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Abstract. We provide an implementation of an exact route planning algorithm on a mobile device that
answers shortest-path queries in a road network of a whole continent instantaneously, i.e., with a delay
of about 100 ms, which is virtually not observable for a human user. We exploit spatial and hierarchical
locality properties to design a significantly compressed external-memory graph representation, which can
be traversed efficiently and which occupies only a few hundred megabytes for road networks with up to
34 million nodes. Next to the accuracy, the computational speed, and the low space requirements, the
simplicity of our approach is a fourth argument that suggests an application of our implementation in car
navigation systems.

1 Introduction

In recent years, there has been a lot of work on route planning algorithms, particularly for road
networks, aiming for fast query times and accurate results. The various real-world applications
of such algorithms can be classified according to their respective platform into server appli-
cations (e.g., providing driving directions via the internet, optimising logistic processes) and
mobile applications (in particular car navigation systems). On the one hand, many approaches
have been evaluated successfully with respect to the server scenario—the fastest variant of
transit-node routing [1] computes shortest-path distances in the Western European road net-
work in less than two microseconds on average. On the other hand, there have been only few
results on efficient implementations of route planning techniques on mobile devices like a PDA.
In this paper, we want to close this gap.

The arising challenges are mainly due to the memory hierarchy of typical PDAs, which
consists of a limited amount of fast main memory and a larger amount of comparatively slow
flash memory, which has similar properties as a hard disk regarding read access. In order
to obtain an efficient implementation, we have to arrange the data into blocks, respecting
the locality of the data. Then, reading at a single blow a whole block that contains a high
percentage of relevant data is much more efficient then reading single data items at random.
Furthermore, compression techniques can be used to increase the amount of data that fits into
a single block and, consequently, decrease the number of required block accesses.

Our Contributions

We present an efficient and practically useful implementation of a fast and exact route plan-
ning algorithm for road networks on a mobile device. For this purpose, we select contraction
hierarchies [2] as our method of choice—we review the most relevant concepts in Section 2.
In Section 3, we design an external-memory graph representation that takes advantage of the
locality inherent in the data to compress the graph and to reduce the number of required
I/O operations—which are the bottleneck of our application. The graph is divided into several
blocks, each containing a subset of the nodes and the corresponding edges. We put particular
efforts in exploiting the fact that the edges in one block only lead to nodes in a small subset
of all blocks; many edges even lead to nodes in the same block.
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By this means, our ‘mobile’ implementation achieves a considerable improvement compared
to the original implementation of contraction hierarchies (CH) [2], which, in turn, is already
considerably better than the bidirectional variant of Dijkstra’s algorithm, as summarised in
the following table, which refers to experiments on an European road network with about 18
million nodes.1

only length complete path
time [ms] space [MB] time [ms] space [MB]

bidir. Dijkstra 298 209.0 408 298 209.0 408
CH [2] 394.9 350 3 025.6 560
CH mobile 59.4 140 96.6 275

All details on our experimental setting can be found in Section 4, followed by much more
experimental results in Section 5. We conclude our paper in Section 6, where we also discuss
related work, draw further comparisons, and outline possible future work.

2 Contraction Hierarchies

We decided to use contraction hierarchies [2] for our mobile implementation due to its simplicity,
its outstanding low memory requirements, and its hierarchical properties that can be exploited
to improve the locality of the accessed data. In this section, we give an account of the most
important concepts of contraction hierarchies.

Preprocessing. In a first step, the nodes of a given graph G = (V, E) (with n := |V |) are
ordered by ‘importance’2—we obtain a bijection ℓ : V → {1, 2, 3, . . . , n}, where n represents
the highest importance. In a second step, we first set G′ := G and then, while V ′ 6= ∅, we
contract the node v with the lowest importance in V ′, i.e., we remove v and all incident edges
from G′; since we want to preserve the lengths of all shortest paths containing a subpath of
the form 〈u, v, u′〉, we add a so-called shortcut edge (u, u′) (whose weight corresponds to the
length of the path 〈u, v, u′〉) to E ′ whenever it is required. In a third step, we build the so-called
search graph G∗ = (V, E∗). We define Ê to contain all edges from E and all shortcut edges that
have been added at some point during the second step. Then, E↑ := {(u, v, w) ∈ Ê | ℓ(u) <

ℓ(v)}, E↓ := {(u, v, w) ∈ Ê | ℓ(u) > ℓ(v)}, and E↓ := {(v, u, w) | (u, v, w) ∈ E↓}.
3 Finally,

E∗ := E↑ ∪ E↓. Furthermore, we introduce a forward and a backward flag such that for any
edge e ∈ E∗, f(e) = true iff e ∈ E↑ and b(e) = true iff e ∈ E↓. Note that G∗ is a directed
acyclic graph.

