High Quality Graph Partitioning

Peter Sanders, Christian Schulz
ISMP 2012
Mesh partitioned
1. nodes ↔ data, computation
2. edges ↔ interdependencies

All PE’s get same amount of work
Communication is expensive

Graph Partitioning Problem:
Partition a graph into (almost) equally sized blocks, such that the number of edges connecting vertices from different blocks is minimal.
\(\epsilon \)-Balanced Graph Partitioning

Partition graph \(G = (V, E, c : V \rightarrow \mathbb{R}_{>0}, \omega : E \rightarrow \mathbb{R}_{>0}) \) into \(k \) disjoint blocks s.t.:

- total node weight of each block \(\leq \frac{1 + \epsilon}{k} \) total node weight
- total weight of cut edges as small as possible

Applications:
linear equation systems, VLSI design, route planning, …
Overview

- Introduction
- Multilevel Algorithms
- Advanced Techniques
- Evolutionary Techniques
- Experiments
- Summary
Multi-Level Graph Partitioning

Successful in existing algorithms: Metis, Scotch, DiBaP, . . ., KaPPa, KaSPar, KaFFPa, KaFFPaE
Advanced Techniques

Talk Today

- GP Folklore
- Edge Ratings
- Flow Based Refinements
- More Localized Local Search
- F-cycles for Graph Partitioning
But how are the edges selected?
Graph Partitioning
Matching Selection

Goals:
1. large edge weights \leadsto sparsify
2. large #edges \leadsto few levels
3. uniform node weights \leadsto “represent” input
4. small node degrees \leadsto “represent” input
\leadsto unclear objective
\leadsto gap to approx. weighted matching
which only considers 1., 2.

Our Solution:
Apply approx. weighted matching to general edge rating function
Graph Partitioning

Edge Ratings

\[
\omega(\{u, v\})
\]
\[
\text{expansion}^*(\{u, v\}) := \frac{\omega(\{u, v\})}{c(u)c(v)}
\]
\[
\text{expansion}^{*2}(\{u, v\}) := \frac{\omega(\{u, v\})^2}{c(u)c(v)}
\]
\[
\text{innerOuter}(\{u, v\}) := \frac{\omega(\{u, v\})}{\text{Out}(v) + \text{Out}(u) - 2\omega(u, v)}
\]

where \(c = \text{node weight}, \ \omega = \text{edge weight}, \ \text{Out}(u) := \sum_{\{u, v\} \in E} \omega(\{u, v\})\)
Initial Partitioning

Usually done by recursive bipartitioning, e.g. using BFS

- we currently use Scotch [Pellegrini]
- multiple tries pay off

Open Problem:
Direct k-partitioner that achieves better quality or speed.
compute $\text{gain} \ \forall \ \nu \in V$
FM Local Search

- compute gain $\forall v \in V$
- $g(v) = d_{ext}(v) - d_{int}(v)$
FM Local Search

- compute gain $\forall v \in V$
- $g(v) = d_{ext}(v) - d_{int}(v)$
- store gain of boundary nodes (e.g. in a heap)
FM Local Search

- move highest gain vertices to opposite block
- each node at most once
- update gain of neighbors

Step: 0
Edge Cut: 5
FM Local Search

- move highest gain vertices to opposite block
- each node at most once
- update gain of neighbors

<table>
<thead>
<tr>
<th>Step:</th>
<th>Edge Cut:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>
FM Local Search

- move highest gain vertices to opposite block
- each node at most once
- update gain of neighbors

<table>
<thead>
<tr>
<th>Step:</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge Cut:</td>
<td>5</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>
FM Local Search

- move highest gain vertices to opposite block
- each node at most once
- update gain of neighbors

<table>
<thead>
<tr>
<th>Step:</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge Cut:</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>
FM Local Search

- stop after limit
- take best edge cut
- within balance constraint

<table>
<thead>
<tr>
<th>Step</th>
<th>Edge Cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
</tbody>
</table>

edge cut

steps
FM Local Search

- stop after limit
- take best edge cut
- within balance constraint

<table>
<thead>
<tr>
<th>Step</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edge Cut</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>
FM Local Search – Discussion

