we usually just call canonical centrality.
We introduce this variant due to our original motivation
of dealing with road networks, where shortest routes are
‘almost unique’2. Note that some route planning meth-
ods even enforce unique shortest paths by perturbing
the edge weights (e.g., [9]). Consequently, in case of
canonical centrality, we consider only a single canoni-

cal shortest path between any source-target pair. Our
approach does not require edge perturbation. It is suffi-
cient that some deterministic tie breaking ensures that
only a single shortest path is found.

Section 3 describes how to efficiently implement two
instantiations of our framework—linear scaling, where
the contribution of a sample depends linearly on the
distance to the sample, and bisection scaling, where a
sample only contributes ‘on the second half’ of a path.
Linear scaling can be implemented using a slight varia-
tion of Brandes’ original aggregation scheme. Bisection
scaling requires a quite different approach and another
level of random sampling. Section 4 reports on exten-
sive experiments with a wide range of large graphs. The
linear scaling is always better than [5]. (Sampled) bisec-
tion scaling is in many ways even better. In particular,
it yields good approximation of the betweenness also
for less important nodes already with a small number
of pivots—an area in which the original method fails.
Section 5 summarizes the results and outlines possible
further improvements. For example, we have evidence
that betweenness approximations can help to construct
better highway-node hierarchies for road networks.

1That means the expectation of the estimated betweenness is
the actual betweenness.

2Indeed, multiple shortest routes do appear in practice. How-
ever they usually share most edges so that in most cases, the term
σst(v)/σst is one or zero.

2 A Generalized Framework for Betweenness

Approximation

Our estimator is parametrized by a length function

ℓ : E → R on the edges3 and a scaling function

f : [0, 1] → [0, 1]. For a path P = 〈e1, . . . , ek〉 let
ℓ(P):=

∑

1≤i≤k ℓ(ei).
In each iteration, our algorithm performs one of 2n

possible shortest path searches with uniform probability
1/2n. Namely, forward search in G = (V, E) from
a pivot s ∈ V (|V | = n possibilities) or backward
search from a pivot t ∈ V , i.e., a search from t in
(V, {(v, u) : (u, v) ∈ E}) (another n possibilities). For
each shortest path of the form

P = 〈

Q
︷ ︸︸ ︷
s, . . . , v, . . . , t〉

found in this way, we define a scaled contribution

δP (v) :=

f(ℓ(Q)/ℓ(P))
σst

for a forward search

1−f(ℓ(Q)/ℓ(P))
σst

for a backward search
.

Overall, v gets a contribution

δ(v) := δs(v) :=
∑

t∈V

∑

{δP (v) : P ∈ SPst(v)}

for a forward search, and

δ(v) := δt(v) :=
∑

s∈V

∑

{δP (v) : P ∈ SPst(v)}

for a backward search.

Theorem 2.1. X := 2nδ(v) is an unbiased estimator

for cB(v), i.e., E(X) = cB(v).

Proof. Summing over all 2n possible events with
probability 1/2n each, we get

E(X) = 2n

∑

s∈V

δs(v) +
∑

t∈V

δt(v)

2n

=
∑

s,t∈V

∑
{

=1
︷ ︸︸ ︷

f

(
ℓ(Q)

ℓ(P)

)

+1− f

(
ℓ(Q)

ℓ(P)

)

σst
:P ∈SPst(v)

}

=
∑

s,t∈V

=σst(v)
︷ ︸︸ ︷

|SPst(v)|

σst

(1.1)
= cB(v) . �

3ℓ may or may not be identical to the edge-weight function
used for shortest-path calculations.

Hence, by averaging k independent runs of the
above unbiased estimator, we obtain an approximation
X1+...+Xk

k of the betweenness value of node v.
In the following, we will instantiate the length

function ℓ either with the original edge weight or with
unit edge weight (hop counting). We will consider three
variants for the choice of f . For constant f(x) = 1/2 we
essentially get Brandes’ algorithm.4 Our new schemes
use f(x) = x for linear scaling and

f(x) =

{

0 for x ∈ [0, 1/2)

1 for x ∈ [1/2, 1]

for bisection scaling. The intuition behind these meth-
ods is to reduce the contributions for nodes close to
the pivot. In a sense, bisection scaling is best for this
purpose. However, it will turn out that it is easier to
implement linear scaling.