Query. We perform two normal Dijkstra searches in G∗, one from the source using only edges
where the forward flag is set and one from the target using only edges where the backward
flag is set. Forward and backward search are interleaved, we keep track of a tentative shortest-
path length and abort the forward/backward search process not until all keys in the respective
priority queue are greater than the tentative shortest-path length. To further reduce the search
space size, we employ the stall-on-demand technique [3, 4, 2].

1 Running times refer to the query type ‘cold’ (Section 4.4), where the cache is cleared after each random query. Since
the priority queue of Dijkstra’s algorithm would not fit in the main memory, we ran Dijkstra only on the Dutch
subnetwork of Europe and linearly extrapolated the obtained query times.

2 [2] explains in detail how this can be done.
3 Here, we write an edge from u to v with weight w as triple (u, v, w) since we want to treat two edges (u, v) with

different weights as two discrete edges when defining the set E∗.
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In order to determine not only the shortest-path length, but also a full description, the
shortcut edges have to be unpacked to obtain the represented subpaths in the original graph.
A simple recursive unpacking routine can be used provided that we have stored the middle
node v of each shortcut (u, u′) that represents the path 〈u, v, u′〉.

3 External-Memory Graph Representation

Locality. Reading data from external memory is the bottleneck of our application. To get a good
performance, we want to arrange the data into blocks and access them blockwise. Obviously,
the arrangement should be done in such a way that accessing a single data item from one block
typically implies that a lot of data items in the same block have to be accessed in the near
future. In other words, we have to exploit locality properties of the data.

The node order of the real-world road networks that we have obtained already respects
spatial locality, i.e., the nodes are ordered somehow by spatial proximity. However, we can do
better. We consider the reverse search graph G∗ = (V, E∗), where E∗ := {(v, u, w) | (u, v, w) ∈
E∗}, which is an acyclic graph (as G∗), and compute a simple topological order, using a modified
depth-first search (DFS) where a node v is visited not until all nodes u with (u, v) ∈ E∗ have
been visited. We will see in Appendix A.2 that this order already greatly improves the locality
and is almost as good as a more sophisticated order that can be obtained using a much more
expensive technique. One reason for the success of this method is presumably the small depth
of the search graph.

We can further stress the hierarchical locality: nodes of a similar high importance should
be close to each other since – due to the nature of the query algorithm – they are likely to
be visited in tandem. For a fixed next-layer fraction f , we divide the nodes into two groups:
the first group contains the (1 − f) · |V | nodes of smaller importance, the second group the
f · |V | nodes of higher importance. Within each group, we keep the topological order obtained
by our modified DFS. We recurse in the second group until all nodes fit into a single block.
This hierarchical reordering step is a slightly generalised version of a technique used in [5]. It
is important to note that the resulting order is still a topological order.

Note that a good node order has not only the obvious advantage that a loaded block contains
a lot of relevant data, but also can be exploited to compress the data effectively: in particular,
the difference of target and source ID of an edge is typically quite small; often the target node
even belongs to the same block.

Main Data Structure. The starting point for our compact graph data structure is an adjacency
array representation: All edges (u, v) are kept in a single array, grouped by the source node
u. Each edge stores only the target v and its weight. In addition, there is a node array that
stores for each node u the index of the first edge (u, v) in the edge array. The end of the edge
group of node u is implicitly given by the start of the edge group of u’s successor in the node
array. We want to divide this graph data structure into blocks. In order to decrease the number
of required block accesses, we decided not to store node and edge data separately, but to put
node and the associated edge data in a common block—as illustrated in Fig. 1.

