KaDraw v1.0 — Karlsruhe Graph Drawing
User Guide

Henning Meyerhenke, Martin Nollenburg and Christian Schulz
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
Email: {meyerhenke, noellenburg, christian.schulz}@kit.edu

Abstract

This paper severs as a user guide to the graph drawing framework KaDraw (Karlsruhe Graph Drawing). We
give a rough overview of the techniques used within the framework and describe the user interface as well as the
file formats used.

Contents
1 Introduction
2 Graph Drawing Algorithms within KaDraw

3 Graph Format
3.1 ImputFile Format
3.2 OutputFile Formats e e
32.1 Coordinate File o
322 PDF/PNGfiles e e
3.3 Troubleshooting e e e

4 User Interface
4.1 KaDraw e e e e e e
4.2 Graph FormatChecker e e
4.3 Evaluator e e e e e e e
4.4 DrawGraphFromCoordinates e

B~ kA W W WwWwWw

AN O Lt L

1 Introduction

Drawing large networks (or graphs) with hundreds of thousands of nodes and edges has a variety of relevant
applications. One of them can be interactive visualization, which helps humans working on graph data to gain
insights about the properties of the data. If a very large high-end display is not available for such purpose, a
hierarchical approach allows the user to select an appropriate zoom level [1]. Moreover, drawings of large graphs
can also be used as a preprocessing step in high-performance applications [6].

One very promising class of layout algorithms in this context is based on the stress of a graph. Such algorithms
can for instance be used for drawing graphs with fixed distances between vertex pairs, provided a priori in a
distance matrix [3]. More recently, Gansner et al. [2] proposed a similar model that includes besides the stress an
additional entropy term (hence its name maxent-stress). While still using shortest path distances, this model often
results in more satisfactory layouts for large networks. The optimization problem can be cast as solving Laplacian
linear systems successively. Since each right-hand side in this succession depends on the previous solution, many
linear systems need to be solved until convergence.

Within KaDraw we present a novel multilevel algorithm, MulMent, to compute a graph layout with respect to
maxent-stress. As opposed to previous work, we do not solve the linear systems of the maxent-stress metric with a
typical numerical solver. Instead we use a simple local iterative scheme within a multilevel approach. To accelerate
local optimization, we approximate long-range forces and parallelism.

2 Graph Drawing Algorithms within KaDraw

We now give a rough overview over the algorithms implemented in our framework. For details on the algorithms,
we refer the interested reader to the corresponding paper [7]. A successful (meta)heuristic for graph drawing
(and other optimization problems on large graphs) is the multilevel approach. We employ it for maxent-stress
optimization as well. A multilevel algorithm computes a sequence of increasingly coarse but structurally related
graphs as abstractions of the original graph. Starting from a layout of the coarsest graph, incremental refinement
steps using the previous layout as a scaffold eventually produce a layout of the entire input graph, where the
refinement steps are fast due to the good initial layouts.

We briefly sketch our algorithmic approach: The method for creating the graph hierarchy is based on fast graph
clustering with controllable cluster sizes [8]. Each cluster computed on one hierarchy level is contracted into a new
supervertex for the next level. After computing an initial layout on the coarsest hierarchy level, we improve the
drawing on each finer level by iterating the maxent-equation to solve the maxent-stress system

1 Ty — « Ty —
Ty < — Z Wy <33v + duvM) + — Z qu_ivaQ’ (D
Pu {u,v}eFE “ v Pu {uv}¢E “ !

where p, = Y {(uv}eE Wav and appropriately chosen weights and distances are used. Additionally, this process
exploits the hierarchy and draws vertices that are densely connected with each other (i.e. which are in the same
cluster) close to each other. Note that the local optimization algorithm presented above has a theoretical running
time of O(n?) per iteration. To speed this up, our algorithm uses approximations for the distances in the entropy
term in Eq. (1). We do this by taking the cluster structure computed during coarsening into account, i.e. we use
graphs and coordinates multiple levels beneath the current level under consideration to approximate the second
summation in Eq. (1). For more details, we refer the reader to the paper [7].

Shared-memory Parallelization. Local optimization algorithms use shared-memory parallelism (OpenMP). An
iteration of the local optimizer works as follows: Since new coordinates of the vertices in the same iteration can be
computed independently, we use multiple threads to do so. Parallelism is also used analogously when working on
different levels for the distance approximations in the entropy term.

3 Graph Format

3.1 Input File Format

The graph format used by our partitioning programs is the same as used by Metis [5], Chaco [4] and the graph for-
mat that has been used during the 10th DIMACS Implementation Challenge on Graph Clustering and Partitioning.
The input graph has to be undirected, withoud self-loops and without parallel edges.

To give a description of the graph format, we follow the description of the Metis 4.0 user guide very closely.
A graph G = (V, E') with n vertices and m edges is stored in a plain text file that contains n + 1 lines (excluding
comment lines). The first line contains information about the size and the type of the graph, while the remaining n
lines contain information for each vertex of G. Any line that starts with % is a comment line and is skipped.

The first line in the file contains two integers n m. The two integers are the number of vertices n and the
number of undirected edges of the graph, respectively. Note that in determining the number of edges m, an edge
between any pair of vertices v and is counted only once and not twice, i.e. we do not count the edge (v, u) from
(u,v) separately. The remaining n lines of the file store information about the actual structure of the graph. In
particular, the 7th line (again excluding comment lines) contains information about the ith vertex.Each line has the
following structure:

V102 ...V

where vy, ..., vy are the vertices adjacent to the vertex described by the line. Note that the vertices are numbered
starting from 1 (not from 0).

