
n-Level Hypergraph Partitioning

Florian Ziegler

July 27, 2012

1457745

Bachelor Thesis

at

Institute of Theoretical Informatics, Algorithmics II

Karlsruhe Institute of Technology

Supervisors:

Prof. Dr. rer. nat. Peter Sanders,

Dipl.-Math. Dipl.-Inform. Christian Schulz,

M.Sc. Vitaly Osipov

ii

Acknowledgments
I would like to express my thanks to all of the people who were involved in
my thesis. Their suggestions were invaluable and their help was much appre-
ciated. Without their support this thesis would have had to stay incomplete.
Foremost I would like to thank my supervisors Prof. Dr. rer. nat. Sanders,
Dipl.-Math. Dipl.-Inform. Christian Schulz and M.Sc. Vitaly Osipov.
My family and friends were of great help to me and a constant source of
motivation - I would like to thank them, too.

Ich erkläre hiermit, dass ich die vorliegende Arbeit selbständig verfasst und
keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Karlsruhe, 27.07.2012

Florian Ziegler

iii

iv

Abstract
We present a n-Level Hypergraph Partitioner based on the idea of the n-
Level Graph Partitioner by Osipov and Sanders. Given a Hypergraph H
we compute a 2-partition P that satisfies a given imbalance constraint. To
achieve this we coarsen the original hypergraph in multiple levels. At each
level we contract a hyperedge, i.e. merging its hypernodes in one to decrease
the number of hypernodes and hyperedges. At the lowest level we construct
a bisection P and reverse the coarsening. At each level we additionally refine
P . We also implement V-Cycles to improve the quality of P further.
We present an extensive experimental evaluation with hypergraph instances
widely used in literature, for example parts of the ISPD and MCNC bench-
mark suites. We compare our system with the state-of-the-art hypergraph
partitioners hMETIS and PaToH. Our tuned system achieves hyperedge cuts
which are on average as good as those of PaToH. However the runtime of
our system is much worse that the one of the competition. Furthermore,
our system finds the partition with the smallest hyperedge cut for circa half
of the test suite, when compared to the standard presets of hMETIS and
PaToH.

v

vi

Contents

Acknowledgments iii

Abstract v

1 Introduction 1
1.1 Motivation . 1
1.2 Our Contribution . 1
1.3 Outline . 2

2 Fundamentals 3
2.1 General Definitions . 3
2.2 Quality Metrics . 4
2.3 Visual Representation of a Hypergraph 5

3 Related Work 7
3.1 Kernighan-Lin Heuristic . 7
3.2 Fiduccia-Mattheyses Heuristic 7
3.3 Multi-level Hypergraph Partitioning 8
3.4 hMETIS . 9

3.4.1 Hyperedge Coarsening 9
3.4.2 Modified Hyperedge Coarsening 9
3.4.3 Edge Coarsening . 10
3.4.4 Initial Partitioning . 10
3.4.5 Uncoarsening and Refinement 10
3.4.6 Multiphase Refinement 11

3.5 PaToH . 11
3.5.1 Coarsening . 11
3.5.2 Refinement . 11

4 n-Level Hypergraph Partitioning 12
4.1 General Description . 13
4.2 Coarsening Phase . 13

4.2.1 Contracting a Single Hyperedge 14
4.3 Initial Partitioning Phase . 17
4.4 Uncoarsening and Refinement Phase 17

4.4.1 Uncontracting a Hyperedge 18
4.4.2 Refinement . 18

4.5 Hyperedge Rating Functions 21
4.5.1 Rating functions of the first class 21
4.5.2 Rating functions of the second class 22

4.6 V-Cycles . 23

vii

5 Experimental Evaluation 24
5.1 Experimental Setting . 24

5.1.1 Environment . 24
5.1.2 Instances . 24
5.1.3 Tuning Parameters . 25

5.2 Parameter Tuning . 27
5.2.1 Evaluation of Rating Functions 27
5.2.2 Initial Partitioning Trials 28
5.2.3 Termination parameter for a refinement pass 29
5.2.4 V-Cycles . 30
5.2.5 Parameter Sets: Best, Strong and Fast 31
5.2.6 Parameter Tuning: Summary 32

5.3 Final Evaluation . 33
5.3.1 PaToH Parameters . 33
5.3.2 hMETIS Parameters 33
5.3.3 Comparison with the original n-Level algorithm 34
5.3.4 Comparison with PaToH and hMETIS 35

6 Discussion 36
6.1 Conclusion . 36
6.2 Future Work . 36

A Hypergraph Data Structure 37

B Command-Line Arguments 37

C Further Results 38

German Abstract 42

References 43

viii

1 Introduction

1.1 Motivation

Hypergraphs are a generalization of graphs. The main difference is that the
edges of hypergraphs can connect more than two nodes.
An important application of hypergraphs is the field of integrated circuit de-
sign [3]. Besides that, hypergraphs are used for reducing the communication
volume for parallel sparse-matrix vector multiplication [6], for dynamic load
balancing for scientific computations [7], etc. Hypergraph Partitioning is an
important part of these applications.
There are schemes to model hypergraphs by graphs. However, it has been
shown by Ihler et al. [14], that the original cut properties cannot be retained
with these models. This causes the necessity to use special hypergraph par-
titioning algorithms. The problem of partitioning a hypergraph is at least
NP-hard [9].
State-of-the-art graph and hypergraph partitioners [24, 20, 5, 18] use the
multi-level approach. At each level the graph is coarsened by selecting mul-
tiple groups of nodes and contracting each of those into one node of a coarser
graph. All nodes of a group are combined into one node carrying the com-
bined weight of its predecessors. This node is then connected to all edges
incident to the original nodes. This procedure is repeated until the graph is
small enough for a fairly expensive initial partitioning method.
The now much smaller graph is partitioned at the lowest level and then
uncoarsened, i.e., the coarsening is reversed and level by level the original
graph is restored. The partitioning information is passed on to higher levels.
At each level a local refinement algorithm is used to minimize the cut.
A variant of the multi-level method is n-Level Graph Partitioning [20]. It
differs from the common multi-level approach as it only contracts one single
edge at each level. Sanders and Osipov [20] have shown, that this leads to
both improved runtime and better quality of the resulting partitions.

1.2 Our Contribution

In this thesis we explore whether the n-Level partitioning approach is suitable
for the hypergraph bisection problem. In essence our method contracts only
one single hyperedge at each level of the coarsening phase. This is done by
computing a rating function for each hyperedge and contract on each level the
hyperedge with the highest rating. As the choice of the hyperedge is essential
to the properties of the final contracted graph, multiple rating functions are
experimentally evaluated.
As soon as the hypergraph is small enough the coarsening phase ends and
we partition the hypergraph with the PaToH partitioner.

1

During uncoarsening the hypergraph is repeatedly refined at each level with
a heuristic similar to the Fiduccia-Mattheyses Heuristic.
As in hMetis the method is then extended by the V-Cycle approach that
performs additional coarsening and refinement phases (with certain modifi-
cations) to further improve the quality of the found partition.

1.3 Outline

The thesis is organized as follows: We begin in Chapter 2 with formal defini-
tions of hypergraphs and a proper definition of the hypergraph partitioning
problem.
In Chapter 3 we present related work, the concept of multi-level partitioning
and refinement heuristics. Additionally, we look at PaToH, as we use it in
the initial partitioning phase.
We then move forward to describe our n-level hypergraph partitioning ap-
proach in Chapter 4. This includes a description of rating functions for the
coarsening phase.
In Chapter 5 we perform parameter tuning and thereupon evaluate our algo-
rithm experimentally. We conclude with a summary of the results in Chap-
ter 6.

2

2 Fundamentals

In this part we give formal definitions of a hypergraph, the partitioning prob-
lem and the metrics used to measure the quality of a hypergraph partition.
The notation given here will be used in the following chapters.

2.1 General Definitions

A hypergraph H = (V, E , c, w) is defined as a set of vertices V and a set
of hyperedges E . We use the term hypernode synonymously for the term
vertex. Each hyperedge is a non-empty subset of V . The hypergraph has
hyperedge weights w : E → R>0 and hypernode weights c : V → R≥0. We
extend c and w to sets V ′ ⊆ V and E ′ ⊆ E , i.e., c (V ′) :=

∑
v∈V ′ c (v) and

w (E ′) :=
∑

e∈E ′ w (e).

Definition 1. Hypergraph Partitioning Problem

Given a hypergraph H = (V, E , c, w) and k ∈ N>1, the hypergraph partition-
ing problem is to partition V into k subsets V1, . . . , Vk such that:

1. V1 ∪ · · · ∪ Vk = V

2. Vi ∩ Vj = ∅

3. ∀i ∈ {1 . . . k} : c (Vi) ≤ Lmax := (1 + ε)

⌈
c (V)

k

⌉
for the maximum

imbalance ratio ε.

4. some cut metric is minimized (see Section 2.2)

A k-partition of H is a mapping P : V → N which assigns each hypernode
v ∈ V a partition P [v] ∈ {1, . . . , k}. Having partitioned the hypernodes V
into k disjoint parts we can define a k-partition implicitly by P [v ∈ Vi] = i.
We do not distinguish between a k-partition and the equivalent partition of
hypernodes V and we call Vi a block.

Definition 2. Independent hyperedges

Given a hypergraph H = (V, E , c, w), hyperedges e1, . . . em ∈ E are called
independent ⇔ ∀i, j ∈ {1 . . .m} , i 6= j : ei ∩ ej = ∅. Informally speaking
they do not share any hypernodes.

Definition 3. Incidence between hyperedges and hypernodes

Given a hypergraph H = (V, E , c, w), a hyperedge e ∈ E and a hypernode
v ∈ V are called incident ⇔ v ∈ e.

3

Definition 4. Border Hyperedge

Given a hypergraph H = (V, E , c, w) and a k-partition P of H, a hyperedge
e is a border hyperedge ⇔ ∃vi, vj ∈ e : P [vi] 6= P [vj]. All border hyperedges
of H form the set B.

Definition 5. Parallel Hyperedges

Given a hypergraph H = (V, E , c, w), hyperedges e1, e2 ∈ E are called parallel
⇔ e1 = e2. Informally speaking two hyperedges are parallel if they are
incident to the same hypernodes. hMETIS defaults to 5% and PaToH to
2% maximum imbalance.