When encoding the target v of an edge (u, v), we want to exploit the existing locality, i.e.,
in many cases the difference of the IDs of u and v is quite small and, in particular, u and v

often belong to the same block. Therefore, we distinguish between internal and external edges:
internal edges lead to a node within the same block, external edges lead to a node in a different
block. We use a flag to mark whether an edge is an internal or an external one. In case of
an internal edge, it is sufficient to just store the node index within the same block, which

3



→

→

block ID

blocks

... 42 43 44 45 47 48 49 ...

edges

blocks

adjacent

nodes

0 1 2

0 1 2 3 ...

46

block 45

weighttarget

target weight

internal edge

external edge

1

0

←

←

Fig. 1. External-memory graph data structure (without path unpacking information). Each edge stores three flags: a
forward flag (→), a backward flag (←), and a flag that indicates whether it is an external edge leading to a node in a
different block.

requires only a few bits. In case of an external edge, we need the block ID of the target and
the node index within the designated block. We introduce an additional indirection to reduce
the number of bits needed to encode the ID of the adjacent block: It can be expected that the
number of blocks adjacent to a given block B is rather small, i.e., there are only a few different
blocks that contain all the nodes that are adjacent to nodes in B. Thus, it pays to explicitly
store the IDs of all adjacent blocks in an array in B. Then, an external edge need not store
the full block ID, but it is sufficient to just store the comparatively small block index within
the adjacent-blocks array. Again, this is illustrated in Fig. 1.

Building the Graph Representation. We pursue the following goals: the graph data structure
should occupy as little memory as possible, and accessing the data should be fast. We make the
following design choices: each block has the same constant size; each block contains a subset of
the nodes and all incident edges4; the node range of each block is consecutive and maximal5;
all three ‘logical’ arrays (adjacent blocks, nodes, edges) are stored in a single byte array one
after the other, the starting index of each logical array is stored in the header of the block;
within each block, we use the minimal number of bits to store the respective attributes6.

In general, building the blocks is not trivial due to a cyclic dependency: On the one hand,
the distribution of the nodes into blocks depends on the required memory for each edge—in
particular, an internal edge typically occupies less memory than an external edge. In other
words, a block can accommodate more internal than external edges. On the other hand, the
distinction whether an edge is internal or external depends on the distribution of the nodes:

4 We currently do not deal with the very exceptional case that the degree of a single node is so large that its edges do
not fit in one block.

5 Since nodes have got different degrees, this implies that different blocks can contain different numbers of nodes.
6 For example, if a block has 42 different adjacent blocks, then each external edge (u, v) in this block uses 6 bits to

address the adjacent block that contains v.
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if the target node of an edge fits into the same block, we have an internal edge; otherwise, we
have an external edge.

Fortunately, we can exploit the fact that we sorted the nodes topologically. When we process
the nodes from the most important one to the least important one, all edges (u, v) point to
nodes v that have already been processed. This implies that we already know whether (u, v) is
an internal or external edge and, in case of an external edge, we also know the number of nodes
in the corresponding block B so that we can choose the minimal number of bits required to
encode the index of node v within the block B. This way, we can easily calculate the memory
requirements of the current edge. If all edges of the current node u fit into the current block,
the node and its incident edges are added. Otherwise, a new block is started. Note that when
we consider to add another node and its edges, we have to account not only for the memory
directly used by these additional objects, but also for a potential memory increase of the other
nodes and edges in the same block: for example, whenever the number of edges in the block
exceeds the next power of two, all nodes in the block need an additional bit to store the index
of the first outgoing edge.

Since most edge weights in our real-world road networks are rather small and only compar-
atively few edges (in particular, some ferries and shortcuts that leave very important nodes)
are quite long, we use one bit to distinguish between a long and a short edge; depending on
the state of this bit, we use more or less bits to store the weight.

Storing the Graph Representation. The blocks representing the graph are stored in external
memory. In main memory, we manage a cache that can hold a subset of the blocks. We employ
a simple least-recently used (LRU) strategy. In the external-memory graph data structure, a
node u is identified by its block ID B(u) and the node index i(u) within the block. We need
a mapping from the node ID u used in the original graph to the tuple (B(u), i(u)). Such a
mapping is realised in a simple array, stored in external memory.

