Distributed Evolutionary Graph Partitioning

Peter Sanders, Christian Schulz
Workshop on EA & EA – Agra, India
Overview

- Introduction
- Multilevel Algorithms
- Evolutionary Techniques
- Experiments
- Summary
Simulation space is discretized into a mesh.

Solution of partial differential equations are approximated by linear equations.

Number of vertices can become quite large → time and memory.

Parallel processing required.
The Common Parallel Approach

- Mesh partitioned via dual graph
 1. Each volume (data, calculation) is represented by a vertex
 2. Interdependencies are represented by edges
- All PE’s get same amount of work
- Communication is expensive

Graph Partitioning Problem:
Partition a graph into (almost) equally sized blocks, such that the number of edges connecting vertices from different blocks is minimal.
\(\varepsilon \)-Balanced Graph Partitioning

Partition graph \(G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0}) \) into \(k \) disjoint blocks s.t.

- total node weight of each block \(\leq \frac{1 + \varepsilon}{k} \) total node weight
- total weight of cut edges as small as possible

Applications:
linear equation systems, VLSI design, route planning, ...
Multilevel Graph Partitioning

1. Contraction
2. Local Search
3. Global Search
Multi-Level Graph Partitioning

Successful in existing systems: Metis, Scotch, Jostle, . . ., KaPPa, KaSPar, KaFFPa, KaFFPaE
Multilevel Graph Partitioning

1. Contraction
2. Local Search
3. Global Search
But how are the edges selected?
Graph Partitioning

Matching Selection

Goals:
1. large edge weights \mapsto sparsify
2. large #edges \mapsto few levels
3. uniform node weights \mapsto “represent” input
4. small node degrees \mapsto “represent” input
\mapsto unclear objective
\mapsto gap to approx. weighted matching which only considers 1., 2.

Our Solution:
Apply approx. weighted matching to general edge rating function
Graph Partitioning

Edge Ratings

\[\omega(\{u, v\}) \]

\[
\text{expansion}(\{u, v\}) := \frac{\omega(\{u, v\})}{c(u) + c(v)}
\]

\[
\text{expansion}^*(\{u, v\}) := \frac{\omega(\{u, v\})}{c(u)c(v)}
\]

\[
\text{expansion}^{*2}(\{u, v\}) := \frac{\omega(\{u, v\})^2}{c(u)c(v)}
\]

\[
\text{innerOuter}(\{u, v\}) := \frac{\omega(\{u, v\})}{\text{Out}(v) + \text{Out}(u) - 2\omega(u, v)}
\]

where \(c = \text{node weight}, \ \omega = \text{edge weight}, \
\text{Out}(u) := \sum_{\{u, v\} \in E} \omega(\{u, v\}) \)
Multilevel Graph Partitioning

1. Contraction
2. Local Search
3. Global Search
FM Local Search

\[\text{compute gain } \forall v \in V \]
compute gain $\forall \ v \in V$

$g(v) = d_{ext}(v) - d_{int}(v)$
FM Local Search

- compute gain $\forall v \in V$
- $g(v) = d_{ext}(v) - d_{int}(v)$
- store gain of boundary nodes (e.g. in a heap)
FM Local Search

- move highest gain vertices to opposite block
- each node at most once
- update gain of neighbors

Step: 0
Edge Cut: 5
FM Local Search

- move highest gain vertices to opposite block
- each node at most once
- update gain of neighbors

<table>
<thead>
<tr>
<th>Step:</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge Cut:</td>
<td>5</td>
<td>4</td>
</tr>
</tbody>
</table>
FM Local Search

- move highest gain vertices to opposite block
- each node at most once
- update gain of neighbors

<table>
<thead>
<tr>
<th>Step:</th>
<th>Edge Cut:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 1 2</td>
</tr>
<tr>
<td></td>
<td>5 4 6</td>
</tr>
</tbody>
</table>
FM Local Search

- move highest gain vertices to opposite block
- each node at most once
- update gain of neighbors

Step:
Edge Cut: 0 1 2 3
 5 4 6 8
FM Local Search

- stop after limit
- take best edge cut
- within balance constraint

<table>
<thead>
<tr>
<th>Step</th>
<th>Edge Cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