Definition 6. Nested Hyperedge

Given a hypergraph H = (V, E , c, w), hyperedges e1, e2 ∈ E , e1 6= e2, e1 is
called nested into e2 ⇔ e1 ⊆ e2. Parallel hyperedges are nested hyperedges,
too.

2.2 Quality Metrics

We present some cut metrics which are used to measure the quality of a
hypergraph partition. These metrics are employed for example in the VLSI
domain [17].

Definition 7. Hyperedge Cut

Given a hypergraph H = (V, E , c, w) with the set of border hyperedges B of
a k-partition P of H, the hyperedge cut is defined as

HEC (P) =
∑
e∈B

w(e) = w (B)

Thus the hyperedge cut is the weight of all border hyperedges summed up.

Given a hypergraph H = (V, E , c, w) and a k-partition P of H, a hyperedge e
is said to connect two blocks i, j ∈ {1 . . . k} , i 6= j ⇔ ∃v, w ∈ e : P [v] =
i ∧ P [w] = j. The number of blocks which is connected by a hyperedge e is
defined as λ = |

⋃
v∈e {P [v]} |

Definition 8. Sum Of External Degrees

Given a hypergraph H = (V, E , c, w) with the set of border hyperedges B of
a k-partition P of H, we define the sum of external degrees

SOED (P) =
∑
e∈B

w(e)λ

4

Definition 9. λ− 1 Metric

Given a hypergraph H = (V, E , c, w) with the set of border hyperedges B of
a k-partition P of H, we define the λ− 1 metric

LMO (P) =
∑
e∈B

w(e)(λ− 1) =
∑
e∈E

w(e)(λ− 1)

This thesis only deals with hypergraph bisection (k = 2), thus for a given
hypergraph H = (V, E , c, w) with the set of border hyperedges B and a 2-
partition P of H the following equation holds:

HEC(P) = 2 · SOED(P) = LMO(P)

Definition 10. Gain in the 2-partition case with HEC

Given a hypergraph H = (V, E , c, w), a hypernode v ∈ V , a 2-partition
P and a 2-partition Q with Q[v′] = P [v′] for all v′ ∈ V \ {v} and Q[v] =
(P [v] + 1) mod 2, we define gain(v) := HEC(Q)−HEC(P). Figuratively:
gain(v) is the change of the Hyperedge Cut when switching the block of v.

In the remainder of this thesis we use the Hyperedge Cut metric exclusively.

2.3 Visual Representation of a Hypergraph

Figure 1 shows a sample hypergraph H = (V, E , c, w) with E = {e1, e2, e3},
V = {v1, v2, . . . v12}, e1 = {v5, v8, v9, . . . v12}, e2 = {v1, v2, . . . v8} and e3 =
{v6, v7, v8, v11, v12}. Hyperedges are represented by ellipses and the black
circles depict the hypernodes. Colors are used only as a visual aid. The
weight of the hyperedges and hypernodes is right of the vertical bar. In this
example the functions w and c are defined as follows:

w(e) =

{
1, if e ∈ {e2, e3}
2, if e = e1

c(v) =


1, if v ∈ {v2, v3, . . . , v6, v8, v9, v11}
2, if v ∈ {v1, v7}
3, if v ∈ {v10, v12}

5

e1|2

e2|1

e3|1

v1|2

v2|1

v4|1

v3|1

v6|1
v7|2

v8|1

v5|1

v9|1

v10|3

v11|1

v12|3

Figure 1: Sample Hypergraph

6

3 Related Work

In this Section we introduce the Kernighan-Lin and the Fiduccia-Mattheyses
Heuristic and an overview of Multi-Level Hypergraph Partitioning with two
real world implementations (hMETIS and PaToH) which build upon it.

3.1 Kernighan-Lin Heuristic

Originally the Kernighan-Lin (KL) Heuristic [19] was designed for graph
partitioning but it is easily adapted to hypergraphs [25]. KL is a local search
method which improves a given perfectly balanced (ε = 0) 2-partition P in
multiple passes. A gain function is defined which returns for a hypernode
v by how much the hyperedge cut would decrease if v was moved to the
opposite block. Gains may be negative. Then two hypernodes of different
blocks are picked which together maximize the gain when switched. If these
two hypernodes are incident to the same hyperedges the algorithm takes this
into account when computing the total gain of the switch. If a hypernode was
moved it is not eligible for moving again in this pass. Pairs of hypernodes
switch blocks until all hypernodes have been moved once. The algorithm
now rolls back to the switch which yielded the best global gain. As long as
a better or equal 2-partition resulted from a pass, another pass takes place.

3.2 Fiduccia-Mattheyses Heuristic

The Fiduccia-Mattheyses (FM) Heuristic [8] or derived heuristics are building
blocks of many state of the art hypergraph partitioners. FM is a local search
method which improves a given (balanced) 2-partition P in multiple passes.
Many of its ideas are taken from the KL heuristic. A gain function is defined
which returns for a hypernode v by how much the hyperedge cut would
decrease if v was moved to the opposite block. Gains may be negative.
At the beginning of a pass all hypernodes are marked as free. As long

as free hypernodes remain the following procedure is repeated: The free
hypernode with the highest gain that does not lead to a violation of the
balance constraint when moved, is picked and moved to its opposite block
and marked as locked. This leads to a 2-partition P ′. Remark: After the
move the gains of adjacent hypernodes change. As the gains may be negative,
the overall cut of the resulting 2-partition may be greater than previous cuts.
If no more hypernodes can be moved, the 2-partition P ′′ with the lowest

cut encountered in the pass is chosen as the basis of the next pass.
The FM heuristic usually converges after a couple of passes and the worst

case running time is linear to the size of the hypergraph, which is a significant
improvement over the KL heuristic. The other important difference between
the two heuristics is that KL swaps two hypernodes whereas FM moves only
one hypernode at a time.

7

3.3 Multi-level Hypergraph Partitioning

State-of-the-art hypergraph partitioners like hMetis [13] and PaToH [22] use
a multi-level approach. This scheme divides the partitioning process into
three phases (see Figure 2).

1. Coarsening Phase

2. Initial Partitioning

3. Uncoarsening and Refinement Phase

Coarsening
Unc

oa
rs

en
in

g

Initial Partitioning

Refinement

Refinement

Refinement

Figure 2: Multi-Level Hypergraph Partitioning

The idea behind this division is to reduce the number of hypernodes and
hyperedges in the coarsening phase significantly in order to decrease the cost
of the initial partitioning. The coarsening is then reversed to obtain a 2-
partition of the initial hypergraph.
The coarsening phase is itself divided into multiple steps, the so called

levels, thus the name "multi-level". At each level groups of hypernodes are
each merged into only one hypernode. Hyperedges, which only contain one
hypernode or hyperedges that are parallel to another hyperedge after this
merging are removed from the hypergraph. The hypernode which represents
a merged group carries the weight of all hypernodes of the group.
As one hypernode at a coarse level may represent very many hypernodes

of a finer level, we have a rather global view on the optimization problem
at the coarse levels. Whereas, on the finer levels the view is confined rather
locally.

8

The process of compiling and merging groups is repeated until the hyper-
graph is small enough for an efficient computation of an initial partition. In
the second phase the initial partitioning takes place. The coarsened hyper-
graph is often partitioned by a heuristic as the loss of topological information
in the coarsening phase can not be compensated by an optimal initial par-
tition. For more information on initial partitioning we refer the reader to
Bichot and Siarry [4].
The third phase consists of uncoarsening the hypergraph back to its initial

state. At each level the 2-partition is refined locally by moving hypernodes
between the blocks in order to decrease the hyperedge cut.

3.4 hMETIS

hMETIS is a multilevel hypergraph partitioner that originates form the Uni-
versity of Minnesota. It was implemented and improved multiple times by
George Karypis et al. [17][18]. hMETIS operates directly on the hypergraph
without first converting it into a graph.
For the coarsening of a hypergraph hMETIS provides multiple ways to

choose the hypernodes which form one group (which are then merged to-
gether). We outline three of them: Hyperedge Coarsening (HEC), Mod-
ified Hyperedge Coarsening (MHEC) and Edge Coarsening (EC). We
follow closely the description of Karypis, Aggarwal and Kumar [18].

3.4.1 Hyperedge Coarsening

At each level, the Hyperedge Coarsening scheme finds a set of hyperedges
such that all of them are independent and no additional hyperedge can be
added without two hyperedges of the set becoming dependent. All hyper-
nodes incident to one hyperedge of the set form one group and are merged
together. This is also called contraction of a hyperedge. As the hyperedges
are independent there is no overlap between the groups.

3.4.2 Modified Hyperedge Coarsening

TheModified Hyperedge Coarsening scheme is derived from theHyper-
edge Coarsening scheme. MHEC adds another step for each level to HEC.
It takes place after the hyperedges selected by HEC have been contracted.
All hyperedges which were not contracted are examined. All hypernodes of a
hyperedge which are not the result of the HEC part of this phase are merged.

9

3.4.3 Edge Coarsening

In the Edge Coarsening scheme initially the weight function w is defined
as follows:

w(e) =
1

|e| − 1
e is a hyperedge

At the beginning of each level all hypernodes are unmatched. The un-
matched hypernodes are visited in a random order. For a unmatched adja-
cent hypernode u of a hypernode v the rating is the sum of all weights of all
hyperedges connecting u and v is computed. The hypernode which is con-
nected by the highest rating constitutes a group with v. Both hypernodes
are marked as matched. Each group thus consists of two hypernodes and
no hypernode is in more than one group. This process is repeated until no
more pair of hypernodes can form a group. It is possible that unmatched
hypernodes remain.

3.4.4 Initial Partitioning

hMETIS provides two algorithms for initial partitioning. The first one cre-
ates a random 2-partition which is then refined by the FM refinement algo-
rithm.
The second initial partitioning algorithm randomly picks a hypernode v.

A breadth-first-search is performed from v and the found hypernodes are
added to the block of v until half of the hypernode weight of the initial
hypergraph is in this block. The so composed 2-partition is also refined by
the FM algorithm.

3.4.5 Uncoarsening and Refinement

In the uncoarsening phase hMETIS reverses the coarsening phase level by
level. It restores the groups of hypernodes which were contracted and re-
fines the result. hMETIS provides two refinement algorithms. The first is
a heuristic very similar to FM with two exceptions. The number of passes
is restricted to 2 and a pass stops early when l = 0.01NV moves did not
improve the cut. NV is the current number of hypernodes.
The second refinement algorithm is called Hyperedge Refinement (HER).

