
KaHIP v1.00 – Karlsruhe High Quality Partitioning
User Guide

Peter Sanders and Christian Schulz
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Email: {sanders, christian.schulz}@kit.edu

Abstract

This paper severs as a user guide to the graph partitioning framework KaHIP (Karlsruhe High Quality Parti-
tioning). We give a rough overview of the techniques used within the framework and describe the user interface
as well as the file formats used. Moreover, we provide a short description of the current library functions pro-
vided within the framework.

Contents

1 Introduction 2

2 Graph Partitioning Algorithms within KaHIP 3
2.1 KaFFPa . 3
2.2 KaFFPaE . 4
2.3 KaBaPE . 5
2.4 Specialized Techniques for Social Networks . 5
2.5 Node Separators . 5

3 Graph Format 6
3.1 Input File Format . 6
3.2 Output File Formats . 7

3.2.1 Partition . 7
3.2.2 Node Separator . 7

3.3 Troubleshooting . 7

4 User Interface 8
4.1 KaFFPa . 8
4.2 KaFFPaE / KaBaPE . 9
4.3 Node Separators . 10
4.4 Label Propagation . 10
4.5 Graph Format Checker . 11

5 Library 12
5.1 Graph Data Structure . 12
5.2 Functions . 13

1 Introduction

Given a graph G = (V,E) and a number k > 1, the graph partitioning asks for a division of the graphs vertex set
into k disjoint blocks of roughly equal size such that some objective function is minimized. The most common for-
mulation minimizes the number of edges that run between the blocks. An example is given in Figure 1. Nowadays,
the graph partitioning problem has many applications in different areas such as parallel scientific computing or
graph computations [34, 7, 39, 12, 4, 5, 28], route planning [20, 24, 36, 21, 19, 22, 9, 10], VLSI Design [1, 2, 17, 8]
or in solving sparse linear equation systems [13]1. There has been a vast amount of research on graph partitioning.
We refer the reader to [6] for more material on graph partitioning.

KaHIP - Karlsruhe High Quality Partitioning - is a family of graph partitioning programs based on the publica-
tions [29, 30, 32, 16, 27, 31, 35]. It includes KaFFPa (Karlsruhe Fast Flow Partitioner) in its variants Strong, Eco
and Fast, KaFFPaE (KaFFPaEvolutionary) which is a parallel evolutionary algorithm that uses KaFFPa to provide
combine and mutation operations, as well as KaBaPE which extends the evolutionary algorithm. Moreover, we
include algorithms to output a vertex separator from a given partition.

KaHIP focuses on a version of the problem that constrains the maximum block size to (1+ ε) times the average
block size and tries to minimize the total cut size, i.e. the number of edges that run between blocks. To be more
precise, consider an undirected graph G = (V = {0, . . . , n − 1}, E, c, ω) with edge weights ω : E → R>0,
node weights c : V → R≥0, n = |V |, and m = |E|. We extend c and ω to sets, i.e. c(V ′) :=

∑
v∈V ′ c(v) and

ω(E′) :=
∑

e∈E′ ω(e). We are looking for blocks of nodes V1,. . . ,Vk that partition V , i.e., V1 ∪ · · · ∪ Vk = V and
Vi∩Vj = ∅ for i 6= j. The balancing constraint demands that ∀i ∈ {1..k} : |Vi| ≤ (1+ε)d c(V)

k e for some imbalance
parameter ε. The objective is to minimize the total cut

∑
i<j w(Eij) whereEij := {{u, v} ∈ E : u ∈ Vi, v ∈ Vj}.

Methods to optimize the maximum communication volume of a partition are also included in the package. There
is also a version of the program that enables to balance nodes and edges between the blocks which is in particular
important for applications in which workload is associated with the edges as well such as sparse matrix vector
multiplications or in graph processing frameworks. In this case, we set the node weight to c(v) + degω(v) for a
node v ∈ V and set the balance constraint to ∀i ∈ {1..k} : |Vi| ≤ (1 + ε)d c(V)+

∑
v degω(v)
k e.

The purpose of the manual is to give a very rough overview over the techniques used in the partitioning pro-
grams, as well as to serve as a guide and manual on how to use our algorithms. We start with a short overview of the
algorithms implemented within our graph partitioning framework. This is followed by a description of the graph
format that is used. It is basically the same graph format that is used by Metis [18] and Chaco [15], and that has
been used during the 10th DIMACS Implementation Challenge on Graph Clustering and Graph Partitioning [3].
We then give an overview over the user interface of KaFFPa, KaFFPaE and KaBaPE and explain which program
to use to derive node separators. We finish this manual with the description of the library functions provided by the
current release.

Figure 1: An example mesh that is partitioned into four blocks indicated by the colors.

1Let us know if we have missed your application here!