3 Linear Time Computation of Contributions

A naive implementation of the definitions from Section 2
could take quadratic time even for a single pivot and
canonical centrality. We will give algorithms that
evaluate the shortest path DAG in time linear in its size.
We only explain the computations for forward search
from source s. Backward search works analogously.

3.1 Brandes’ Algorithm. Brandes [4] already ex-
plains how to compute σst on the fly during the short-
est path calculations: σss = 1 and, for s 6= t, σst =
∑

v∈pred(t) σsv where pred(t) is a multiset containing
the immediate predecessors of t in the shortest path
DAG.5 In a subsequent aggregation phase, the nodes
are processed in reverse topological order, i.e., by non-
increasing distance from s. We get,

δs(v) =
∑

w∈succ(v)

σsv

σsw
(1 + δs(w))

where succ(v) denotes the immediate successors of v
in the shortest path DAG.6 The factor σsv

σsw
takes care

of distributing the contributions from w to possible
multiple parents. The ‘1’ is the contribution due to

4One can also do just forward searches in this case.
5Since there may be an exponential number of paths, this

recurrence might lead to arithmetic overflows if one would use
integer arithmetics on machine words. However, we are only
interested in approximations, so that it suffices to compute with
floating point numbers with mantissas of logarithmically many
bits. Our implementation uses double precision arithmetics that
flags overflows as ∞-values. This never happened yet for the
inputs we considered.

6In our framework with backward searches we have to divide
by two at the end.

paths of the form 〈s, . . . , v, w〉 and the δs(w) takes care
of nodes reached indirectly via w.

3.2 Linear Scaling is easiest to implement by using
the original edge weights as the length function ℓ. Then
it is possible to implement it with only small deviations
from Brandes’ scheme. We have

δs(v) =
∑

w∈succ(v)

µ(s, v)

µ(s, w)
·

σsv

σsw
(1 + δs(w))

where µ(s, w) is the shortest path distance from s to w.
Less formally, the modification compared to Brandes’
scheme is to put values 1/µ(s, w) into the aggregation
rather than 1. At the end, multiplying with µ(s, v)
yields the correct scaling of µ(s, v)/µ(s, w) for all values
put into the aggregation.

3.3 Bisection Scaling For Canonical Centrality.

Here, we mostly use unit distances for the length
function ℓ. (Recall that ℓ is not necessarily the same
as the edge weight.) We do aggregation by a depth-first
traversal of the shortest-path tree. This allows us to
keep an array storing the path from s to the currently
explored node. Aggregation works similarly to Brandes’
algorithm with one major modification. When a node v
at depth d is explored, let v′ denote the node on position
max(0, ⌊d/2⌋ − 1). We decrement the current value for
δs(v

′). This has the effect of dropping the contribution
of v from the aggregation just where it is prescribed
by the scaling function f . We have also implemented
a variant for general length functions. Here, we have
to search the stack for ℓ(〈s, . . . , v〉)/2 starting at the
position used for the predecessor of v. Although this
has linear worst case complexity, it works reasonably
well for road networks using travel time.

3.4 Bisection Scaling For General Betweenness

Centrality. We have a direct implementation of enu-

merative bisection scaling that enumerates all paths by
backtracking. This works well for graphs with few re-
dundant paths but can be very slow in the worst case.
What is more interesting is that the general case can be
reduced to the canonical case: we randomly sample a
parent pointer for each node t in the shortest path DAG.
We call this variant bisection sampling. If a parent p
of w is selected with probability

σsp

σsw
, we get an unbi-

ased estimator. We can extract more information out of
the shortest path DAG by performing several sampling
steps for the same DAG, which does not invalidate the
fact that the estimator is unbiased.

graph nodes edges source average time
per pivot [ms]

Belgian road network 463 514 596 119 PTV AG 1 337
Belgian road network with unit distance 463 514 596 119 PTV AG 914
Actor co-starring network 392 400 16 557 451 [12] 6 242
US patent network 3 774 769 16 518 947 [10] 5
World-Wide-Web graph 325 729 1 497 135 [12] 144
CNR 2000 Webgraph 325 557 3 216 152 [11] 362
CiteSeer undir. citation network 268 495 2 313 294 [6] 1 711
CiteSeer co-authorship network 227 320 1 628 268 [6] 835
CiteSeer co-paper network 434 102 32 073 440 [6] 4 110
DBLP co-authorship network 299 067 1 955 352 [7] 1 323
DBLP co-paper network 540 486 30 491 458 [7] 5 024

Table 1: Overview of used graphs. A co-paper network has papers as nodes and edges between papers that share
at least one author. The values in the last column refer to general betweenness centrality and Brandes’ algorithm.