HER visits all border hyperedges in a random order. For a border hyperedgee
the gains by moving all its hypernodes to one block are computed. The
hyperedge is moved to the block with the greatest cut improvement given
that the balance constraint is not violated.

10

3.4.6 Multiphase Refinement

hMETIS supports the so called multiphase refinement technique. The idea
behind this technique is to restart coarsening in or after the uncoarsening
phase. Although one modification is applied: only hypernodes of the same
block are merged together. If another coarsening phase is started after the
hypergraph was completely uncoarsened, it is called a V-Cycle. If the un-
coarsening is restarted in the middle of uncoarsening it is called a v-Cycle.
In these additional coarsening phases other coarsening schemes may be used.
v-Cycles are cheaper as the hypergraph is smaller at the time of invocation.
We implement the V-Cycle technique, too (see Section 4.6).

3.5 PaToH

PaToH is a hypergraph partitioner developed by Catalyurek and Aykanat.
The program provides a multitude of coarsening, initial partitioning and re-
finement algorithms. For an exhaustive description of the algorithms used
therein see the PaToH manual [21]. We restrict ourselves to the descrip-
tion of the coarsening and refinement algorithms which are used by default.
For a description of the initial partitioning algorithms see Catalyurek and
Aykanat [5].

3.5.1 Coarsening

PaToH employs a coarsening method similar to edge coarsening of hMETIS.
With edge coarsening in hMETIS a group consists of maximal two hypern-
odes, PaToH permits more than two hypernodes in a group – PaToH calls
them cluster. All hypernodes are visited in a random order and are matched
with one of their adjacent hypernodes and these two hypernodes form a clus-
ter. If the currently visited hypernode v is matched with a hypernode which
is already part of a cluster, v is simply added to this cluster. Thus clusters
of more than two hypernodes may be contracted together.

3.5.2 Refinement

PaToH uses its custom refinement scheme: One pass of a modified FM
(Boundary FM) heuristic is followed by one pass of a modified KL (Boundary
KL) heuristic. Boundary FM only moves hypernodes which are incident to a
border hyperedge and then only from the heavier block to the other. Bound-
ary KL has the same constraints as Boundary FM. This means that both
Boundary FM and Boundary KL are local refinement heuristics in contrast
to the original FM and KL heuristics which operate globally.

11

4 n-Level Hypergraph Partitioning

We start this Section with an overview of n-level hypergraph partitioning in
Section 4.1 and carry on with a detailed description of the coarsening phase,
the initial partitioning phase and the refinement phase in Sections 4.2, 4.3
and 4.4 respectively. Section 4.5 introduces various rating functions which
are used.
n-level hypergraph partitioning closely resembles the multi-level approach.

The difference is in the number of hyperedges which are contracted at each
level. While a classic multi-level scheme contracts multiple independent hy-
peredges (or groups of hypernodes) at a level, our algorithm contracts only
one single hyperedge at each level.

Coarsening

Unc
oa

rs
en

in
g

Initial Partitioning

Refinement

Figure 3: n-Level Hypergraph Partitioning. Double encircled hyperedges are
either contracted (left hand side) or have been uncontracted in the previous
step (right hand side).

12

4.1 General Description

Given a hypergraph H = (V, E , c, w) without any parallel edges, we decrease
the size of H, i. e. the size of the sets E and V by contracting one single
hyperedge at a time. The necessary information to reverse this process is
stored in an appropriate form on a stack S for later use.
This coarsening phase is stopped when number of hypernodes falls below a

certain threshold. H is then partitioned initially which yields a 2-partition P .
The steps to coarsen H are reversed with the help of the information

stored on the stack S. The block information is preserved and at each level
the projected 2-partition is refined by a modified FM heuristic. An outline
of the algorithm is shown in Algorithm 1 and illustrated in Figure 3.

Algorithm 1 Partition

Require: Hypergraph H = (V, E , c, w), rating function rate

COARSEN(H, rate) // coarsen H by contracting hyperedges
Initially Partition H into two blocks
UNCOARSEN(H) // refine at each level

4.2 Coarsening Phase

The hypergraph H is coarsened by iteratively contracting single hyperedges.
To decide which hyperedge to contract next, we use a rating that is associated
with each hyperedge. These ratings are computed by a so called rating
function. In Section 4.5 we explain the importance of rating functions for
the hypergraph partitioning problem and describe various rating functions.

Algorithm 2 Coarsen(H, rate)
Require: Hypergraph H = (V, E , c, w), rating function rate

initialize addressable priority queue PQ
if tie-breaking then

randomly shuffle E
for all e ∈ E do

PQ.insert(e, rate(e))
while PQ is not empty and |V | > t do

e := PQ.deleteMax()
incident_node_weight :=

∑
v∈e c(v)

if incident_node_weight ≤ s then
CONTRACT(H, e, PQ, rate)

13

As depicted in Algorithm 2 coarsening starts with randomly shuffling the
hyperedges if tie-breaking is used. Tie-breaking changes the order in which
equally rated hyperedges are inserted into the priority queue PQ. Then all
hyperedges are rated according to a chosen rating function and inserted into
a addressable priority queue. This is necessary as the contraction of one
hyperedge may change the rating of the adjacent hyperedges.
There are two parameters of importance in this phase. First of all the

threshold t which defines the number of hypernodes that should remain in
the coarsest hypergraph. To avoid to heavy hypernodes on the coarse levels,
we only allow contractions of hyperedges with a combined hypernode weight
smaller than or equal to s times the initial number of hypernodes of H. t
and s are tuning parameters (see Section 5.1.3).
While the priority queue is not empty and the number of hypernodes of H

is greater than the threshold t the hyperedge e with the maximum rating is
removed from the priority queue and contracted, if the sum of the weight of
the incident hypernodes of e is less than or equal to s.

4.2.1 Contracting a Single Hyperedge

Algorithm 3 shows how a single hyperedge e is contracted. A sample con-
traction is depicted in Figure 4. The first step of the contraction of e is to
remove all hyperedges nested into e from H and PQ. This is reflected in
Figure 4b where e4 is removed.
After that, one hypernode r ∈ e is picked as the representative of the

contracted hyperedge in later levels. The weight of r is set to the accumulated
weight of all hypernodes incident to e. Additionally all adjacent hyperedges
to e are connected to r if they were not already connected to r. In our example
(Figure 4c) v3 is picked as the representative and its weight is changed to
c(v1) + c(v2) + c(v3) = 3. The hyperedges e5 and e3 are connected to v3.
The hypernodes incident to e with the exception of r are removed from the

hypergraph. Figure 4d visualizes this step. It is clear that the choice of the
representative r may be arbitrary as the changes that would be made to H
if another hypernode was picked would lead to a similar change in topology.
The removal of these hypernodes may lead to parallel hyperedges as it is

the case in our example (Figure 4d with the hyperedges e5 and e1). Removing
these parallel hyperedges takes several steps. First we find for all adjacent
hyperedges those which are parallel to each other and put them into a set
PES (Parallel hyperedge set). As there can be more than of these sets, we
create a container PESS (Set of parallel hyperedge sets) to held them. After
that the following procedure is applied to each PES ∈ PESS: Remove the
first hyperedge per and add the weight of all other hyperedges to the weight
of per. Then remove all hyperedges but per from H and PQ.

14

Algorithm 3 Contract(H, e, PQ, rate)
Require: hypergraph H = (V, E , c, w), hyperedge e ∈ E , addressable prior-
ity queue PQ, rating function rate

for all hyperedges ne nested into e do
PQ.remove(ne)
H.remove(ne)

r ← pick one hypernode of e
w ← 0

for all hypernodes n ∈ e do
w ← w + c(n)

c(r) := w

for all hyperedges ae adjacent to e do
if ae is not incident to r then

H.connect(ae, r)

for all hypernodes n ∈ e do
if n 6= r then

H.remove(n)

initialize set of sets PESS
insert sets of parallel hyperedges adjacent to e into PESS

for all PES ∈ PESS do
per ← remove first hyperedge from PES
for all pe ∈ PES do

w(per)← w(per) + w(pe)
PQ.remove(pe)

H.remove(e)

for all hyperedges ae adjacent to e do
PQ.update(ae, rate(ae))

15

v |24

v |13

v |11

v |12

v |15

e |13
e |14

e |12

e |11

e |15

(a) Initial situation

v |24

v |13

v |11

v |12

v |15

e |13

e |12

e |11

e |15

(b) Nested Hyperedge

v |24 v |33

v |11

v |12

v |15

e |13

e |12

e |11

e |15

(c) Connections created

v |24

v |33

v |15

e |13

e |12

e |11

e |15

(d) Hypernodes removed

v |24

v |33

v |15

e |13

e |12

e |21

(e) Parallel Hyperedge

v |24

v |33

v |15

e |13

e |21

(f) Hyperedge removed

Figure 4: Contraction of hyperedge e2 in a sample hypergraph with v3 as the
representative.

We now describe an efficient way to compute the set PESS. A finger-
print is a quadruple consisting of a hash value, a counter value, a boolean
value matched and an unique hyperedge identifier. We set up an array of
fingerprints whose length is the number of adjacent hyperedges of the rep-
resentative hypernode r. The array entries are initialized by performing the
following procedure for all adjacent hyperedges of r: Let the hyperedge be
e. A counter c is set to the number of adjacent hypernodes of e and the
identifiers of the adjacent hypernodes are XORed into a hash value. An ar-
bitrary constant value is used as seed. The counter and this hash value form
together with the identifier of e and the initial value false for matched the
fingerprint for e.
After all hyperedges have been processed, the now fully initialized finger-

print array is sorted by the hash values of the entries. Parallel hyperedges
are in neighboring slots of the fingerprint array. A loop iterates over all
fingerprints from the start of the array. For each unmatched fingerprint f
all unmatched fingerprints with the same hash and the same counter are
considered as a candidate for parallel edges to the hyperedge represented by
f . A check is performed which involves comparing the hypernodes of f and
each candidate to filter out the false positives. All fingerprints representing

16

parallel hyperedges are marked as matched thereby prohibiting that they are
later considered again.
Although sorting could be avoided by using a hash table instead of an

array, the time used for allocation, clearing/deallocation of hash tables is in
practice greater than the time used for sorting.