We want to access the external memory read-only in order to improve the overall perfor-
mance and in order to preserve the flash memory, which can get unusable after too many
write operations. Therefore, we clearly separate the read-only graph data structures from some
volatile data structures, in particular the forward and the backward priority queue. We use a
hash map to manage pointers from reached nodes to the corresponding entries in the priority
queues. Since the search spaces of contraction hierarchies are so small (a few hundred nodes out
of several million nodes in the graph), it is no problem to keep these data structures in main
memory. Note that in [6], a similar distinction between read-only and volatile data structures
has been used.

Path Unpacking Data Structures. The above data structures are sufficient to support queries
that determine the shortest-path length. On a mobile device, however, we usually are also
interested in a complete description of the shortest path (e.g., in order to generate driving
directions). First of all, since we have changed the node order, we need to store for each
node its original ID so that we can perform the reverse mapping. Furthermore, we need the
functionality to unpack shortcut edges. To support a simple recursive unpacking routine, we
store the ID of the middle node of each shortcut (as already mentioned in Section 2). We
distinguish between internal and external shortcuts (u, u′), where the middle node v belongs
to the same block as u or not. For an internal shortcut, the middle node can be stored as an
index within the block, for an external shortcut, we have to specify the block B(v) and the
index within B(v).

To accelerate the path unpacking, we can explicitly store pre-unpacked paths as sequences of
original node IDs (cp. [7]). Looking up the edges (v, u) and (v, u′) in case of an external shortcut
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(u, u′) with middle node v might require an expensive additional block read. Therefore, it is
reasonable to completely pre-unpack all external shortcuts and to store the corresponding node
sequences in some additional data blocks. Instead of the middle node, we store the starting
index within these additional data blocks. We can exploit the fact that an external shortcut can
contain other external shortcuts. We do not have to store these contained shortcuts explicitly,
but it is sufficient to just note the correct starting position and a direction flag since contained
shortcuts might be filed in the reverse direction. To actually implement this idea, which is new
compared to [7], we use a top-down approach. We consider external shortcuts in a descending
order of importance. A shortcut is unpacked only if it is not contained in an already unpacked
shortcut.

4 Experimental Setting

4.1 Implementation

The implementation of both the preprocessing routines and the query algorithm has been done
in C++ using the Standard Template Library. We distinguish between three different ways to
access the external memory of the mobile device, as illustrated in Fig. 2. The unbuffered access

kernel
space

external
memory

user
space

copy

access

unbuffered buffered memory
mapped

Fig. 2. Different ways to access the external memory.

allows to copy a data block directly from the external memory to the user space where it can
be accessed by the application. In case of the buffered access, an additional copy of the data
block is kept in the kernel space. When accessing the same block at a later point in time, the
block can be re-read from the kernel space instead of performing an expensive read operation
from the external memory—provided that the block is still available in the kernel space. The
third alternative is to use memory mapped files: when reading data that is not available in the
kernel space, the data is loaded into the kernel space; the application accesses the data in the
kernel space without making an explicit copy in the user space.

We would rather like to use the unbuffered variant to access the data blocks that contain
the graph data structure because it is the fastest option (cp. Appendix A.1). However, a bug
in the kernel of the installed operating system forces us to use the buffered access method.
Since we want to have explicit control over the caching mechanism, we still use our own cache
in the user space and we instruct the operating system to clear its cache in the kernel space
after each query. Note that the time to clear the system cache is not included in our figures
since this is not considered to be a part of the actual task; furthermore, this step would not be
required if the unbuffered access worked.

In addition to the actual graph data structure, we have to access the mapping from original
node IDs to the tuple consisting of block ID and index within the block. This is done using
memory mapped files. Note that only two accesses are needed per query, one to lookup the
source node and one for the target.
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4.2 Environment

Experiments have been done on a Nokia N800 Internet Tablet equipped with 128 MB of RAM
and a Texas Instruments OMAP 2420 microprocessor, which features an ARM11 processor
running at 330 MHz. We use a SanDisk Extreme III SD flash memory card with a capacity of
2 GB; the manufacturer states a sequential reading speed of 20 MB/s. The operating system is
the Linux-based Maemo 3.2 in the form of Internet Tablet OS 2007. The program was compiled
by the GNU C++ compiler 4.2.1 using optimisation level 3.