2

2 Graph Partitioning Algorithms within KaHIP

We now give a rough overview over the algorithms implemented in our graph partitioning framework. For details
on the algorithms, we refer the interested reader to the corresponding papers. Figure 2 gives an overview over the
techniques used with the framework.

2.1 KaFFPa

A successful heuristic for partitioning large graphs is the multilevel graph partitioning approach, where the graph
is recursively contracted to create smaller graphs which should reflect the same basic structure as the input graph.
After applying an initial partitioning algorithm to the smallest graph, the contraction is undone and, at each level,
a local search method is used to improve the partitioning induced by the coarser level. KaFFPa is a multilevel
graph partitioning framework which contributes a number of improvements to the multilevel scheme which lead to
enhanced partitioning quality. This includes flow-based methods, improved local search and repeated runs similar
to the approaches used in multigrid solvers.

Local improvement algorithms are usually variants of the FM algorithm [11]. The variant KaFFPa uses is
organized in rounds. In each round, a priority queue P is initialized with all vertices that are incident to more than
one block, in a random order. The priority is based on the gain g(i) = maxP gP (i) where gP (i) is the decrease
in edge cut when moving i to block P . Local search then repeatedly looks for the highest gain node v and moves
it to the corresponding block that maximizes the gain. However, in each round a node is moved at most once.
After a node is moved, its unmoved neighbors become eligible, i.e. its unmoved neighbors are inserted into the
priority queue. When a stopping criterion is reached, all movements after the best-found cut that occurred within
the balance constraint are undone. This process is repeated several times until no improvement is found.

Max-Flow Min-Cut Local Improvement. KaFFPa additionally uses more advanced local search algorithms.
The first method is based on max-flow min-cut computations between pairs of blocks, in other words, a method
to improve a given bipartition. Roughly speaking, this improvement method is applied between all pairs of blocks
that share a non-empty boundary. The algorithm constructs a flow problem by growing an area around the given
boundary vertices of a pair of blocks such that each s-t cut in this area yields a feasible bipartition of the original
graph/pair of blocks within the balance constraint. One can then apply a max-flow min-cut algorithm to obtain a
min-cut in this area and therefore a non-decreased cut between the original pair of blocks. This is improved in
multiple ways, for example, by iteratively applying the method, searching in larger areas for feasible cuts, and
applying most balanced minimum cut heuristics. For more details we refer the reader to [29].

Multi-try FM. The second method for improving a given partition is called multi-try FM. This local improvement
method moves nodes between blocks in order to decrease the cut. Previous k-way methods were initialized with
all boundary nodes, i.e., all boundary nodes were eligible for movement at the beginning. Roughly speaking,
the multi-try FM algorithm is a k-way improvement method that is initialized with a single boundary node, thus
achieving a more localized search. This is repeated several rounds. The algorithm has a higher chance to escape
local optima. For more details about the multi-try FM algorithm we refer the reader to [29, 35].

Iterated Multilevel Algorithms. KaFFPa extends the concept of iterated multilevel algorithms which was in-
troduced for graph partitioning by Walshaw et al. [37]. The main idea is to iterate the multilevel-scheme using
different random seeds for coarsening and uncoarsening. Once the graph is partitioned, edges that are between two
blocks are not contracted so that the given partition can be used as initial partition on the coarsest level. This en-
sures non-decreased partition quality since the refinement algorithms of KaFFPa guarantee no worsening. KaFFPa

3

uses F-cycles as a potentially stronger iterated multilevel algorithm. The detailed description of F-cycles for the
multilevel graph partitioning framework can be found in [29].

2.2 KaFFPaE

KaFFPaE (KaFFPaEvolutionary) is a distributed evolutionary algorithm to tackle the graph partitioning problem.
KaFFPaE uses KaFFPa to provide new effective combine and mutation operators. Roughly speaking, to combine
two partitions of a population of the algorithm, the coarsening phase of KaFFPa is modified such that no cut edge of
either of the input partitions is contracted. This ensures that both input partitions can be used as initial partition on
the coarsest level and moreover that exchanging good parts of solutions can be exchanged effectively. Intuitively,
the combine operator assembles good parts of solutions into a single partition. The combine operation framework
is very flexible so that a partition can be combined with an arbitrary domain specific graph clustering. Moreover,
the algorithm is parallelized such that each process has its own population of partitions and independently performs
combine and mutation operations. This is combined with a scalable communication protocol similar to randomized
rumor spreading to distribute high quality partitions among the processes. Overall, the system is able to improve
the best known partitioning results for many inputs and also in a short amount of time for graphs of moderate size.

input
graph

Output
Partition

contract

... ...

match

partitioning

initial

local improvement

uncontract

W−F−V− cycles a la multigrid

evol. alg.
distr.

highly balanced:

[28]

[27]

[29]

[27] [15]

[30]

[25]

[28] [TR]

A

C

B

+

edge
ratings

flows etc.