4 Experiments

The experiments were done on one core of a single AMD
Opteron Processor 270 clocked at 2.0 GHz with 8 GB
main memory and 2 × 1 MB L2 cache, running SuSE
Linux 10.0 (kernel 2.6.13). The program was compiled
by the GNU C++ compiler 4.0.2 using optimization
level 3.

We have approximated canonical centrality for sev-
eral real-world road networks with up to 42 million edges
using travel times as edge weights. We do most quality
evaluations here with a subnetwork for Belgium with
463 514 nodes because for this we can still compute ex-
act values.7

For general betweenness we used networks with unit
edge weights stemming from a variety of applications
including citation networks, coauthorship networks, web
graphs and communication networks (AS graph, router
level graphs). Table 1 gives additional information on
these networks. Our focus was on large, real-world
graphs where we can still compute exact betweenness in
reasonable time. This includes the largest graphs from
[2]. We do not use the graphs considered in [5] since
they are mostly randomly generated and comparatively
small. The evaluation here uses the most difficult
of these instances8—a movie actor multigraph whose
edges indicate costarring in some movie. This graph
has 392 400 nodes, 16 557 451 edges, and many shortest
paths between most pairs of nodes.

For assessing the quality of the estimation, we
adopt the measures proposed by Brandes and Pich [5]—

7Computing exact values for our complete Western European
road network would take about 12 years.

8The US patent network is much bigger but relatively easy to
solve exactly since most searches reach only a small number of
nodes.

Euclidean distance of the normalized n-dimensional
vectors for exact and estimated centrality, respectively,
and the number of inversions9 when comparing the
rankings produced by exact and estimated centrality,
respectively. The number of inversions is computed
using a mergesort-based O(n log n) algorithm. The
Euclidean distance is mostly governed by the nodes with
large betweenness, whereas the number of inversions
treats all nodes equally. We have also looked at
other measures. For example, the average absolute

betweenness error turned out to give similar results as
the Euclidean distance10, whereas the geometric mean

of relative rank errors11 has similar characteristics as
the number of inversions.

Since our new algorithms need slightly more time
than Brandes’ algorithm for evaluating the shortest
path DAG, we ensure a fair comparison by giving our
algorithms no more time than Brandes’ algorithm; thus,
they will perform less iterations. Effectively, the time
needed by Brandes’ algorithm for one pivot is our unit
of time.

Figure 1 evaluates the approximation of canonical
centrality for Belgium. With respect to the Euclidean
distance, all algorithms show benign and predictable be-
havior. Still, our new methods fare uniformly better
with bisection slightly ahead. In the same running time
we get an about two times smaller distance or alterna-
tively, we achieve about the same quality in eight times
less running time. With respect to the number of inver-
sions, the difference is much more dramatic. Even after

9i.e., the total number of pairs that are in the wrong order.
10Note that the normalization is likely to have little effect since

all the compared methods are unbiased and hence the computed
vectors are likely to have similar length anyway.

11Let r denote the ratio between the estimated rank and the
true rank. Then the relative rank error is max {r, 1/r}.

10
−

4
10

−
3

10
−

2

10
−

4
10

−
3

10
−

2

16 32 64 128 256 512 1024 2048 4096 8192

E
uc

lid
ea

n
di

st
an

ce

Brandes
bisection (unit)
bisection (sh.path)
linear

0.
5

1
2

3

0.
5

1
2

3

16 32 64 128 256 512 1024 2048 4096 8192

pivots for Brandes’ algorithm (time below mm:ss)

%
 o

f p
os

si
bl

e
in

ve
rs

io
ns

Brandes
bisection (unit)
bisection (sh.path)
linear

0:08 0:16 0:32 1:05 2:09 4:19 8:36 17:13 34:28 68:57

Figure 1: Euclidean distance and inversions for canonical centrality of Belgium.