Preprocessing has been done on one core of a single AMD Opteron Processor 270 clocked
at 2.0 GHz with 8 GB main memory and 2 × 1 MB L2 cache, running SuSE Linux 10.3 (kernel
2.6.22). The program was compiled by the GNU C++ compiler 4.2.1 using optimisation level 3.

4.3 Test Instances

Most experiments have been done on a road network of Europe7, which has been made available
for scientific use by the company PTV AG. For each edge, its length and one out of 13 road
categories (e.g., motorway, national road, regional road, urban street) is provided.

In addition, we perform some experiments on a publicly available version of the US road net-
work (without Alaska and Hawaii) that was obtained from the DIMACS Challenge homepage
[8] and on a new version8 of the European road network (“New Europe”) that was provided
for scientific use by the company ORTEC. In all cases, we use a travel time metric.

Our starting point are precomputed contraction hierarchies [2]. Preprocessing takes 31 min,
32 min, and 58 min for Europe, USA, and New Europe, respectively.

4.4 Query Types

We distinguish between four different query types:

1. ‘cold’ : Perform 1 000 random queries; after each query, clear the cache9. This way, we can
determine the time that is needed for the first query when the program is started since in
this scenario the cache is empty.

2. ‘warm’ : Perform 1 000 random queries to warm up the cache; then, perform a different set
of 1 000 random queries without clearing the cache; determine the average time only of the
latter 1 000 queries. This way, we can determine the average query time for the scenario
that the device has been in use for a while.

3. ‘recompute’ : Select 100 random target nodes t1, . . . , t100 and for each target ti, 101 random
source nodes si,0, . . . , si,100. For each target ti and each j, 1 ≤ j ≤ 100, perform one query
from si,0 to ti without measuring the running time and one query from si,j to ti performing
time measurements, and clear the cache. This way, we can determine the time needed to
recompute the shortest path to the same target in case that only the source node changes—
which can happen if the driver does not follow the driving directions.

4. ‘w/o I/O’ : Select 100 random source-target pairs. For each pair, repeat the same query
101 times; ignore the first iteration when measuring the running time. This way, we obtain
a benchmark for the actual processing speed of the device when no I/O operations are
performed.

7 Austria, Belgium, Denmark, France, Germany, Italy, Luxembourg, the Netherlands, Norway, Portugal, Spain, Sweden,
Switzerland, and the UK

8 In addition to the old version, the Czech Republic, Finland, Hungary, Ireland, Poland, and Slovakia.
9 In Section 4.1, we have already mentioned that we always clear the system cache after each query. Note that in this

section, we are talking about our own cache.
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For practical scenarios, the first and the third query type are most relevant; for comparisons
to related work, the second query type is interesting.10

5 Experimental Results

In most practical scenarios, we want to have the opportunity to not only determine the shortest-
path length, but also (parts of) the actual shortest path. However, a full description of the
computed path is not always required. Therefore, unless otherwise stated, our experiments
refer to the case that the path-unpacking data structures exist, but are not used. We deal with
other scenarios as well, in particular in Section 5.5. Note that the query times always include
the time needed to map the original source and target IDs to the corresponding block IDs and
node indices, while figures on the memory consumption do not include the space needed for
the mapping.

5.1 Different Block Sizes

On the one hand—as Fig. 5 in Appendix A.1 indicates—choosing a larger block size usually
increases the reading speed. On the other hand, loading larger blocks often means that more
irrelevant data is read. Hence, we expect that the best choice is a medium-sized block. This
is confirmed by Fig. 3 (a), where we used different block sizes, a next-layer fraction of 1/16,
and the first query type (‘cold’). The total memory consumption increases for increasing block
sizes since the range of the various values (like adjacent-block indices) increases so that more
bits are needed. If the block size gets too small, we observe more external shortcuts so that
the path-unpacking data structures occupy more space. For all further experiments, we use a
block size of 4KB.
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Fig. 3. Average query time and total space consumption depending on the chosen block size (a) and the next-layer
fraction f (b).