Graph with nodes connected by edges, and steps and edge cut values shown.
FM Local Search

- stop after limit
- take best edge cut
- within balance constraint

Step: 0 1 2 3
Edge Cut: 5 4 6 8
FM Local Search – Discussion

+ Generalizable for multiple blocks
+ Linear time
- Unlikely to find improvements requiring ≥ 2 negative gain moves
More Localized Local Search

- **Idea:** *KaPPa, KaSPar* \Rightarrow more local searches are better

- **Typical:** k-way local search initialized with complete boundary

- **Localization:**
 1. complete boundary \Rightarrow maintained todo list T
 2. initialize search with single node $v \in_{\text{rnd}} T$
 3. iterate until $T = \emptyset$

- each node moved at most once
More Localized Local Search

- **Idea:** *KaPPa, KaSPar* \Rightarrow more local searches are better
- **Typical:** k-way local search initialized with **complete boundary**
- **Localization:**
 1. complete boundary \Rightarrow maintained todo list T
 2. initialize search with **single node** $v \in_{\text{rnd}} T$
 3. iterate until $T = \emptyset$
- each node moved **at most once**
More Localized Local Search

- **Idea: KaPPa, KaSPar ⇒ more local searches are better**
- **Typical:** k-way local search initialized with complete boundary
- **Localization:**
 1. complete boundary ⇒ maintained todo list T
 2. initialize search with single node $v \in \text{rnd } T$
 3. iterate until $T = \emptyset$
- each node moved at most once
More Localized Local Search

- **Idea**: *KaPPa, KaSPar* ⇒ more local searches are better
- **Typical**: k-way local search initialized with complete boundary
- **Localization**:
 1. complete boundary ⇒ maintained todo list T
 2. initialize search with single node $v \in \text{rnd } T$
 3. iterate until $T = \emptyset$
- each node moved at most once
More Localized Local Search

- **Idea:** *KaPPa, KaSPar* \Rightarrow more local searches are better
- **Typical:** k-way local search initialized with complete boundary
- **Localization:**
 1. complete boundary \Rightarrow maintained todo list T
 2. initialize search with single node $v \in_{\text{rnd}} T$
 3. iterate until $T = \emptyset$
- each node moved at most once
More Localized Local Search

- **Idea:** KaPPa, KaSPar \Rightarrow more local searches are better
- **Typical:** k-way local search initialized with complete boundary
- **Localization:**
 1. complete boundary \Rightarrow maintained todo list T
 2. initialize search with single node $v \in \text{rnd} \ T$
 3. iterate until $T = \emptyset$
- each node moved at most once
More Localized Local Search

- **Idea:** KaPPa, KaSPar \Rightarrow more local searches are better
- **Typical:** k-way local search initialized with complete boundary
- **Localization:**
 1. complete boundary \Rightarrow maintained todo list T
 2. initialize search with single node $v \in \text{rnd } T$
 3. iterate until $T = \emptyset$
- **each node moved at most once**
More Localized Local Search

- **Idea:** KaPPa, KaSPa ⇒ more local searches are better
- **Typical:** k-way local search initialized with complete boundary
- **Localization:**
 1. complete boundary ⇒ maintained todo list T
 2. initialize search with single node $v \in_{\text{rnd}} T$
 3. iterate until $T = \emptyset$

- each node moved at most once
More Localized Local Search

- **Idea:** *KaPPa, KaSPar* ⇒ more local searches are better
- **Typical:** *k-way local search* initialized with complete boundary
- **Localization:**
 1. complete boundary ⇒ maintained todo list T
 2. initialize search with single node $v \in_{\text{rnd}} T$
 3. iterate until $T = \emptyset$
- each node moved at most once
More Localized Local Search

- **Idea:** \textit{KaPPa, KaSPar} \Rightarrow more local searches are better
- **Typical:** \(k\)-way local search initialized with \textit{complete boundary}
- **Localization:**
 1. \textit{complete boundary} \Rightarrow maintained \textit{todo list} \(T\)
 2. initialize search with \textit{single node} \(v \in_{\text{rnd}} T\)
 3. iterate until \(T = \emptyset\)
- each node moved at most once
More Localized Local Search