10
−

3
10

−
2

10
−

1

10
−

3
10

−
2

10
−

1

16 32 64 128 256 512 1024 2048 4096 8192

E
uc

lid
ea

n
di

st
an

ce

Brandes
bisection
b.sampl. (2)
b.sampl. (4)
b.sampl. (8)
b.sampl. (16)
linear
bis. (pivots)

0.
3

1
3

0.
3

1
3

16 32 64 128 256 512 1024 2048 4096 8192

pivots for Brandes’ algorithm (time below hh:mm)

%
 o

f p
os

si
bl

e
in

ve
rs

io
ns

0:02 0:03 0:07 0:13 0:26 0:53 1:46 3:33 7:07 14:12

Figure 2: Euclidean distance and inversions for betweenness in the actor network.

2
3

2
3

24 25 26 27 28 29 210 211 212 213 214 215 216 217 218

pivots for Brandes’ algorithm

%
 o

f p
os

si
bl

e
in

ve
rs

io
ns

Figure 3: Inversions, canonical centrality of Belgium, Brandes’ algorithm.

5
10

20

5
10

20

8 16 32 64 128 256 512

pivots for Brandes’ algorithm

%
 o

f p
os

si
bl

e
in

ve
rs

io
ns

Brandes
bisection
linear

Figure 4: Inversions, canonical centrality of a random graph with 1 000 nodes and 10 074 edges.

0.
5

0.
2

1
2

0.
5

0.
2

1
2

0 1 2 3 4 5 6 7 8 9 10 11

level

re
la

tiv
e

ra
nk

 e
rr

or

Brandes
bisection (unit)
bisection (sh.path)
linear

0.1%
1%

10%
25%
50%
75%
90%
99%

99.9%

least important vertices most important vertices

Figure 5: Distribution of the relative rank errors for 12 different levels (categories) of importance in the Belgian
road network after 1024 iterations of Brandes’ algorithm. Level 11 contains the 128 nodes with largest exact
canonical centrality, Level 10 the next 256 most important nodes, and so on. The cross gives the average value.
The circles denote outliers.

8192 iterations, Brandes’ algorithm does not even begin
to converge.12 This behavior is unexpected since the
random graphs used in [5] are much more ‘well behaved’
(see also Figure 4). A possible explanation is that the
fate of most unimportant nodes is that their central-
ity is initially slightly underestimated. However, the
more pivots are used, the more unimportant nodes near
the pivots become grossly overestimated. The net effect
on the number of inversions is positive. Our new algo-
rithms show a nice, near linear behavior on a double-
logarithmic plot. Bisection scaling clearly outperforms
linear scaling. To understand what is going on, let us
analyze in more detail how approximation errors are

12Figure 3 indicates that the numbers, in the very end, do go
down.

distributed over the nodes. Figure 5 illustrates the dis-
tribution of the relative rank errors for 12 different levels
(categories) of importance. We can see that bisection
scaling gives uniformly good approximation quality over
all levels, while Brandes’ algorithm has orders of mag-
nitude larger errors for the less important levels, which
constitute the majority of the nodes. All methods have
comparatively large errors for the highest level of im-
portance. The reason is that the betweenness values for
these nodes are very similar so that already small er-
rors in the absolute value can lead to large deviations
in relative ranks.

Figure 2 evaluates betweenness approximation for
the actor network. For the Euclidean distance, we get
similar results as before. Interestingly, enumerative
bisection fares quite well, although it is about four

1
5

2
10

20

1
5

2
10

20

16 32 64 128 256 512 1024 2048 4096 8192

pivots for Brandes’ algorithm

co
m

pa
re

 in
ve

rs
io

n
B

ra
nd

es
 /

b.
sa

m
pl

.(
2)

Belgium unit
Belgium
DBLP co−paper
CiteSeer citation
CiteSeer co−paper
DBLP co−author
CiteSeer co−author

Figure 6: Number of inversions for Brandes’ algorithm divided by number of inversions for bisection scaling with
two samples for different networks.

times slower per iteration than the other methods.
In particular, it outperforms linear scaling. Bisection
sampling fares best. It has about four times smaller
errors and needs about 16 times less time to achieve
the same error bound as Brandes’ algorithm with 8192
iterations. The number of sampled trees per pivot does
not have a big influence on performance.