10 It might be the case that in practical scenarios the second type is even more relevant than the first one: if there is
some idle time between switching on the device and starting the query algorithm, data blocks that contain the more
important nodes (which are used in most queries) could be prefetched so that the observed runtime behaviour would
be closer to the ‘warm’ scenario than to the ‘cold’ scenario.

8



5.2 Different Hierarchical Localities

In Fig. 3 (b), we investigate the effect of choosing different next-layer fractions, using the first
query type (‘cold’). The best compromise between spatial and hierarchical locality is obtained
for f = 1/16, which we use as default value for all further experiments. The memory consump-
tion decreases for a decreasing value of f due to a smaller number of external edges/shortcuts.
Note that omitting the hierarchical reordering yields a query time of 96.8ms and a space
consumption of 264MB.

5.3 Different Cache Sizes

In one test series (Fig. 4), we applied the second query type (‘warm’) to different cache sizes.
We obtained the expected behaviour that the average query time decreases with an increasing
cache size. Interestingly, even very small cache sizes are sufficient to arrive at quite good query
times. Note that, on average, a cache size of 160KB is already sufficient to accommodate
the blocks needed for a single query in the European road network. We observe virtually no
improvement when using a cache size of 64MB instead of 32MB. This is due to the fact that
the 2 000 random queries that we perform (cp. Section 4.4) do not completely fill the 32MB-
cache. Nevertheless, for the remaining experiments, we just use the maximum cache size of
64MB.
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Fig. 4. Query performance for the second query type (‘warm’), depending on the cache size.

5.4 Main Results

Table 1 gives an overview of the external-memory graph representation. Building the blocks
is very fast and can be done in about 2–4 minutes. Although the given memory consump-
tion already covers everything that is needed to obtain very fast query times (including path
unpacking), we need 30% less space than the original graph would occupy in a standard
adjacency-array representation in case of Europe.

The results for the four query types introduced in Section 4.4 are represented in Tab. 2.
On average, a random query has to access 39 blocks in case of the European road network.
When the cache has been warmed-up, most blocks (in particular the ones that contain very
important nodes) reside in the cache so that on average less than four blocks have to be fetched
from external memory. This yields a very good query time of 23ms. Recomputing the optimal
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Table 1. Building the graph representation. We give the number of nodes, the number of edges in the original graph
and in the search graph, the number of graph-data blocks (without counting the blocks that contain pre-unpacked
paths), the average number of adjacent blocks per block, the numbers of internal edges, internal shortcuts and external
shortcuts as percentage of the total number of edges, the time needed to pre-unpack the external shortcuts and to build
the external-memory graph representation (provided that the search graph is already given), and the total memory
consumption including pre-unpacked paths.

|V | |E| |E∗| #blocks #adj. int. int. ext. time space
[×106] [×106] [×106] blocks edges shcs. shcs. [s] [MB]

Europe 18.0 42.2 36.9 52 107 9.1 70.6% 32.2% 7.7% 123 275
USA 23.9 57.7 49.4 80 099 8.4 69.2% 33.7% 8.0% 186 400
New Europe 33.7 75.1 65.7 103 371 8.3 70.3% 32.7% 7.5% 210 548

path using the same target, but a different source node can be done in 34ms. As expected, the
bottleneck of our application are the accesses to the external memory: if all blocks had been
preloaded, a shortest-path computation would take only about 8ms instead of the 72ms that
include the I/O operations.

Table 2. Query performance for four different query types.

cold warm recompute w/o I/O
settled blocks time blocks time blocks time time
nodes read [ms] read [ms] read [ms] [ms]

Europe 280 39.2 72.4 3.6 22.9 7.9 34.1 8.4
USA 223 30.1 56.5 4.4 17.1 6.1 28.0 6.1
New Europe 351 44.5 84.2 4.6 24.0 8.5 39.9 12.3