+ Generalizable for multiple blocks
+ Linear time
– Unlikely to find improvements requiring \(\geq 2 \) negative gain moves
More Localized Local Search
More Localized Local Search

inspired by n-level search

- Typical: k-way local search initialized with complete boundary
- Localization:
 1. complete boundary \Rightarrow maintained todo list T
 2. initialize search with single node $v \in_{\text{rand}} T$
 3. iterate until $T = \emptyset$
- each node moved at most once
More Localized Local Search
inspired by n-level search

- Typical: k-way local search initialized with complete boundary
- Localization:
 1. complete boundary \Rightarrow maintained todo list T
 2. initialize search with single node $v \in_{\text{rnd}} T$
 3. iterate until $T = \emptyset$
- each node moved at most once
More Localized Local Search

inspired by \(n \)-level search

- Typical: \(k \)-way local search initialized with complete boundary
- Localization:
 1. complete boundary \(\Rightarrow \) maintained todo list \(T \)
 2. initialize search with single node \(v \in_{\text{rnd}} T \)
 3. iterate until \(T = \emptyset \)
- each node moved at most once
More Localized Local Search
inspired by n-level search

- Typical: k-way local search initialized with complete boundary
- Localization:
 1. complete boundary \Rightarrow maintained todo list T
 2. initialize search with single node $v \in_{\text{rnd}} T$
 3. iterate until $T = \emptyset$
- each node moved at most once
More Localized Local Search
inspired by n-level search

- Typical: k-way local search initialized with complete boundary
- Localization:
 1. complete boundary \Rightarrow maintained todo list T
 2. initialize search with single node $v \in \text{rnd } T$
 3. iterate until $T = \emptyset$
- each node moved at most once
More Localized Local Search

inspired by n-level search

- Typical: k-way local search initialized with complete boundary
- Localization:
 1. complete boundary \Rightarrow maintained todo list T
 2. initialize search with single node $v \in_{\text{rnd}} T$
 3. iterate until $T = \emptyset$
- each node moved at most once
More Localized Local Search

inspired by n-level search

- Typical: k-way local search initialized with complete boundary
- Localization:
 1. complete boundary \Rightarrow maintained todo list T
 2. initialize search with single node $v \in \text{rnd } T$
 3. iterate until $T = \emptyset$
- each node moved at most once
More Localized Local Search

inspired by \(n \)-level search

- Typical: \(k \)-way local search initialized with complete boundary
- Localization:
 1. complete boundary \(\Rightarrow \) maintained todo list \(T \)
 2. initialize search with single node \(v \in_{\text{rand}} T \)
 3. iterate until \(T = \emptyset \)
- each node moved at most once
More Localized Local Search
inspired by \(n \)-level search

- Typical: \(k \)-way local search initialized with complete boundary
- Localization:
 1. complete boundary \(\Rightarrow \) maintained todo list \(T \)
 2. initialize search with single node \(v \in_{\text{rnd}} T \)
 3. iterate until \(T = \emptyset \)
- each node moved at most once
More Localized Local Search
inspired by n-level search

- Typical: k-way local search initialized with complete boundary
- Localization:
 1. complete boundary ⇒ maintained todo list T
 2. initialize search with single node $v \in_{\text{rand}} T$
 3. iterate until $T = \emptyset$
- each node moved at most once
More Localized Local Search

inspired by n-level search

- Typical: k-way local search initialized with complete boundary
- Localization:
 1. complete boundary \Rightarrow maintained todo list T
 2. initialize search with single node $v \in_{\text{rnd}} T$
 3. iterate until $T = \emptyset$
- each node moved at most once
More Localized Local Search
inspired by \(n \)-level search

- Typical: \(k \)-way local search initialized with complete boundary
- Localization:
 1. complete boundary \(\Rightarrow \) maintained todo list \(T \)
 2. initialize search with single node \(v \in_{\text{rnd}} T \)
 3. iterate until \(T = \emptyset \)
- each node moved at most once
Flows as Local Improvement
Flows as Local Improvement
Two Blocks

- area B, such that each (s, t)-min cut is ϵ-balanced cut in G
- e.g. 2 times BFS (left, right)
Flows as Local Improvement
Two Blocks

- obtain optimal cut in B
- since each cut in B yields a feasible partition → improved two-partition
- advanced techniques possible and necessary
- combination with local search works best
Example

100x100 Grid
Example

Constructed Flow Problem (using BFS)
Example
Apply Max-Flow Min-Cut
Example
Output Improved Partition
Local Improvement for k-partitions
Using Flows?

on each pair of blocks
Iterated Multilevel
Iterated Multilevel [Walshaw 2004]

- don’t contract cut edges
- adapt previous solution as initial partitioning
- cuts can only improve
- V-cycles / F-cycles
Evolutionary Techniques
Distributed Evolutionary Graph Partitioning

- **Evolutionary Algorithms:**
 - population of individuals
 - selection (based on fitness), mutation, recombination, ...