4.3 Initial Partitioning Phase

We use PaToH as our initial partitioner. For a rough description of the
PaToH algorithm see Section 3.5.
PaToH is called z times with varying random seeds to generate different

2-partitions of H. We pick the 2-partition P with the smallest hyperedge
cut as the initial partition of H. We do not check P for imbalance as we rely
on the initial partitioner and our refinement phase for keeping the partitions
balanced. z is a tuning parameter (see Section 5.1.3). The exact arguments
used for PaToH are documented in Section 5.3.1.

4.4 Uncoarsening and Refinement Phase

As depicted in Algorithm 4 the hypergraph is uncoarsened to its original
state by uncontracting the hyperedges which were contracted previously in
reverse order and projecting the 2-partition up to the higher levels. The stack
S holds the necessary information for this step. After each uncontraction the
projected 2-partition is refined heuristically.

Algorithm 4 Uncoarsening and Refinement phase
Require: H is a hypergraph with H = (V,E, c, w), S a stack with sufficient
information to reverse the coarsening phase

function uncoarsen(H, S)
while S is not empty do

s := S.pop() // S holds a datastructure to reverse
// the contraction of a hyperedge

e := s.contracted_hyperedge
UNCONTRACT(H, s, e)
REFINE(H, e)

17

4.4.1 Uncontracting a Hyperedge

In essence the steps taken in Algorithm 3 are reversed to uncontract a
hyperedge. In the following description we assume, that all information
that is needed to restore hyperedges, hypernodes, weights etc. is saved on
stack s. We use the term "restore" a hypernode or hyperedge to indicate
that the hypernode/hyperedge is readded to H and connected to all hyper-
edges/hypernodes which it ws connected to at the time of its removal.
First, the removed hyperedge e is restored (and connected to its represen-

tative hypernode r). After that, all hyperedges which were removed because
they were parallel hyperedges are restored. The weight of each representative
of a parallel hyperedge group is reset to its original value. Then the remaining
hypernodes of e are restored and their block information set to the value of
the representative hypernode. This ensures that the 2-partition from coarser
levels is projected to higher levels of the uncoarsening phase. The weight
of the representative hypernode r is reset to its original value. When the
hyperedge e was contracted, the representative hypernode was connected to
additional hyperedges. These connections are now removed again. Finally,
the nested hyperedges of e are restored. After this, the 2-partition is locally
refined around the hyperedge e, see the next Section.

4.4.2 Refinement

Our algorithm implements a local refinement heuristic which refines a 2-
partition P around a (just uncontracted) hyperedge e. Algorithm 5 shows
a high-level view of the refinement heuristic. In case that the 2-partition P
violates the balance constraint the refinement phase is used to rectify this.
The exact method used is explained later. Unless otherwise noted, we assume
in the following that P is legal. Each hypernode has two status flags: One
for active/inactive and one for marked/unmarked. We need those two
flags as we later have to determine if an inactive hypernode had already been
in one of the priority queues. Initially the flags of all hypernodes of H are set
to unmarked and inactive. Two addressable priority queues PQ0 and PQ1

are initialized. They will hold hypernodes and their respective gain value.
PQ0 holds hypernodes which are in block 0, PQ1 hypernodes which are in
block 1.
A priority queue is called eligible if is is non-empty and the hypernode

with the highest gain of this queue does not violate the balance constraint
if switched to the other block. We pick the hypernode v with the highest
gain out of all eligible priority queues and switch its block. v is set inactive
and marked and removed from its priority queue. The gain of all adjacent
hypernodes is recalculated and updated in their priority queues. The block-
switch of v can turn incident hyperedges of v into border hyperedges. All
their incident hypernodes are inserted into the respective priority queues as
long as they are inactive and unmarked.

18

Algorithm 5 Refinement
Require: H is a hypergraph with H = (V,E, c, w), P is a 2-partition of H
which does not violate the balance constraint and e ∈ E a hyperedge

function refine(H, P , e)
for all hypernodes v ∈ V do

set v to inactive
set v to unmarked

initialize empty addressable priority queues PQ0 and PQ1

for all adjacent border hyperedges be of e do
for all adjacent inactive and unmarked hypernodes v of be do

PQP [v].insert(v, gain(v))
set v active

// perform local search
// rollback to minimum cut

This process is repeated until the stopping criteria is fulfilled. We use
a very simple stopping criteria. Initially a counter c is set to 0 and each
iteration increases the counter by 1. When c reaches a predefined threshold
i the local search is aborted. Whenever a block-switch of a hypernode leads
to a hyperedge cut less or equal to the previously achieved minimum that
occured in this local search c is set to 0. i is a tuning parameter (see Section
5.1.3).
After the local search is aborted our algorithm rolls back to a random

2-partition with lowest cut. For example: The local search found two 2-
partitions with hyperedge cut hec and none with a lower cut then one of
these 2-partitions is picked by random. If the local search did not yield a cut
less than the initial one all switches are undone.

Corner Cases There are two corner cases which are worth mentioning. If
no eligible priority queue is found the hypernode with maximum gain out of
each non-empty queue is removed and the counter c increased by one. This
is done as these hypernodes violate the balance constraint and would lead to
an too early abort of the local search.
Additionally the precondition that the initial 2-partition P does not violate

the balancing constraint is in practice not always achievable. In this case it
is possible that the local search cannot find another 2-partition Q which
improves the cut and meets the balance constraint. If the initial 2-partition
P violates the balance constraint our algorithm aborts the local search as
soon as a block switch leads to a valid 2-partition and does not roll back to
the minimum cut.

19

Efficient Computation of Gain Changes The move of a hypernode
may cause changes of the gain of its adjacent hypernodes. We employ a
mechanism similar to the one employed by Fiduccia and Mattheyses [8] which
is more efficient as it avoids the recomputation of the gains. The gain of a
hypernode move is the change in the global cut if the hypernode switches
blocks. Obviously, only the incident hyperedges of a hypernode contribute
to its gain value. The core of this method is that the contribution of each
hyperedge to the gain can be computed independently.
For example in Figure 5a the gain of the move of v3 is 1. The of e2 is 0 as

the e2 is and stays a border hyperedge. The contribution of e1 is w(e1) = 1 as
the move of v3 would make e1 a non-border hyperedge. All other hypernodes
have a gain of 0.

e1|1

e2|1

v1|2

v2|1

v3|1

v4|1

v5|1
v6|1

(a) Nested Hyperedge

e1|1

e2|1

v1|2

v2|1

v3|1

v4|1

v5|1

v6|1

(b) Connections created

Figure 5: Gain computation. The red line is the block boundary.

Now in Figure 5b v3 was moved. This leads to v6 having gain 1 and
v1, v3 and v4 having gain −1. This can be computed by looking at the
incident hyperedges of the moved hypernode v3 and adapting the gain of
their respective hypernodes. e1 had previously two hypernodes in the left
block and one in the right. Now all its incident hypernodes are one block.
This means that v1 and v2 would increase the cut if moved, thus their gain
reduces by 1. The gain of v3 does not need to be updated as it is no more in
the priority queues.
For a hyperedge the following observations hold: If the number of hyper-

nodes in one block drops to 0 the gain of the hypernodes in the other block
changes by the negative weight of the hyperedge. If the number of hyper-
nodes in one block drops to 1 the lone hypernode changes its gain by the
weight of the hyperedge. Note that the moved hypernode is not eligible for
moving in this pass again at it is inactive and marked after the switch and
thus it is not relevant whether the gain change is computed correctly or at all
for this hypernode. Similar rules apply for the other way round. Special care
has to be taken if a hyperedge contains only two or three hypernodes. It is
necessary for an efficient implementation that the number of hypernodes and

20

their block information is known and kept up to date. Our implementation
saves this information in the hyperedges itself and updates it on the block
switch of a hypernode.
To sum it up: A hypernode v switches blocks. The incident hyperedges of

v are visited. For each hyperedge e the following procedure is executed: The
gain change for all incident hypernode of e is computed and applied to each
hypernode.

4.5 Hyperedge Rating Functions

The coarsening phase reduces the amount of topological information in the
hypergraph. Obviously the order of contraction impacts the coarsening of
H and the rating function used is responsible for this order. Thus different
rating functions generate different hypergraphs at the coarsest level. As
these hypergraphs are the input of the initial partitioning phase, the rating
functions have an influence on how the initial 2-partition will look like and
more importantly how good the cut will be. The rating function is selected
by a command-line parameter (see Section B).
We define two classes of rating functions. A rating function of the first

class does not differentiate whether it rates a hyperedge for the first time in
a coarsening phase or later in the coarsening phase. A function of the second
class does this, i.e. the first rating of an hyperedge includes some computation
based on nested hyperedges. This leads to a different initial ordering in the
priority queue from where the hyperedges are picked for contraction and thus
a different contraction sequence.

4.5.1 Rating functions of the first class

rater1(e) =
w (e)

|e|
√∏

v∈e c (v)
rater2(e) =

w (e)|e|∑
v∈e c (v)

rater3(e) =
w (e)

|e|
rater4(e) =

w (e)|e|∏
v∈e c (v)

rater5(e) =
w (e)∑
v∈e c (v)

rater6(e) = w (e)

(∑
v∈e

1

c (v)

)

rater7(e) = w (e)

(∑
v∈e

1√
c (v)

)
rater8(e) = w (e) |e|

√√√√(∑
v∈e

1

c (v)

)

21

rater9(e) = w (e) |e|

√√√√(∑
v∈e

1√
c (v)

)
rater10(e) =

w (e)|e|

|e|
√∑

v∈e c (v)

rater11(e) =
w (e)

|e|
√∑

v∈e c (v)
rater12(e) =

w (e)|e|

|e|
√∏

v∈e c (v)

rater17(e) =
w (e)∏
v∈e c (v)

4.5.2 Rating functions of the second class

rater13(e) =


w (e) +

∑
n nested in ew(n)

|e|
√∏

v∈e c (v)
, first rating in a coarsening phase

w (e)
|e|
√∏

v∈e c (v)
, otherwise

rater14(e) =


w (e)|e| + (

∑
n nested in ew (n))|e|

|e|
√∏

v∈e c (v)
, first rating in a coarsening phase

w (e)|e|

|e|
√∏

v∈e c (v)
, otherwise

rater15(e) =


w (e) +

∑
n nested in e 1

|e|
√∏

v∈e c (v)
, first rating in a coarsening phase

w (e)
|e|
√∏

v∈e c (v)
, otherwise

rater16(e) =


w (e)|e| + (

∑
n nested in e 1)

|e|

|e|
√∏

v∈e c (v)
, first rating in a coarsening phase

w (e)|e|

|e|
√∏

v∈e c (v)
, otherwise

rater13 and rater15 are derived from rater1. rater14 and rater16 are derived
from rater12.