5.5 Path Unpacking

In Tab. 3, we compare five different variants of path (not-)unpacking, using the first query type
(‘cold’) in each case. First (a), we store no path data at all. This makes the query very fast since
more nodes fit into a single block. However, with this variant, we can only compute the shortest-
path length. For all other variants, we also store the middle nodes of the shortcuts in the data
blocks. This slows down the query even if we do not use the additional data (b). After having
computed the shortest-path length, getting the very first edge of the path (which is useful to
generate the very first driving direction) is almost for free (c). Computing the complete path
takes considerably longer if we do not use pre-unpacked path data (d). Pre-unpacked paths
(e) somewhat increase the memory requirements, but greatly improve the running times. Note
that almost half of the pre-unpacked paths are contained in other pre-unpacked paths so that
they require no additional space. Further experimental results on path unpacking can be found
in Appendix A.3.

Table 3. Comparison between different variants of path unpacking.

Europe USA New Europe
time [ms] space [MB] time [ms] space [MB] time [ms] space [MB]

(a) no path data 59.4 140 47.2 213 66.8 257
(b) only length 72.4 203 56.5 312 84.2 403
(c) first edge 72.5 203 56.7 312 84.4 403
(d) complete path 458.3 203 932.8 312 698.9 403
(e) compl. path (fast) 96.6 275 90.6 400 117.8 548
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6 Discussion

As far as we know, we provide the first implementation of an exact route planning algorithm
on a mobile device that answers queries in a road network of a whole continent instantaneously,
i.e., with a delay that is virtually not observable for a human user. Furthermore, our graph
representation is comparatively small (only a few hundred megabytes) and the employed query
algorithm is quite simple, which suggests an application of our implementation in car navigation
systems.

6.1 Related Work

There is an abundance of shortest-path speedup techniques, in particular for road networks.
For a broad overview, we refer to [9, 4]. In general, we can distinguish between goal-directed
and hierarchical approaches.

Goal-Directed Approaches (e.g., [10–13, 6]) direct the search towards the target t by preferring
edges that shorten the distance to t and by excluding edges that cannot possibly belong to
a shortest path to t—such decisions are usually made by relying on preprocessed data. For a
purely goal-directed approach, it is difficult to get an efficient external-memory implementa-
tion since no hierarchical locality (cp. Section 3) can be exploited. In spite of the large memory
requirements, Goldberg and Werneck [6] successfully implemented the ALT algorithm on a
Pocket PC. Their largest road network (North America, 29 883 886 nodes) occupies 3 735MB
and a random query takes 329 s. Using similar hardware11, a slightly larger graph (“New Eu-
rope”), and a slightly smaller cache size (8MB instead of 10MB), our graph representation
requires only 548MB (about 1/7 of the space needed by [6]) and our random queries (including
path unpacking) take 42ms (more than 7 500 times faster) when our cache has been warmed
up and 118ms (more than 2 500 times faster) when our cache is initially empty.

Hierarchical Approaches (e.g., [14, 5, 15, 16, 3, 4]) exploit the hierarchical structure of the given
network. In a preprocessing step, a hierarchical representation is extracted, which can be used to
accelerate all subsequent queries. Although hierarchical approaches usually can take advantage
of the hierarchical locality, not all of them are equally suitable for an external-memory imple-
mentation, in particular due to sometimes large memory requirements. The RE algorithm [14,
5] has been implemented on a mobile device, yielding query times of “a few seconds including
path computation and search animation” and requiring “2–3GB for USA/Europe” [17].

Commercial Systems. We made a few experiments with a commercial car navigation system, a
recent TomTom One XL12, computing routes from Karlsruhe to 13 different European capital
cities. We observe an average query time of 59 s to compute the route, not including the
time needed to compose the driving directions. Obviously, this is far from being a system
that provides instantaneous responses.13 Furthermore, to the best of our knowledge, current
commercial systems do not compute exact routes.

11 We use a more recent version of the ARM architecture, but with a slightly slower clock rate (330 MHz instead of
400 MHz); in [6], random reads of 512-byte blocks from flash memory can be done with a speed of 366 KB/s, compared
to 326 KB/s on our device.