- **Evolutionary Graph Partitioning:**
 - individuals \leftrightarrow partitions
 - fitness \leftrightarrow edge cut
Combine

match

contract

- two individuals P_1, P_2:
 don’t contract cut edges of P_1 or P_2
- until no matchable edge is left
- coarsest graph \leftrightarrow Q-graph of overlay
- \rightarrow exchanging good parts is easy
- initial solution: use better of both parents
Example

Two Individuals P_1, P_2
Example

Overlay of P_1, P_2
Example
Multilevel Combine of P_1, P_2
Exchanging good parts is easy

Coarsest Level

- >> large weight, < small weight
- start with the better partition (red, P_2)
- move v_4 to the opposite block
- integrated into multilevel scheme (+local search on each level)
Example
Result of $\mathcal{P}_1, \mathcal{P}_2$
Parallelization

- each PE has its own island (a local population)
- locally: perform combine and mutation operations
- communicate analog to *randomized rumor spreading*
 1. rumor ↔ currently best local partition
 2. local best partition changed → send it to $\mathcal{O}(\log P)$ random PEs
 3. asynchronous communication (MPI Isend)
→ quality records in a few minutes for small graphs
Experiments
Example

Street network Europe $|V| = 18M, |E| = 44M, k = 64$
Buffoon \leftrightarrow kMetis

edge cut 3825

depth cut 10264
Experimental Results
Comparison with Other Systems

Geometric mean, imbalance $\epsilon = 0.03$:
11 graphs (78K–18M nodes) $\times k \in \{2, 4, 8, 16, 32, 64\}$

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>large graphs</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Best</td>
<td>Avg.</td>
<td>t[s]</td>
</tr>
<tr>
<td>KaFFPa strong</td>
<td>12 053</td>
<td>12 182</td>
<td>121.22</td>
</tr>
<tr>
<td>KaSPar strong</td>
<td>12 450</td>
<td>+3%</td>
<td>87.12</td>
</tr>
<tr>
<td>KaFFPa eco</td>
<td>12 763</td>
<td>+6%</td>
<td>3.82</td>
</tr>
<tr>
<td>Scotch</td>
<td>14 218</td>
<td>+20%</td>
<td>3.55</td>
</tr>
<tr>
<td>KaFFa fast</td>
<td>15 124</td>
<td>+24%</td>
<td>0.98</td>
</tr>
<tr>
<td>kMetis</td>
<td>15 167</td>
<td>+33%</td>
<td>0.83</td>
</tr>
</tbody>
</table>

- Walshaw instances, road networks, Florida Sparse Matrix Collection, random Delaunay triangulations, random geometric graphs
KaFFPaEvolutionary $k=64$

mean min cut

normalized time t_n

Repetitions

KaFFPaE
Walshaw Benchmark

- 816 instances ($\epsilon \in \{0, 1\%, 3\%, 5\%\}$)
- focus on partition quality

- Overall quality records \leq:

<table>
<thead>
<tr>
<th>ϵ</th>
<th>\leq</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>78%</td>
</tr>
<tr>
<td>1%</td>
<td>78%</td>
</tr>
<tr>
<td>3%</td>
<td>92%</td>
</tr>
<tr>
<td>5%</td>
<td>94%</td>
</tr>
</tbody>
</table>

new
Summary

input graph

flows etc. [ESA11]
local improvement

parallel [IPDPS10]
n-level [ESA10]

Cycles a la multigrid

Multilevel Graphpartitioning

[IPDPS10]
edge ratings
match +

contract

[SEA12]
initial partitioning
todo

Peter Sanders, Christian Schulz:
High Quality Graph Partitioning

Department of Informatics
Institute for Theoretical Computer Science, Algorithmics II
Current and Future Work

- $\epsilon = / \approx 0$
- open source release
- back to parallelization (+ external?)
- reconsider n-level? (flows?, . . .)
- other objective functions ((max.) communication volume, separators, . . .)
- hypergraph partitioning
- clustering
- mapping onto processors
- close gap to theory?
- etc.
Thank you!