7 10

2

1 3 7

2 4
O

4 7 6

5 7

1 2 4 5 6

©
N

® ®

Figure 1: An example graph and its representation in the graph format. The IDs of the vertices are drawn within
the cycle.

3.2 Output File Formats
3.2.1 Coordinate File

The output format of coordinates is basically a text file. This file contains n lines. In each line the 2D-coordinate
of the corresponding vertex is given, i.e. line ¢ contains the coordinate of vertex .

3.2.2 PDEF/PNG files

Our program is able to output a PDF/PNG file directly. You can specify the export type in the programs and view
the graph with a tool of your choice afterwards.

3.3 Troubleshooting

KaDraw should not crash! If KaDraw crashes it is mostly due to the following reasons: the provided graph contains
self-loops or parallel edges, there exists a forward edge but the backward edge is missing or the forward and
backward edges have different weights, or the number of vertices or edges specified does not match the number of
vertices or edges provided in the file. Please use the graphcheck tool provided in our graph partitioning package
to verify whether your graph has the right input format. If our graphcheck tool tells you that the graph that you
provided has the correct format and KaDraw crashes anyway, please write us an email.

4 User Interface

KaDraw contains the following programs: kadraw, graphchecker, evaluator, draw_from_coordinates. To compile
these programs you need to have Argtable, g++, OpenMP and scons installed (we use argtable-2.10, g++-4.8.0 and
scons-1.2). Once you have that you can execute compile.sh in the main folder of the release. When the process is
finished the binaries can be found in the folder deploy. We now explain the parameters of each of the programs

briefly.

4.1 KaDraw

Description:

Usage:
kadraw

This is the multilevel graph drawing program.

[--help] FILE [--seed=<int>] [--preconfiguration=VARIANT]

[--burn_coordinates_to_disk] [--burn_image_to_disk] [--output_filename=<string>]
[--image_scale=<double>] [--num_threads=<int>] [--export_type=TYPE] [--linewidth=<double>]
[--compute_FSM] [--compute_MEnt]

Options:

FILE

—help

—seed=<int>
—preconfiguration=VARIANT
—burn_coordinates_to_disk
—burn_image_to_disk
—export_type=TYPE
—output_filename=<string>
—image_scale=<double>
—num_threads=<int>
—linewidth=<double>
—compute_FSM
—compute_MEnt

4.2 Graph Format Checker

Description:
Usage:

graphchecker file
Options:

file Path to the graph file.

Path to graph file to draw.

Print help.

Seed to use for the PRNG.

Use a preconfiguration. (Default: fast) [stronglecolfast].

Save the coordinates in a file.

Save the image in a file.

Specify export type. [pdflpng]

Output filename of the png/pdf file.

Set image scale manually.

Set the number of OMP threads (default: maximum available number used).
Line width to use for drawing.

Enable computation of Full Stress Measure.

Enable computation of MaxEnt-stress at a penalty level of 0.008.

This program checks if the graph specified in a given file is valid.

4.3 Evaluator
Description: This program takes a graph and its coordinates and computes various performance metrics.
Usage:

evaluator [--help] FILE [--seed=<int>] [--print_final_distances]
[--compute_FSM] [--compute_MEnt] [-coordfilename=<string>]

Options:
FILE Path to graph file to evaluate.
—help Print help.
—print_final_distances Print the final distances.
—compute_FSM Enable computation of Full Stress Measure.
—compute_MEnt Enable computation of MaxEnt-stress at a penalty level of 0.008.

—coordfilename=<string> Filename of input coordinates to evaluate.

4.4 DrawGraphFromCoordinates

Description: This program takes a graph and its coordinates and outputs a pdf/png file containing the drawn
graph.

Usage:
draw_from_coordinates [--help] FILE [--export_type=TYPE]
[-coordfilename=<string>] [—output_filename=<string>]

Options:
FILE Path to graph file to draw.
—help Print help.
—export_type=TYPE Specify export type. [pdflpng]

—output_filename=<string> Output filename of the png/pdf file.
—coordfilename=<string> Filename of input coordinates to evaluate.

References

[1] J. Abello, F. van Ham, and Neeraj K. Ask-graphview: A large scale graph visualization system. IEEE Trans.
Visualization and Computer Graphics, 12(5):669—-676, 2006.

[2] E.R. Gansner, Y. Hu, and S. C. North. A maxent-stress model for graph layout. IEEE Trans. Visualization and
Computer Graphics, 19(6):927-940, 2013.

[3] E. R. Gansner, Y. Koren, and S. North. Graph drawing by stress majorization. In Graph Drawing (GD’04),
volume 3383 of LNCS, pages 239-250. Springer, 2005.

[4] B. Hendrickson. Chaco: Software for Partitioning Graphs. http://www.cs.sandia.gov/~bahendr/
chaco.html.

[5] G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs. SIAM
Journal on Scientific Computing, 20(1):359-392, 1998.

[6] S. Kirmani and P. Raghavan. Scalable parallel graph partitioning. In Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and Analysis, SC °13, pages 51:1-51:10, New
York, NY, USA, 2013. ACM.

[7] H. Meyerhenke, M. Nollenburg, and C. Schulz. Drawing large graphs by multilevel maxent-stress optimization.
Technical report, 2015.

[8] H. Meyerhenke, P. Sanders, and C. Schulz. Partitioning Complex Networks via Size-constrained Clustering.
In 13th Int. Symp. on Exp. Algorithms, LNCS. Springer, 2014.