12 AK9SQ CSBUS, ARM9 processor clocked at 266MHz, application version 6.593, OS version 1731, 29 MB RAM, road
network of Western Europe version 675.1409

13 Note that such a commercial product is slowed down due to various reasons (e.g., some time is spent to refresh
the display in order to update a progress bar), which are neglected in our test environment. Therefore, a direct
quantitative comparison is not possible.
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More Related Work. Compact graph representations have been studied earlier. In [18], the
nodes of the graph are rearranged according to the in-order of a separator tree that results
from recursively removing edges to separate the graph into components. By this means, the
difference between the IDs of adjacent nodes gets small so that applying suitable encoding
schemes yields a better compression rate than we achieve. However, the study in [18] does not
take into account additional edge attributes like the edge weight and, more importantly, it does
not refer to the external-memory model, which is crucial for our application.

There has been considerable theoretical work on external-memory graph representations
and external-memory shortest paths (e.g. [19–22]). Indeed, although road networks (let alone
our hierarchical networks) are not planar, the basic ideas in [20] lead to a similar approach
to blocking as we use it. Also, the redundant representation proposed in [20], which adds a
neighbourhood of all nodes to a block, might be an interesting approach to further refinements.
However, the worst case bounds obtained are usually quite pessimistic and there are only few
implementations: the closest one we are aware of [23] only works for undirected graphs with
unit edge weights and does not exploit the kind of locality properties we are dealing with.

6.2 Future Work

Increasing the compression rate seems possible, in particular by using more sophisticated tech-
niques, e.g. from [18]. However, we have to bear the decoding speed in mind: it might be
counterproductive to use techniques that are very complicated.

One particularly relevant scenario is the case that the driver deviates from the computed
route (third query type in Section 4.4). The recomputation could be accelerated by explicitly
storing and reusing the backward search space.
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A Further Experiments

A.1 Accessing Flash Memory

Figure 5 shows for the three different access methods introduced in Section 4.1 the reading
speed from flash memory depending on the chosen block size. The unbuffered access method is
clearly the fastest; up to 64KB block size, its speed considerably increases with an increasing
block size, then we observe a saturation. The kink at 256KB in case of the buffered access is
presumably due to some prefetching strategy of the operation system, which seemingly loads
more data than necessary for certain block sizes. Even for sequential reads, we stay below a
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speed of 8MB/s and do not get close to the 20MB/s as promised by the manufacturer of the
flash memory card. Probably, this is due to limitations of our mobile device.

Note that in [24], Ajwani et al. present an extensive study on the performance of flash mem-
ory storage devices. For random reads, their results qualitatively correspond to the behaviour
we found in the unbuffered case.

A.2 Node Ordering

As already mentioned in Section 3, a good node order has two advantages: first, due to a
better locality, we have to access less blocks during a query; second, the effectiveness of our
compression scheme improves (which, in turn, has a positive effect on the query performance
as well since more data fits into a single block). In order to be able to investigate both benefits
separately, we performed a test series where we considered different node orderings: in each case,
we put the same constant number of edges in each block. This way, only the first advantage
is effective. Table 4 summarises the results of this test series. We observe that our simple
topological order combined with the hierarchical reordering (which we use in our experiments
in Section 5) provides a significant improvement compared to the original order. A topological
order that is applied on top of an order based on graph partitioning using METIS [25] provides
hardly any better results so that it does not pay to invest the additional effort.

Table 4. Average number of accessed blocks for random queries considering three different node orders. Numbers in
parentheses refer to the case that we also apply the hierarchical reordering step. For ‘New Europe’, METIS crashed so
that we cannot provide results.

original topological METIS

Europe 289 (106) 118 (102) 116 (102)
USA 263 (103) 102 (83) 102 (83)
New Europe 405 (165) 155 (140) – (–)

A.3 Local Queries

For the first query type (‘cold’) and the European road network, Fig. 6 shows the query time
distribution (including path unpacking) as a function of Dijkstra rank—the number of iterations
Dijkstra’s algorithm would need to solve this instance. The distributions are represented as box-
and-whisker plots [26]: each box spreads from the lower to the upper quartile and contains the
median, the whiskers extend to the minimum and maximum value omitting outliers, which are
plotted individually. We observe that for short- and medium-ranged queries, which are likely
to dominate real-world application scenarios, we achieve very good query times, while even
long-range queries are usually answered in less than 150ms.
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