For the inversion number, the ranking of the algo-
rithms is less clear. The linear scaling algorithm al-
ways outperforms Brandes’ algorithm, which stagnates
for many iterations before finally heading down after
thousands of iterations. However, both Brandes and
linear scaling have a better start than the other vari-
ants. Only after 1024 iterations, the bisection based
algorithms start to take over. The main difference to
the more clear-cut ranking for road networks seems to
be the presence of highly redundant shortest paths. In
this situation, bisection sampling throws away informa-
tion that is essential if only few pivots are used. An
analysis of a level plot similar to Figure 5 reveals that
bisection sampling outperforms Brandes’ algorithm on

most levels but has deficits for the least important levels.
Still, bisection sampling has a nice near-linear decrease
of the inversions on a double-logarithmic plot that even-
tually, after a sufficient number of iterations, leads to
superior performance. It is also interesting to see what
would happen if we had a fast algorithm for exploit-
ing all the information available. The lowest curve in
Figure 2 plots the performance of our enumerative bi-
section algorithm based on just counting iterations of
the outer loop. We see that this hypothetical algorithm
outperforms all other algorithms from the beginning.

We see a similar pattern for many of the other
networks. Figure 6 shows the improvement yielded
by bisection sampling over Brandes’ algorithm. For
few pivots, Brandes’ algorithm is up to a factor of
two better. For many pivots, bisection sampling is up
to a factor 20 better. With respect to the Euclidean
distance, bisection sampling is always better for all of
these networks. The only deviation from this pattern
we found were the directed networks from Table 1—
the US patent network and the web graphs. Here,

all approximation algorithms had problems to achieve
good approximation. Linear scaling was always slightly
better than Brandes’ algorithm. Bisection sampling
was sometimes better, sometimes worse. Shortest path
searches turned out to be very local. This means that
all approximation algorithms have trouble eliminating
false zeroes for nodes of small betweenness. This is a
disadvantage for bisection sampling since it is slower
and since it produces zero contributions where Brandes
and linear scaling produce positive contributions. On
the other hand, the same effect makes these networks
relatively easy for the exact algorithm. For example,
our implementation solves the US patent graph in 127
minutes—only 2.5 times more time than Bader and
Madduri [2] need using 16 IBM-P5 processor cores.

5 Conclusion and Future Work

Our new bisection scaling algorithm is a versatile
method for approximating canonical centrality that
works well even for huge networks. The algorithm has
considerably better performance than previous methods
for all graphs tried and for all global quality measures.
This good evaluation largely extends to the original def-
inition of betweenness and the sampled bisection algo-
rithm. However, for a small number of pivots, the linear
scaling variant of our framework is still better. Enumer-
ative bisection might be the overall winner here if we
found a near linear time implementation.

All algorithms discussed are easy to parallelize with
up to k processors. We have not yet attempted any
pragmatic tuning of the algorithms. For example,
by using robust statistics (e.g., omitting the smallest
and largest measurements) it might be possible to
reduce the number of nodes with grossly overestimated
betweenness. At least for road networks it should also
help to do some preprocessing like getting rid of degree-
one nodes. In multigraphs like the actor network, we
might get improved performance by modeling parallel
edges more explicitly.

For some directed networks, none of the approxi-
mation algorithms gives very convincing results since a
good approximation takes almost as much time as an
exact calculation. Although we did not find undirected
graphs with similarly bad performance, better theoret-
ical performance bounds13 or a more detailed experi-
mental investigation on the influence of graph structure
on performance remain an interesting open problem.

13[5] gives a probabilistic tail bound which contains a bug
however. Repairing this bug yields a bound only useful for nodes
with near quadratic betweenness.