- Idea: KaPPa, KaSPar \(\Rightarrow\) more local searches are better
- Typical: \(k\)-way local search initialized with complete boundary
- Localization:
 1. complete boundary \(\Rightarrow\) maintained todo list \(T\)
 2. initialize search with single node \(v \in_{\text{rnd}} T\)
 3. iterate until \(T = \emptyset\)
- each node moved at most once
More Localized Local Search

- **Idea:** KaPPa, KaSPar \Rightarrow more local searches are better
- **Typical:** k-way local search initialized with complete boundary
- **Localization:**
 1. complete boundary \Rightarrow maintained todo list T
 2. initialize search with single node $v \in_{\text{rnd}} T$
 3. iterate until $T = \emptyset$
- each node moved at most once
Multilevel Graph Partitioning

1. Contraction
2. Local Search
 - Localization of Local Search helps
 - Flows as Local Search
3. Global Search
Flows as Local Improvement

Two Blocks

- area B, such that each (s, t)-min cut is ϵ-balanced cut in G
- e.g. 2 times BFS (left, right)
- stop the BFS, if size would exceed $(1 + \epsilon) \frac{c(V)}{2} - c(V_2)$

$$\Rightarrow c(V_{2_{\text{new}}}) \leq c(V_2) + (1 + \epsilon) \frac{c(V)}{2} - c(V_2)$$
Flows as Local Improvement

Two Blocks

- obtain optimal cut in B
- since each cut in B yields a feasible partition
 \rightarrow improved two-partition
- advanced techniques possible and necessary
Example
100x100 Grid
Example

Constructed Flow Problem (using BFS)
Example
Apply Max-Flow Min-Cut
Example
Output Improved Partition
Local Improvement for k-partitions
Using Flows?

on each pair of blocks
Multilevel Graph Partitioning

1. Contraction
2. Local Search
 - Localization of Local Search helps
 - Flows as Local Search
3. Global Search
Iterated Multilevel [Walshaw 2004]

- don’t contract cut edges
- adapt previous solution as initial partitioning
- cuts can only improve
- V-cycles / F-cycles
Evolutionary Graph Partitioning
Distributed Evolutionary Graph Partitioning

- Evolutionary Algorithms:
 - highly inspired by biology
 - population of individuals
 - selection, mutation, recombination, ...

- **Goal**: Integrate KaFFPa in an Evolutionary Strategy

- **Evolutionary Graph Partitioning**:
 - individuals ↔ partitions
 - fitness ↔ edge cut

- Parallelization → quality records in a few minutes for small graphs
two individuals \mathcal{P}_1, \mathcal{P}_2: don’t contract cut edges of \mathcal{P}_1 or \mathcal{P}_2
until no matchable edge is left
coarsest graph \leftrightarrow Q-graph of overlay$
\rightarrow$ exchanging good parts is easy
initial solution: use better of both parents
Example

Two Individuals $\mathcal{P}_1, \mathcal{P}_2$
Example

Overlay of P_1, P_2
Example
Multilevel Combine of \(P_1, P_2 \)
Exchanging good parts is easy

Coarsest Level

- >> large weight, < small weight
- start with the better partition (red, P_2)
- move v_4 to the opposite block
- integrated into multilevel scheme (+local search on each level)
Example

Result of $\mathcal{P}_1, \mathcal{P}_2$
Parallelization

- each PE has its own *island* (a local population)
- *locally*: perform combine and mutation operations
- communicate analog to *randomized rumor spreading*
 1. rumor \leftrightarrow currently best local partition
 2. local best partition *changed* \rightarrow send it to $O(\log P)$ random PEs
 3. *asynchronous* communication (MPI Isend)
Experiments
Experimental Results
Comparison with Other Systems

Geometric mean, imbalance $\epsilon = 0.03$:
11 graphs (78K–18M nodes) $\times k \in \{2, 4, 8, 16, 64\}$