22

4.6 V-Cycles

Like hMETIS, we implement the "V-Cycles" technique. This means that
after the first complete run we coarsen the hypergraph again, possible with
another rating function. Unlike the first initial coarsening phase only hyper-
edges which are not border hyperedges, i.e. all its incident hypernodes are in
the same block, may be contracted. The initial partitioning phase is omitted
as we already have a 2-partition from the first run. Thus only the uncoars-
ening and refinement phase are performed. The number of these additional
coarsening and refinement phases is specified by a tuning parameter v (see
Section 5.1.3). Another tuning parameter q (see Section 5.1.3) determines
whether only one rating function is used in the V-Cycles or the rating func-
tion is randomly picked for each cycle from a suitable set. The advantage of
this method over multiple tries with different seeds is that V-Cycles allow us
to improve the 2-partition P further, i. e. get closer to the local minimum
which P is neighboring.
Figure 6 shows a single V-Cycle. At the coarsest level some hyperedges

were not contracted as they are border hyperedges of P . In the subsequent
uncoarsening and refinement phase P is refined further by applying the in-
troduced algorithms.

Coarsening

Un
co
ar
se
ni
ng

Refinement

Figure 6: One V-Cycle of the n-Level Hypergraph Partitioning. Double
encircled hyperedges are either contracted (left hand side) or have been un-
contracted in the previous step (right hand side).

23

5 Experimental Evaluation

In this Section we present an experimental evaluation of our n-Level hyper-
graph partitioner.
First of all, we present our test set and give the data sources. Then we

evaluate the rating functions. A description of the various tuning parameters
follows. These parameters are then tuned extensively and we give a summary
of our tuning efforts. We introduce three parameter sets Fast, Strong and
Best which are then compared to hMETIS and PaToH. We also compare our
algorithm with the results from the original n-Level paper.

5.1 Experimental Setting

5.1.1 Environment

All experiments were performed on our Evaluation System with 252 GiB of
main memory and four AMD Opteron 6168 processors running at 1.90 GHz.
Each of these processors has twelve cores which share 12 MiB of L3-Cache
and each core has 512 kiB of L2-Cache. Both machines run Ubuntu 11.04
(x86_64). Our program was compiled with g++ version 4.5.2 of the GCC
and optimization level 3.

5.1.2 Instances

15 graphs out of 5 benchmark sets were picked to evaluate our algorithm.
The graphs are listed in Table 1. The first three hypergraphs are from Chris
Walshaw’s benchmark suite [27]. The next three hypergraphs are from the
benchmark suite published by the MCNC1. These graphs stem from the cir-
cuit placement domain. The files were retrieved from the website of the
"Binghampton Laboratory for Algorithms, Circuits, and Computer Aided
design" [10]. The subsequent three hypergraphs are taken from the ISPD98
benchmark suite released by IBM [2]. The files were retrieved from the web-
site of "UCSD VLSI CAD Laboratory" [16]. The next three hypergraphs are
representations of sparse matrices taken from the The University of "Florida
Sparse Matrix Collection" [26]. The last three hypergraphs are from the IS-
CAS89 benchmark suite also published by the MCNC. These graphs model
digital circuits. The files were retrieved from [15].
A program (HGConv) from [11], a perl script (hmetis.perl) from [16], two

perl scripts (grscgen.pl, grsc2ispd.pl) from [23] and custom scripts were used
to convert the diverse file formats to the hMETIS and PaToH input formats.

1Microelectronics Center of North Carolina

24

Graph |V | |E| HN Deg HE Deg |E|/|V |
Walshaw Suite

cs4 22499 43858 3.90 2 1.95
bcsstk32 44609 985046 44.16 2 22.08
memplus 17758 54196 6.10 2 3.05

MCNC
avqlarge 25178 25384 3.29 3.26 1.01
avqsmall 21918 22124 3.48 3.45 1.01
industry2 12637 13419 3.81 3.59 1.06

ISPD
ibm03 23136 27401 4.04 3.41 1.18
ibm04 27507 31970 3.85 3.31 1.16
ibm05 29347 28446 4.30 4.44 0.97

Sparse Matrices
crystk01 4875 4875 64.80 64.80 1
s3rmq4m1 5489 5489 51.21 51.21 1
vibrobox 12328 12328 27.81 27.81 1

ISCAS89
s15850 10533 10383 2.35 2.38 0.99
s35932 18148 17828 2.65 2.70 0.98
s38584 21021 20717 2.63 2.66 0.99

Table 1: Test set for the experimental evaluation. HN Deg is the average
number of hyperedges a hypernode is connected to. HE Deg is analogously
defined.

5.1.3 Tuning Parameters

This Section explains the tuning parameters of our algorithm. These param-
eters effect both the quality, i.e. Hyperedge Cut, of the final 2-partition as
well as the run time of our program.

Initial Partitioning Iterations z. The parameter z defines the number
of runs of the initial partitioner in the initial partitioning phase. Each run is
made with a different seed. This leads to multiple initial 2-partitions. The
one with the smallest Hyperedge Cut is chosen as the starting point of the
uncoarsening and refinement phase.

Hypernode Threshold for Contraction t. As long as there are more
than t hypernodes in the hypergraph, the coarsening phase continues, i.e.
new hyperedges are picked from the queue and contracted. We chose a value
which is similar to the ones of hMETIS, PaToH and the original n-Level
graph partitioner: t = 100.

25

Maximal Weight Of Representative Hypernode s. When the parti-
tioner picks a hyperedge to contract in the coarsening phase, it is first checked
whether the resulting representative hypernode would exceed the threshold
s. s is defined as a fraction of the weight of all hypernodes in the original
hypergraph. This parameter is used to prevent the forming of heavy clusters
in which many light weight hypernodes are connected to a heavy hypernode
by a hyperedge of size two. For tuning parameter s we adopted the same
value as the original n-Level graph partitioner: s = 0.0375.

Maximal number of local search iterations without improvement
i. After the uncontraction of a hyperedge e, refinement kicks in and tries
to optimize the cut if e was near the cut. When i hypernodes were switched
to another partition and no new best global cut was found, the refinement is
aborted and uncoarsening continues.

Number of additional coarsening and refinement phases v. The
parameter v determines the number of additional coarsening and refinement
phases (V-Cycles) which are performed after the first run in order to coarsen
the hypergraph in another way. This is based on the assumption that there
are multiple different ways to coarsen a hypergraph which yield different
possibly better cuts.

Mode of picking the rating function for a V-Cycles q. The param-
eter q determines whether the rating function used in a V-Cycle is the one
specified by r or randomly picked from a suitable set.

26

5.2 Parameter Tuning

In this Section we show the results of various experiments to fine tune our
algorithm by examining the influence of the tuning parameters on the final
Hyperedge Cut. For each parameter we pick the value which leads to the
best final Hyperedge Cut and keep this value for the rest of the parameter
tuning stage. This leads us to a parameter set which we call Best. For the
comparison of our algorithm with hMETIS and PaToH we will additionally
define the parameter sets Strong and Fast (see Section 5.2.5).

5.2.1 Evaluation of Rating Functions

In Table 2 we show an evaluation of different rating functions (see Sec-
tion 4.5). We ran our algorithm 25 times for each hypergraph with different
seeds and computed the arithmetic mean of the results of these runs. Then
we used the geometric to combine the arithmetic means to get a single value
per rating function.

Rating Function Min cut Max cut Avg cut time [s]
1 429.06 593.05 483.65 13.61
2 -6.07% -5.52% -8.22% 19.01%
3 -11.91% -18.97% -19.72% 41.03%
4 0.24% -2.92% -2.63% 9.33%
5 -5.56% -8.22% -8.25% 12.54%
6 -48.95% -49.61% -54.67% -9.26%
7 -50.77% -57.32% -58.44% -1.85%
8 -7.09% -25.47% -18.04% 11.56%
9 -5.92% -12.84% -11.85% 17.59%
10 -35.27% -42.47% -44.35% 4.98%
11 -40.19% -53.90% -52.08% -12.71%
12 -1.00% -9.77% -4.36% 5.07%
13 -1.82% -2.60% -1.47% 27.79%
14 -4.57% -12.04% -6.94% 22.72%
15 -1.87% -1.73% -1.16% 21.33%
16 -5.08% -12.39% -7.27% 23.98%
17 1.98% 1.05% -1.29% -5.34%

Table 2: Cut and time of different rating functions with s = 0.0375, t =
100, max_imbal = 2%, z = 25, i = 10, v = 0. The columns show the
improvement in final cut and the increase in runtime.

For the rest of this evaluation we pick the rating function rater1 as the
default rating function, as it gives the best final cut on average.

27

5.2.2 Initial Partitioning Trials

Table 3 shows the impact of the number of initial partitioning trials. Each
trial is run with a different random seed.
Obviously the improvement is small and with z ≥ 5 the results stabilize

at an improvement of the final cut of about 1% - 1.4%. Thus we choose
z = 50 for the following experiments to err on the right side. The variable
results (i. e. z = 20 and z = 30) indicate that the best initial cut must not
necessarily lead to the best final cut or may be imbalanced. As the initial
cut defines the topology of the partition, the subsequent refinement stage is
greatly influence. For example refinement passes may abort sooner or later.
This may explain the variability in runtime, as the highest variability is in
the z ≥ 20 range, where regularly new better cuts are found with a slight
increase of z.

IP Rounds Min cut Max cut Avg cut time [s]
1 428.30 608.85 489.34 11.91
2 -0.37% -0.05% 0.55% 2.06%
3 -0.23% 1.55% 0.83% -10.22%
4 -0.36% 2.92% 0.99% 2.43%
5 -0.16% 2.40% 1.11% 6.34%
6 -0.12% 0.80% 1.24% -4.19%
7 -0.07% 1.76% 1.19% 2.36%
8 -0.26% 3.55% 1.41% 8.16%
9 -0.24% 4.05% 1.24% -2.47%
10 -0.39% 2.96% 1.18% 2.84%
20 -0.38% 0.66% 0.73% 12.93%
30 -0.15% 3.29% 0.96% 14.99%
40 -0.47% 3.19% 1.13% 23.39%
50 0.01% 2.88% 1.25% 30.36%
100 -0.53% 3.99% 1.18% 62.31%

Table 3: Initial Partitioning with s = 0.0375, t = 100, max_imbal = 2%,
i = 10, v = 0, rater1. The columns show the improvement in final cut and
the increase in runtime.