Multilevel
Graph Partitioning

A B

C
0 −1

−1

0

−1

A B

C
0 −1

−1

0

−10 0

road networks node separatorssocial networks

Figure 2: Overview over the techniques used in the KaHIP graph partitioning framework.

4

2.3 KaBaPE

KaFFPa and KaFFPaE compute partitions of very high quality when some imbalance ε > 0 is allowed. However,
they are not very good for small values of ε, in particular for the perfectly balanced case ε = 0. Hence, we
developed new techniques for the graph partitioning problem with strict balance constraints, that work well for
small values of ε including the perfectly balanced case. The techniques relax the balance constraint for node
movements, but globally maintain balance by combining multiple local searches. This is done by reducing the
combination problem to finding negative cycles in a directed graph, exploiting the existence of efficient algorithms
for this problem. From a meta-heuristic point of view the proposed algorithms increase the neighborhood of a
strictly balanced solution in which local search is able to find better solutions. Moreover, we provide efficient ways
to explore this neighborhood. Experiments indicate that previous algorithms have not been able to find such rather
complex movements. KaBaPE also provides balancing variants of these techniques that are able to make infeasible
partitions feasible. In contrast to previous algorithms such as Scotch [25], Jostle [38] and Metis [18], KaBaPE is
able to guarantee that the output partition is feasible.

2.4 Specialized Techniques for Social Networks

We also include specialized techniques for social networks. On social networks matching-based multilevel algo-
rithms have the problem that they can not shrink the graph effectivly due to the irregular structure of the graphs,
To overcome this, we defined an algorithm that contracts size-constraint clusterings [23]. Here, a fast and cut-
based label propagation algorithm was used to compute the clusterings. The same algorithm can be used during
uncoarsening as a fast and very simple local search algorithms. To enable the methods use a preconfiguration of
the algorithm that has the word social in its name. For more details on this paricular method we refer the reader to
[23]. Additionally, these algorithms can now also be used within the evolutionary algorithms KaFFPaE/KaBaPE.
This work was joint work with Henning Meyerhenke. Moreover, in Glantz et al. [14] we looked at algorithms and
edge ratings improving the maximum communication volume of a partition (which are not yet integrated into the
system).

2.5 Node Separators

The node separator problem asks to partition the node set of a graph into three sets A,B and S such that the
removal of S disconnects A and B. We use flow-based and locallized local search algorithms withing a multilevel
framework to compute node separators [33]. A common way to obtain a node separator is the following. First, we
compute a partition of the graph into two sets V1 and V2. Clearly, the boundary nodes in V1 would yield a feasible
separator and so would the boundary nodes in the opposite block V2. Since we are interested in a small separator,
we could simply use the smaller set of boundary nodes.

It is worth mentioning that we also provide an extended method which can be used to obtain a k-way node
separator, i.e. k blocks V1, . . . , Vk and a set S such that after the removal of the nodes in S there no edge running
between the blocks V1, . . . , Vk. The method of Pothen et al. [26] creates a 2-way node separator from the set of
cut edges of a previously computed partition. As in the original work, we can use this method in our framework
as a post-processing step to compute a node separator from a set of cut edges. The method computes the smallest
node separator that can be found by using a subset of the boundary nodes. The main idea is to compute a subset
S of the boundary nodes such that each cut edge is incident to at least one of the nodes in S. Such a set called a
vertex cover. It is easy to see that S is a node separator since the removal of S eliminates all cut edges. We can
then compute a k-way node separator by computing a k-partition using KaFFPa and applying the described flow
problem between all pairs of blocks that share a non-empty boundary afterwards. All pair-wise separators together
are then be used as a k-way separator.

5

3 Graph Format

3.1 Input File Format

The graph format used by our partitioning programs is the same as used by Metis [18], Chaco [15] and the graph
format that has been used during the 10th DIMACS Implementation Challenge on Graph Clustering and Partition-
ing. The input graph has to be undirected, withoud self-loops and without parallel edges.

To give a description of the graph format, we follow the description of the Metis 4.0 user guide very closely.
A graph G = (V,E) with n vertices and m edges is stored in a plain text file that contains n + 1 lines (excluding
comment lines). The first line contains information about the size and the type of the graph, while the remaining n
lines contain information for each vertex of G. Any line that starts with % is a comment line and is skipped.

The first line in the file contains either two integers, n m, or three integers, n m f . The first two integers are
the number of vertices n and the number of undirected edges of the graph, respectively. Note that in determining
the number of edges m, an edge between any pair of vertices v and u is counted only once and not twice, i.e. we
do not count the edge (v, u) from (u, v) separately. The third integer f is used to specify whether or not the graph
has weights associated with its vertices, its edges or both. If the graph is unweighted then this parameter can be
omitted. It should be set to 1 if the graph has edge weights, 10 if the graph has node weights and 11 if the graph
has edge and node weights.