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>large graphs</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Best</td>
<td>Avg.</td>
<td>t[s]</td>
</tr>
<tr>
<td>KaFFPa strong</td>
<td>12 053</td>
<td>12 182</td>
<td>121.22</td>
</tr>
<tr>
<td>KaSPar strong</td>
<td>12 450</td>
<td>+3%</td>
<td>87.12</td>
</tr>
<tr>
<td>KaFFPa eco</td>
<td>12 763</td>
<td>+6%</td>
<td>3.82</td>
</tr>
<tr>
<td>Scotch</td>
<td>14 218</td>
<td>+20%</td>
<td>3.55</td>
</tr>
<tr>
<td>KaFFa fast</td>
<td>15 124</td>
<td>+24%</td>
<td>0.98</td>
</tr>
<tr>
<td>kMetis</td>
<td>15 167</td>
<td>+33%</td>
<td>0.83</td>
</tr>
</tbody>
</table>

- Repeating Scotch as long as KaSPar strong run and choosing the best result $\sim 12.1\%$ larger cuts
- Walshaw instances, road networks, Florida Sparse Matrix Collection, random Delaunay triangulations, random geometric graphs
Quality
Evolutionary Graph Partitioning

<table>
<thead>
<tr>
<th>blocks k</th>
<th>KaFFPaE improvement over reps. of KaFFPa</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.2%</td>
</tr>
<tr>
<td>4</td>
<td>1.0%</td>
</tr>
<tr>
<td>8</td>
<td>1.5%</td>
</tr>
<tr>
<td>16</td>
<td>2.7%</td>
</tr>
<tr>
<td>32</td>
<td>3.4%</td>
</tr>
<tr>
<td>64</td>
<td>3.3%</td>
</tr>
<tr>
<td>128</td>
<td>3.9%</td>
</tr>
<tr>
<td>256</td>
<td>3.7%</td>
</tr>
</tbody>
</table>

| overall | 2.5% |

2h time, 32 cores per graph and k, geom. mean
Quality

k=64

mean min cut

normalized time t_n

Repetitions

KaFFPaE
Scalability

mean min cut (mmc)

normalized time t_n

- $p = 1$
- $p = 2$
- $p = 4$
- $p = 8$
- $p = 16$
- $p = 32$
- $p = 64$
- $p = 128$
- $p = 256$
Walshaw Benchmark

- runtime is not an issue
- 614 instances ($\epsilon \in \{1\%, 3\%, 5\%\}$)
- focus on partition quality

- overall quality records (at submission time):

<table>
<thead>
<tr>
<th>ϵ</th>
<th>\leq</th>
</tr>
</thead>
<tbody>
<tr>
<td>1%</td>
<td>78%</td>
</tr>
<tr>
<td>3%</td>
<td>92%</td>
</tr>
<tr>
<td>5%</td>
<td>94%</td>
</tr>
</tbody>
</table>
Summary

Distributed Evolutionary Graph Partitioning

Department of Informatics
Institute for Theoretical Computer Science

input

ESA10

Output

Partition

contract

... ...

match
distr.
evol. Alg.

IPDPS10

Cycles a la multigrid

ESA11

n-level
todo

Parallel

Graphpartitioning
Multilevel

initial
partitioning

SEA12

edge
ratings

match+

[IPDPS10]

flows etc. [ESA11]

local improvement

[ESA11]

parallel [IPDPS10]

Contract

Output

ESA11

Graphpartitioning

Multilevel

Contract

Input

Graph
Outlook

- **Further Material in the Paper(s)**
 - F-cycles, High Quality Matchings,
 - *Different* combine and mutation operators
 - Specialization to road networks (*Buffoon*)
 - *Many more* details and experiments ...

- **Future Work**
 - *other* objective functions
 - currently via selection criterion
 - connectivity? \(\tilde{f}(\mathcal{P}) := f(\mathcal{P}) + \chi\{\mathcal{P} \text{ not connected}\} \cdot |E| \)
 - integrate *other partitioners*
 - graph clustering
 - open source *release*
Thank you!

Contact: christian.schulz@kit.edu
 sanders@kit.edu