28

5.2.3 Termination parameter for a refinement pass

In Table 4 we list the results of tuning parameter i, i. e. the maximal accept-
able number of successive moves in one refinement pass which do not yield
an improvement in cut size.
Setting with i > 100 lead to variable results does not result in a improved

cut. The improvement stabilizes at approximately 11.3% - 11.8%. Therefore
we pick i = 100 for our further experiments. A possible explanation for the
variability in runtime may be cache effects, but we did not investigate this
matter.

Parameter Min cut Max cut Avg cut time [s]
1 450.86 642.65 521.49 13.94
2 1.37% 1.98% 1.78% 5.63%
3 2.54% 3.82% 3.25% -3.00%
4 2.73% 7.50% 4.57% 4.69%
5 3.15% 7.57% 4.77% 6.90%
6 3.88% 7.44% 5.70% -0.42%
7 3.80% 6.97% 6.14% 9.96%
8 3.77% 7.99% 6.37% 6.43%
9 3.69% 6.09% 6.55% 7.09%
10 5.03% 10.14% 7.62% 10.82%
20 5.26% 12.02% 9.08% 18.47%
30 6.43% 11.82% 10.06% 28.57%
40 6.54% 9.57% 9.90% 32.27%
50 6.60% 10.24% 10.23% 38.53%
100 6.91% 13.45% 11.44% 61.36%
130 7.22% 12.01% 11.52% 96.66%
160 7.28% 11.95% 11.32% 98.31%
190 7.11% 13.62% 11.74% 110.68%
220 6.94% 14.24% 11.79% 119.35%
250 6.92% 13.15% 11.53% 115.86%

Table 4: Varying the refinement parameter with s = 0.0375, t = 100,
max_imbal = 2%, z = 50, v = 0, rater1. The columns show the im-
provement in final cut and the increase in runtime.

29

5.2.4 V-Cycles

In Table 5 and Table 6 we list the results of the experimental evaluation of our
V-Cycle implementation. The experiments of Table 5 were employed with
the setting that the chosen rating function (rater1 in this case) is employed
for coarsening in the additional V-Cycles, too. The experiments of Table 6
were employed with the setting that the rating function for each V-Cycle is
picked randomly out of the set rater1, rater4, rater15 and rater17. We have
chosen these rating functions as they yielded good cuts (see Table 2).

V-Cycles Min cut Max cut Avg cut time [s]
0 418.17 559.12 460.29 23.37
1 1.95% 2.67% 2.91% 73.56%
2 2.25% 5.08% 3.80% 145.69%
3 2.31% 7.73% 4.41% 217.32%
4 2.56% 8.52% 4.73% 271.69%
5 2.37% 11.65% 5.01% 332.86%
6 2.28% 11.20% 5.21% 410.56%
7 2.54% 13.08% 5.51% 491.40%
8 2.52% 11.03% 5.29% 509.91%
9 2.47% 9.90% 5.51% 628.15%
10 2.48% 12.62% 5.79% 697.23%

Table 5: s = 0.0375, t = 100, max_imbal = 2%, z = 50, i = 100, rater1, q
not set. The columns show the improvement in final cut and the increase in
runtime.

We decided to stop the testing at 10 additional V-Cycles as the time
penalty grows too big. Instead, we consider it more applicable to start the
program with an appropriate configuration multiple times with different seeds
and pick the best.
Interestingly using different rating functions for different V-Cycles yields a

significant improvement as seen in Table 6. This is why we set q per default.
Additionally we choose v = 9 as it gives the best final cut.
The improvement when using different rating functions is due to a larger

amount of diversification in the coarsening process. That this diversification
does not necessarily mean an improvement is shown by the results for v = 9
and v = 10.

30

V-Cycles Min cut Max cut Avg cut time [s]
0 419.35 557.13 461.56 22.53
1 3.52% 5.28% 3.96% 80.48%
2 4.13% 6.43% 4.99% 169.72%
3 4.40% 11.08% 5.95% 249.32%
4 4.37% 9.75% 6.27% 338.18%
5 4.47% 8.11% 6.45% 430.40%
6 4.53% 8.70% 6.50% 503.61%
7 4.77% 10.13% 7.04% 584.24%
8 4.67% 11.77% 7.23% 688.99%
9 4.63% 12.79% 7.63% 732.59%
10 4.68% 9.77% 7.32% 806.74%

Table 6: s = 0.0375, t = 100, max_imbal = 2%, z = 50, i = 100, rater1,
q set. The columns show the improvement in final cut and the increase in
runtime.

5.2.5 Parameter Sets: Best, Strong and Fast

In this Section we define parameter sets for the final evaluation.

Fast z = 10, i = 10, rater17, v = 0, (q set)

This parameter set is optimized for runtime. The most costly part, V-Cycles,
is completely left out. The parameters for the refinement phase and the ini-
tial partitioning phase are kept low. We did not pick yet lower values for i
and z as the time saving does not justify the loss in quality. Additionally
this set uses the fastest rating function rater17.

Strong z = 25, i = 50, rater1, v = 3, q set

This parameter set aims to be a trade-off between runtime and quality. V-
Cycles are used but only three of them. Of course q is set, thus different
rating functions are used for each V-Cycle. The parameters for the refine-
ment phase and initial partitioning phase are moderate. This parameter set
employs the rating function with the best final cut, rater1.

Best z = 50, i = 100, rater1, v = 9, q set

This parameter set is optimized for quality. Nine V-Cycles are performed
with q set. The parameters for the refinement phase and the initial parti-
tioning phase are high and this set also employs the rating function with the
best final cut, rater1.

31

5.2.6 Parameter Tuning: Summary

In Table 7 we show the improvement of final cut after each tuning step.

Avg Cut Time
Tuning step absolute improvement [%] absolute [s]
Original 483.57 – 12.25
z = 50 483.22 0.07 15.53
i = 100 461.83 4.50 22.49
v = 10 433.63 10.33 186.31
v = 9, q set 427.77 11.54 204.29

Table 7: Comparison of the tuning steps. Percentages are relative to the
original parameter choice. Original : z = 10, i = 10, rater1, v = 0. Numbers
taken from Table 3 to Table 6.

In Table 8 we show the improvement in cut and increase in time of the
three parameter sets compared to the original parameter choice.

Avg Cut Time
Preset absolute improvement [%] absolute [s] increase [%]
Original 483.57 – 12.25 –
Fast 490.10 -1.35 12.22 -0.24
Strong 438.27 9.37 65.70 436.33
Best 428.37 11.41 198.07 1,516.90

Table 8: Comparison of the parameter sets with the original parameter choice
z = 10, i = 10, rater1, v = 0. Percentages are relative to Original. Numbers
taken from Table 3 and Table 13.

32

5.3 Final Evaluation

In this Section we present the final evaluation of our algorithm. First we list
the used parameters for the third party partitioners. Secondly, we compare
our algorithm to the original n-Level graph partitioner. At last we present
a comparison between our n-Level hypergraph partitioner and PaToH and
hMETIS.

5.3.1 PaToH Parameters

PaToH version 3.2 was used. The program was invoked with the following
command line for the comparison and also for initial partitioning:

patoh ${graph} 2 FI=0.02 OD=3 PQ=Q UM=U SD=${seed}

Parameter description for the above command line:

2
Create a 2-partition.

FI=0.02
Final Imbalance of the 2-partition is maximal 2%.

OD=3
Output Detail level 3 (very verbose output).

PQ=Q
Use the Quality preset.

UM=U
Use the Hyperedge Cut metric.

SD=$seed
Use $seed as the seed.

5.3.2 hMETIS Parameters

hMETIS version 2.0pre1 was used. The program was invoked with the fol-
lowing command line:

hmetis2.0pre1 ${graph} 2 -ptype=kway -ufactor=2 -seed=${seed}

Parameter description for the above command line:

2
Create a 2-partition.

-ptype=kway -ufactor=2
Final Imbalance of the 2-partition is maximal 2%.

-seed=$seed
Use $seed as the seed.

33

5.3.3 Comparison with the original n-Level algorithm

As we borrow heavily from the original n-Level Graph Partitioning algorithm
designed by Osipov and Sanders [20] it suggests itself that we compare our
hypergraph partitioner to their implementation. For that purpose we choose
a subset of Walshaw’s benchmark suite [27] converted the graphs into the
hMETIS hypergraph format and run experiments with the same parameters
as in the original paper as far as this is possible.

We use an identical rating function f =
w (e)∏
v∈e c (v)

= rater17 and the some-

what relaxed parameters s = 0.0375, t = 50, z = 25. As the original imple-
mentation does not use V-Cycles, we do not use them here, either. Note that
the original graph algorithm uses a more complex termination condition for
the refinement phase. Additionally the weight of the heaviest node of an edge
decides whether the edge may be contracted and not the combined weight of
all incident nodes.
In Table 9 we show our results next to the results of Osipov and Sanders

(orig). The cut is the smallest cut that was found in all runs. We made 100
runs per graph with a different seed.

Graphs ε = 0.03 ε = 0.05

Name |V | |E| HN Deg orig our orig our
bcsstk29 13,992 302,748 43.27 2818 2818 2818 2818
4elt 15606 45878 5.88 137 137 137 137
fesphere 16386 49152 6.00 384 384 384 384
cti 16840 48232 5.73 318 318 318 318
memplus 17758 54196 6.10 5626 5618 5516 5529
cs4 22499 43858 3.90 366 372 363 362
feocean 143437 409593 5.71 311 311 311 314

Geom Mean - - - 606.51 607.80 604.09 604.88

Table 9: Comparison of our algorithm with the original n-Level Graph Parti-
tioner of Osipov and Sanders. The found minimal (hyper)edge cut is shown
with ε being the maximum imbalance. Best results are in bold face.