5.1 Path Sampling. Bias due to the selection of
sampled source nodes can be avoided altogether by
sampling both source and target node rather than at-
tempting to gain as much information as possible from
a single-source (all-target) shortest-path computation.
The obvious drawback is that we get n − 1 times fewer
paths per sample. We can mitigate this problem by us-
ing speedup techniques for answering the queries. In
[13] this is done using inexact heuristics so that it is
unclear what is actually computed. At least for road
networks we can do much better using recently devel-
oped exact speedup techniques that are very efficient.
In particular, transit-node routing [3] achieves nearly
constant query time and thus might lead to very good
results. More precisely, transit-node routing computes
transit nodes u and v such that there is a shortest path
from source s via u and v to target t. We can process
this information by incrementing counters for the access
connections 〈s, u〉 and 〈v, t〉 and the transit connection
〈u, v〉. Only at the end, we have to propagate these
counters down to the actual nodes (or edges) of the un-
derlying network. This propagation cannot take longer
than building the data structures during preprocessing.
We have not implemented path sampling because it is
complicated and unlikely to work better than bisection
sampling for road networks. In particular, we need a
huge number of samples before unimportant nodes get
a significant contribution. On the other hand, if we were
interested in a small selection of nodes with highest be-
tweenness and the transit-node preprocessing would be
needed anyway, then path sampling would be very effi-
cient and we could even derive good performance guar-
antees using Chernoff bounds.

5.2 Including Local Searches. We have developed
a generalization of our framework that allows a mix of
local and global search and remains unbiased. This
might lead to better estimates for not-so-important
nodes. In particular, false zero values might be reduced
by local searches around nodes with zero betweenness
estimate. Preliminary experiments indicate that the
general idea works but does not yield dramatic improve-
ments for the instances tried.

5.3 Application to Highway-Node Routing.

Highway-node routing [14] requires a nested hierarchy of
more and more important nodes. We have preliminary
results on how to use betweenness estimations to define
improved highway-node hierarchies. At the same time,
the resulting method is simpler than the approach used
in [14]. However, a really good scheme seems to require
additional heuristics beyond the scope of this paper.

Acknowledgments. Robert Görke has provided us
with citation networks crawled from DBLP and Cite-
seer. Kamesh Madduri has provided the patent net-
work and the actor network. We would like to thank
Reinhard Bauer, Ulrik Brandes, Daniel Delling and
Dorothea Wagner for interesting discussions. Several
anonymous reviewers provided valuable suggestions.

References

[1] J. M. Anthonisse. The rush in a directed graph.
Technical Report BN 9/71, Stichting Mathematisch
Centrum, Amsterdam, 1971.

[2] David A. Bader and Kamesh Madduri. Parallel algo-
rithms for evaluating centrality indices in real-world
networks. In ICPP, pages 539–550. IEEE Computer
Society, 2006.

[3] H. Bast, S. Funke, P. Sanders, and D. Schultes. Fast
routing in road networks with transit nodes. Science,
316(5824):566, 2007.

[4] Ulrik Brandes. A faster algorithm for betweenness cen-
trality. Journal of Mathematical Sociology, 25(2):163–
177, 2001.

[5] Ulrik Brandes and Christian Pich. Centrality estima-
tion in large networks. International Journal of Bifur-

cation and Chaos, to appear. special issue on Complex
Networks’ Structure and Dynamics.

[6] CiteSeer. Scientific Literature Digital Library. http:

//citeseer.ist.psu.edu/, 2007.
[7] DBLP. DataBase systems and Logic Programming.

http://dblp.uni-trier.de/, 2007.
[8] L. C. Freeman. A set of measures of centrality based

on betweenness. Sociometry, 40:35–41, 1977.
[9] A. Goldberg, H. Kaplan, and R. Werneck. Reach

for A
∗: Efficient point-to-point shortest path algo-

rithms. In Workshop on Algorithm Engineering & Ex-

periments, pages 129–143, Miami, 2006.
[10] A. B. Jaffe Hall, B. H. and M. Tratjenberg. The

NBER Patent Citation Data File: Lessons, Insights
and Methodological Tools. NBER Working Paper,
8498, 2001.

[11] Laboratory for Web Algorithmics. http:

//law.dsi.unimi.it/index.php?option=com_

include&Itemid=65.
[12] Notre Dame CNet resources. http://www.nd.edu/

~networks/.
[13] M. J. Rattigan, M. Maier, and D. Jensen. Using

structure indices for efficient approximation of network
properties. In KDD ’06: Proceedings of the 12th

ACM SIGKDD international conference on Knowledge

Discovery and Data mining, pages 357–366. ACM,
2006.

[14] D. Schultes and P. Sanders. Dynamic highway-node
routing. In 6th Workshop on Experimental Algorithms,
volume 4525 of LNCS, pages 66–79. Springer, 2007.

[15] Alfonso Shimbel. Structural parameters of communi-

cation networks. Bulletin of Mathematical Biophysics,
15:501–507, 1953.