34

5.3.4 Comparison with PaToH and hMETIS

In this Section we compare out algorithm with the state-of-the-art hyper-
graph partitioners PaToH and hMETIS. Table 10 shows the results. A table
with much more information in provided is Appendix C. Each program was
run 100 times per hypergraph of the test set with different seeds. We average
the results per graph and computed the geometric mean of these averages.

Min Cut Avg Cut Time
Partitioner abs. abs. impr. [%] abs. [s]
hMETIS 405.08 412.77 4.33 8.03
Best 399.68 428.37 0.72 198.07
PaToH 405.67 431.46 – 1.05
Strong 400.26 438.27 -1.58 65.70
Fast 412.04 490.10 -13.60 12.22

Table 10: Comparison of our different parameter sets with hMETIS and
PaToH. Percentages are relative to PaToH. Best results are are in bold face.

As we do not use a custom hypergraph data structure (see Appendix A)
and did not stress performance optimization in the development of out algo-
rithm it is not surprising that we lag far behind in terms of runtime. We are
approximately one order of magnitude slower than the other two partitioners.
In terms of quality both Best and Strong achieve a better minimum cut

than the two third party partitioners. Best yields a better average cut than
PaToH with Strong being the runner-up. Nonetheless hMETIS computes
the best average cuts by a significant margin.

35

6 Discussion

6.1 Conclusion

In this thesis we presented a n-Level hypergraph partitioner based on the
ideas of the of Osipov and Sanders, using well known techniques like a FM
refinement heuristic and V-Cycles, for example. We have shown that our im-
plementation finds equally good partitions for graphs as the implementation
of the original n-Level graph partitioner.
We have shown that our algorithm yields comparable results for benchmark

instances from benchmarks suites widely used in the literature, like the ISPD
or the MCNC benchmark suites.
It must be noted, that our implementation has a far worse runtime than

the other two partitioners.

6.2 Future Work

As the experimental evaluation of the V-Cycles (see Section 5.2.4) has shown,
the application of different rating functions has great potential. An extension
of our algorithm to use different rating functions at different depths of the
coarsening phase is desirable to evaluate if fundamental different topological
characteristics exists at different levels and whether they can be exhibited to
achieve better results.
Additionally the runtime of our implementation must be improved. We

did not stress runtime as we wanted to evaluate the design. However, it is es-
sential for larger hypergraph instances that our implementation improves its
performance, for example by designing a custom hypergraph data structure.
Furthermore, the refinement phase can be enhanced, too. As long as the

imbalance constraint is not violated, our implementation does not take imbal-
ance into account when selecting the hypernodes which switch their blocks.
A more sophisticated termination condition for the refinement phase is also
a sensible extension.

36

A Hypergraph Data Structure
We build our hypergraph data structure on top of an undirected graph.
The underlying implementation is the class adjacency_list taken from Boost
Graph Library [1].
Hypernodes and Hyperedges are both represented by nodes in the underly-

ing graph. An edge between a hypernode-node and a hyperedge-node means
incidence. There are no edges between two hyperedge-nodes and there are
no edges between two hypernode-nodes.
Two arrays hold handles to all hyperedges/hypernodes in the underly-

ing graph. Additionally two hash tables hold the information which hyper-
edges/hypernodes are currently visible. If a hypernode is removed in the
coarsening phase for example, it is removed from the graph and its id from
the hash table. When it is readded to the hypergraph, the hash table is
updated and the handle to the node in the graph is updated in the array,
too.
The rest of the program solely works with the abstraction of hypernodes

and hyperedges. For this purpose our Hypergraph data structure provides
several helper routines.

B Command-Line Arguments
In this Section we list the possible command line arguments and their mean-
ing.

-h, –help
Print help.

-i hypergraph.hgr
The input graph file has to be in the hMETIS format for unweighted
hypergraphs [12].

-p partition.hgr
Partition file which can be used to compute some metrics for the given
hypergraph.hgr file. On each line there must be either a 0 or a 1
(partition info) and the number of lines needs to be identical to the
number of hypernodes.

-r repetitions of initial partitioning
The number of trials to initially partition the hypergraph at the coarsest
level. Each of this iterations will be run with a different seed.

-l contraction limit
Contraction of hyperedges is stopped when the number of remaining
hypernodes is equal to or smaller than l.

37

-s seed
Specify the seed as an integer number.

-u
Disable tie-breaking .

-e name of experiment
Name of the experiment which is currently performed. May be left out.

-b maximal imbalance
Specify the maximal final imbalance in percent. For example: -b 5
means 5% maximal imbalance.

-w
Writes out the found 2-partition. The format is the same as at -p.

-t refinement moves without improvement
Specify the number of refinement moves after which the refinement pass
is aborted if no improvement to the global cut was achieved.

-k rating function
Specify the rating function which shall be used.

-v additional V-Cycles
Specify the number of additional V-Cycles.

-f factor
Specify the maximum weight of a hypernode in the hypergraph as
a fraction of the number of hypernodes in the original hypergraph:
factor · |V |

-q
Picks a random rating function for each additional V-Cycle from the
set 1, 4, 15, 17.

C Further Results
In this Chapter we present further results without comments.

38

Rating Function crystk01 s3rmq4m1 s15850 vibrobox industry2 memplus s35932 s38584 avqsmall cs4 ibm03 avqlarge ibm04 ibm05 bcsstk32

1 489.12 468.12 61.12 2761.84 217.28 8047.20 49.96 60.24 176.04 389.24 1101.88 178.88 677.28 1857.64 5361.96

2 546.36 490.56 65.00 3016.20 248.24 8129.24 73.00 53.60 173.36 400.08 1204.40 178.76 698.24 1790.20 7823.40

3 790.32 481.92 77.60 2717.96 321.36 8273.28 79.72 64.56 241.76 451.88 1072.96 229.08 725.92 1884.28 6826.32

4 502.32 473.04 63.12 2665.36 242.52 7989.08 68.36 59.32 168.76 385.72 1050.40 170.80 685.52 1950.44 5573.44

5 682.56 465.60 63.44 2633.72 318.76 7918.08 73.00 60.00 169.40 395.68 1191.68 176.44 644.84 1816.12 6285.80

6 510.48 468.96 96.48 4197.56 372.60 8131.40 159.32 187.64 404.64 385.68 1507.96 336.08 1111.12 2307.88 7215.36

7 501.12 468.96 92.04 4243.92 328.88 8158.80 158.60 190.36 420.20 400.64 1572.60 491.96 1116.92 2264.20 7529.28

8 775.68 490.56 84.76 2700.92 217.84 8144.04 71.72 69.40 250.24 414.80 1179.44 231.56 767.88 1866.72 7135.72

9 786.84 488.16 67.56 2675.04 226.52 8141.28 59.12 65.64 200.88 422.52 1097.48 204.64 807.36 1839.16 7071.80

10 490.20 458.16 93.12 3910.64 331.40 8190.96 121.64 126.52 420.72 431.08 1461.68 471.52 689.92 2157.92 7177.16

11 500.40 468.48 92.64 3984.24 353.84 8098.80 158.32 175.48 392.36 411.48 1458.36 482.64 754.88 2270.60 7433.24

12 493.44 473.40 61.60 2927.48 225.84 8242.04 50.04 63.24 181.56 404.16 1108.68 181.44 755.20 1847.68 6877.96

13 497.76 425.04 61.04 3298.36 210.52 8047.20 49.96 60.96 178.36 389.24 1203.76 175.44 719.64 1855.00 5361.96

14 502.56 474.72 61.84 3478.96 219.92 8242.04 50.04 62.68 192.16 404.16 1243.56 186.28 760.00 1846.68 6877.96

15 491.04 423.60 61.16 3300.68 210.36 8047.20 49.96 59.20 177.96 389.24 1219.60 174.84 713.88 1853.48 5361.96

16 494.64 471.84 61.88 3458.92 222.56 8242.04 50.04 64.76 185.00 406.12 1263.52 189.40 778.92 1848.84 6906.44

17 502.20 418.08 61.88 2610.84 269.76 6137.92 73.00 58.00 165.08 387.84 1063.52 175.80 656.36 2506.84 4794.96

Table 11: Average Cut (arithmetic mean) of different rating functions with s = 0.0375, t = 100, max_imbal = 2%, z = 25,
i = 10, v = 0

39

Rating Function crystk01 s3rmq4m1 s15850 vibrobox industry2 memplus s35932 s38584 avqsmall cs4 ibm03 avqlarge ibm04 ibm05 bcsstk32

1 1252.48 781.84 100.00 561.96 171.60 1517.88 100.00 130.28 108.04 100.00 491.92 108.48 437.80 953.64 100.00

2 1922.36 1203.96 182.20 1319.80 413.20 1704.56 211.40 286.36 278.20 168.00 1945.28 245.12 3012.80 1760.80 191.72

3 1019.36 520.52 218.36 1069.64 718.60 2133.88 275.92 589.20 696.44 120.16 2733.16 662.20 4343.52 2518.64 116.60

4 1507.20 1016.76 153.44 756.88 389.28 1517.48 191.60 241.00 183.44 100.00 929.52 181.08 1092.84 2466.92 100.00

5 713.48 451.68 148.28 730.72 302.20 1533.88 219.84 238.16 183.92 100.00 1375.60 176.92 1565.40 1504.20 232.12

6 1100.00 969.88 194.08 2537.80 443.92 2136.92 134.56 715.96 397.08 100.00 3878.52 167.52 2867.92 3353.56 116.52

7 1059.96 1028.12 347.88 2541.40 895.32 2136.92 641.04 800.68 668.88 100.00 4078.24 427.40 3660.84 4734.84 116.68

8 1003.96 528.68 307.08 1015.84 474.28 2136.92 288.48 388.76 116.08 100.00 1737.04 117.08 1816.68 2484.44 116.92

9 1005.68 527.96 234.56 1032.04 625.08 2136.92 165.64 397.96 246.12 100.00 2368.76 208.28 3026.36 2764.60 117.76

10 1086.16 1035.60 406.24 1786.32 1319.52 2032.76 1035.96 782.76 1216.68 114.16 4785.80 688.92 5063.40 6561.48 116.28

11 965.00 768.52 319.00 1609.12 996.88 1701.36 800.92 639.64 912.40 174.24 4455.64 501.72 4501.28 5220.32 197.04

12 1510.48 1004.72 107.44 1693.80 367.60 1914.72 100.52 215.84 145.48 101.20 1642.56 139.36 2041.92 1999.68 119.64

13 101.12 97.12 100.00 556.44 171.52 1517.88 100.00 130.08 108.32 100.00 574.20 109.24 507.12 789.88 100.00

14 204.04 552.08 107.44 1919.84 347.04 1914.72 100.52 220.16 143.92 101.20 1731.40 141.12 2294.76 1838.96 119.64

15 101.12 97.12 100.00 556.44 171.52 1517.88 100.00 130.08 108.32 100.00 574.20 109.24 507.12 789.88 100.00

16 204.04 552.08 107.44 1919.84 347.04 1914.72 100.52 220.16 143.92 101.20 1731.40 141.12 2294.76 1838.96 119.64

17 197.04 106.68 148.24 561.12 382.24 149.36 190.84 245.96 188.08 100.00 870.80 186.80 911.28 1872.44 100.00

Table 12: Average contraction depth (hypernodes, arithmetic mean) of different rating functions with s = 0.0375, t = 10,
max_imbal = 2%, z = 25, i = 10, v = 0

40

Graph hMETIS PaToH Best Strong Fast
best avg time[s] best avg time[s] best avg time[s] best avg time[s] best avg time[s]

crystk01 420 420.00 5.68 420 420.60 0.91 420.00 420.00 39.12 420.00 420.18 15.92 420.00 512.55 2.33

s3rmq4m1 360 362.76 3.65 360 365.34 0.52 360.00 368.16 21.94 360.00 374.01 7.68 360.00 419.61 1.29

s15850 54 57.78 1.09 53 58.39 0.15 52.00 55.86 9.87 52.00 56.33 3.16 55.00 62.48 0.62

vibrobox 1990 1990.00 27.15 1990 2070.59 1.96 1990.00 2379.50 556.61 1990.00 2502.40 197.85 2085.00 2640.67 54.84

industry2 179 209 190.37 183 223.99 0.37 177.00 198.68 108.99 177.00 202.93 33.69 183.00 254.75 6.97

memplus 5983 6052.41 6.68 5640 6556.39 1.47 5450.00 5883.37 1603.80 5488.00 6809.45 594.97 5831.00 6146.68 33.78

s35932 43 43.00 2.21 43 43.80 0.34 43.00 43.61 207.33 43.00 44.76 65.27 44.00 70.76 14.48

s38584 49 49.08 4.39 51 52.25 0.36 49.00 55.28 25.64 49.00 55.25 7.75 50.00 59.50 1.64

avqsmall 142 144.18 3.82 143 155.55 1.52 142.00 156.17 2437.62 142.00 158.28 921.44 148.00 168.49 230.35

cs4 383 398.61 9.47 381 397.66 1.14 364.00 370.23 30.45 366.00 372.81 9.94 372.00 389.29 2.24

ibm03 959 962.96 16.00 973 1009.13 1.07 958.00 1020.72 270.97 965.00 1039.10 76.12 975.00 1054.78 12.02

avqlarge 142 144.58 4.67 144 159.40 1.68 143.00 159.64 2711.02 143.00 161.92 1077.41 153.00 173.47 235.38

ibm04 594 601.53 18.74 596 618.67 1.31. 586.00 631.72 169.10 587.00 638.90 50.31 607.00 665.44 8.56

ibm05 1724 1730.06 38.93 1725 1742.65 1.75 1723.00 1761.78 716.15 1723.00 1770.23 198.77 1769.00 2482.75 58.11

bcsstk32 4667 4851.07 107.47 4862 4991.40 33.19 4667.00 4941.47 979.32 4667.00 4973.69 314.65 4667.00 4874.08 48.00

Geom Mean 405.08 412.77 8.03 405.67 431.46 1.05 399.68 428.37 198.07 400.26 438.27 65.70 412.04 490.10 12.22

Table 13: Comparison of hMETIS, PaToH and our algorithm with the three parameter sets. Best results are in bold face.

41

Zusammenfassung
Wir stellen in dieser Arbeit einen n-Level Hypergraph Partitionierer vor, der
auf den Ideen des n-Level Graph Partitionierers von Osipov und Sanders
gründet. Wir berechnen für einen gegebenene Hypergraphen H eine Bisek-
tion P , die ein vorher definiertes Imbalance-Kriterium erfüllt. Um dies zu
erreichen, wird der ursprüngliche Hypergraph in mehreren Stufen (sogenan-
nte Level) vergröbert. Auf jedem Level wird genau eine Hyperkante kon-
trahiert, d. h. ihre Hyperknoten werden zu einem zusammengefasst, um die
Anzahl der Hyperkanten und -knoten zu verringern. Auf dem gröbsten Level
berechnen wir eine Bisektion und kehren die Vergröberung wieder um. Auf
jedem Level verfeinern wir die gefundenen Partition zusätzlich. Wir imple-
mentieren ebenfalls V-Zyklen (V-Cycles) um die Qualität der Partition weiter
zu verfeinern.
Wir führen eine umfangreiche experimentelle Evaluation durch, die auf

in der Literatur weit verbreitete Benchmark-Instanzen, beispielsweise ISPD
oder MCNC, zurückgreift. Wir vergleichen unser System mit aktuellen Hy-
pergraph Partitionierern wie hMETIS und PaToH. Unser optimiertes System
erzielt Hyperedge Cuts, die im Mittel genauso gut sind, wie die von PaToH.
Allerdings ist die Laufzeit unseres Systems wesentlich schlechter, als die der
Vergleichssysteme. Darüberhinaus findet unser System den kleinsten Hy-
peredge Cut für ungefähr die Hälfte der Testsuite im Vergleich zu den mit
Standardeinstellungen laufenden Partitionnierern hMETIS und PaToH.

42

References
[1] url: http://www.boost.org/doc/libs/1_42_0/libs/graph/doc/

index.html.

[2] Charles J. Alpert. “The Ispd98 Circuit Benchmark Suite”. In: Proc.
ACM/IEEE International Symposium on Physical Design, April 98.
1998, pp. 80–85.

[3] Charles J. Alpert and Andrew B. Khang. “Recent directions in netlist
partitioning: a survey”. In: Integration, the VLSI Journal 19 (1995),
pp. 1–81.

[4] Charles-Edmond Bichot and Patrick Siarry. Graph Partitioning. Wiley-
ISTE, 2011. isbn: 978-1-84821-233-6.

[5] U. Catalyurek and C. Aykanat. “Hypergraph-Partitioning Based De-
composition for Parallel Sparse-Matrix Vector Multiplication”. In: IEEE
Transaction on Parallel and Distributed Systems 10.7 (1999), pp. 673–
693.

[6] Umit V. Catalyurek and Cevdet Aykanat. “Hypergraph-Partitioning-
Based Decomposition for Parallel Sparse-Matrix Vector Multiplica-
tion”. In: IEEE Transactions on Parallel and Distributed Systems 10
(1999), pp. 673–693. issn: 1045-9219.

[7] U.V. Catalyurek et al. “Hypergraph-based Dynamic Load Balancing
for Adaptive Scientific Computations”. In: Parallel and Distributed Pro-
cessing Symposium, 2007. IEEE International. Mar. 2007, pp. 1 –11.

[8] C.M. Fiduccia and R.M. Mattheyses. “A Linear-Time Heuristic for Im-
proving Network Partitions”. In: Design Automation, 1982. 19th Con-
ference on. June 1982, pp. 175 –181.

[9] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. Freeman, 1979. isbn: 978-
0716710455.

[10] Gigascale Systems Research Center Bookshelf Benchmarks. url: http:
//vlsicad.cs.binghamton.edu/benchgsrc.html.

[11] HGConv tool to convert netD/areM to and from nodes/nets/wts. url:
http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/Fundamental/
HGraph/.

[12] hMETIS A Hypergraph Partitioning Package Manual. url: http://
glaros.dtc.umn.edu/gkhome/fetch/sw/hmetis/manual.pdf.

[13] hMETIS website. url: http://glaros.dtc.umn.edu/gkhome/metis/
hmetis/overview.

43

[14] Edmund Ihler, Dorothea Wagner, and Frank Wagner. “Modeling Hy-
pergraphs by Graphs with the Same Mincut Properties”. In: Informa-
tion Processing Letters 45.4 (1993), pp. 171–175.

[15] ISCAS89 Benchmark Suite Files. url: http://www.pld.ttu.ee/
~maksim/benchmarks/iscas89/bench/.

[16] ISPD98 Benchmark Files. url: http://vlsicad.ucsd.edu/UCLAWeb/
cheese/ispd98.html.

[17] George Karypis and Vipin Kumar. “Multilevel k-way Hypergraph Par-
titioning”. In: In Proceedings of the Design and Automation Conference.
1998, pp. 343–348.

[18] George Karypis et al. “Multilevel hypergraph partitioning: Application
in VLSI domain”. In: IEEE TRANS. VERY LARGE SCALE INTE-
GRATION (VLSI) SYSTEMS. 1999, pp. 69–529.

[19] B. W. Kernighan and S. Lin. “An Efficient Heuristic Procedure for
Partitioning Graphs”. In: The Bell system technical journal 49.1 (1970),
pp. 291–307.

[20] Vitaly Osipov and Peter Sanders. “n-Level Graph Partitioning”. In:
ESA 2010, 18th European Symposium, Proceedings. 2010, pp. 278–289.

[21] PaToH manual. url: http://bmi.osu.edu/~umit/PaToH/patoh-
matlab.pdf.

[22] PaToH website. url: http://bmi.osu.edu/~umit/software.html.

[23] Perl Scripts For Converting .bench to .net. url: http://www.ece.
uic.edu/~masud/iscas2spice.htm.

[24] Christian Schulz and Peter Sanders. “Engineering Multilevel Graph
Partitioning Algorithms”. In: ESA 2011, Lecture Notes in Computer
Science. Vol. 6942/2011. 2011, pp. 469–480.

[25] D. G. Schweikert and B. W. Kernighan. “A proper model for the par-
titioning of electrical circuits”. In: Proceedings of the 9th Design Au-
tomation Workshop. DAC ’72. 1972, pp. 57–62.

[26] The University of Florida Sparse Matrix Collection. url: http://www.
cise.ufl.edu/research/sparse/matrices/index.html.

[27] Walshaw’s Benchmark Suite. url: http://staffweb.cms.gre.ac.
uk/~c.walshaw/partition/.

44