The remaining n lines of the file store information about the actual structure of the graph. In particular, the ith
line (again excluding comment lines) contains information about the ith vertex. Depending on the value of f , the
information stored in each line is somewhat different. In the most general form (when f = 11, i.e. we have node
and edge weights) each line has the following structure:

c v1w1 v2w2 . . . vk wk

where c is the vertex weight associated with this vertex, v1, . . . , vk are the vertices adjacent to this vertex, and
w1, . . . , wk are the weights of the edges. Note that the vertices are numbered starting from 1 (not from 0). Further-
more, the vertex-weights must be integers greater or equal to 0, whereas the edge-weights must be strictly greater
than 0.

72

1

6

543
1

43

1

1

5

4

3

3

21

1

1

6

1

31

66154412213

67154

3 4 1 7 1 6 1

154

14

7

3

13

2

3

1

1 1 1 3 3 7 1

27125

7 10 11

Figure 3: An example graph and its representation in the graph format. The IDs of the vertices are drawn within
the cycle, the vertex weight is shown next to the circle (red) and the edge weight is plotted next to the edge (blue).

6

3.2 Output File Formats

3.2.1 Partition

The output format of a partition is also similar to the output format of a partition provided by Metis. It is basically
a text file named tmppartitionk where k is the number of blocks given as input to the partitioning program. This
file contains n lines. In each line the block ID of the corresponding vertex is given, i.e. line i contains the block ID
of the vertex i (here the vertices are numbered from 0 to n − 1). The block IDs are numbered consecutively from
0 to k − 1.

3.2.2 Node Separator

If the output is a node separator then the same format as used for a partition is used. However, in this case the nodes
of the separator get the block ID k where as the other nodes maintain their original block id.

3.3 Troubleshooting

KaHIP should not crash! If KaHIP crashes it is mostly due to the following reasons: the provided graph contains
self-loops or parallel edges, there exists a forward edge but the backward edge is missing or the forward and
backward edges have different weights, or the number of vertices or edges specified does not match the number of
vertices or edges provided in the file. Please use the graphcheck tool provided in our graph partitioning package
to verify whether your graph has the right input format. If our graphcheck tool tells you that the graph that you
provided has the correct format and KaHIP crashes anyway, please write us an email.

7

4 User Interface

KaHIP contains the following programs: kaffpa, kaffpaE, partition_to_vertex_separator, graphchecker. To compile
these programs you need to have Argtable, g++, OpenMPI and scons installed (we use argtable-2.10, g++-4.8.0,
OpenMPI-1.4.1 and scons-1.2). Once you have that you can execute compile.sh in the main folder of the release.
When the process is finished the binaries can be found in the folder deploy. We now explain the parameters of each
of the programs briefly.

4.1 KaFFPa

Description: This is the multilevel graph partitioning program.

Usage:
kaffpa file --k=<int> [--help] [--seed=<int>] [--preconfiguration=variant] [--imbalance=<double>]

[--time_limit=<double>] [--enforce_balance] [--input_partition=<string>]
[--balance_edges] [--output_filename=<string>]

Options:

file Path to graph file that you want to partition.
--k=<int> Number of blocks to partition the graph into.
--help Print help.
--seed=<int> Seed to use for the random number generator.
--preconfiguration=variant Use a preconfiguration. (Default: eco) [strong| eco | fast | fastsocial| ecosocial|

strongsocial]. Strong should be used if quality is paramount, eco if you need a
good tradeoff between partition quality and running time, and fast if partitioning
speed is in your focus. Configurations with a social in their name should be used
for social networks and web graphs.

--imbalance=<double> Desired balance. Default: 3 (%).
--time_limit=<double> Time limit in seconds s. The default value is set to 0s, i.e. one partitioner call

will be made. If you set a time limit t, kaffpa will repeatedly call the multilevel
method until the time limit is reached and return the best solution found.

--enforce_balance Use this option only on graphs without vertex weights. If this option is enabled,
kaffpa guarantees that the output partition is feasible, i.e. fulfills the specified
balance constraint.

--balance_edges Use this option to balance the edges among the blocks as well as the nodes. In
this case node weights are set to c(v)+degω(v) for a node v ∈ V and the balance
constraint is adapted accordingly.

--input_partition=<string> You can specify an input partition. If you do so, KaFFPa will try to improve it.
--output_filename=<string> Specify the output filename (default tmppartition$k).

8

4.2 KaFFPaE / KaBaPE

Description: This is the distributed evolutionary algorithm to tackle the graph partitioning problem. It includes
also the perfectly balance case ε = 0.

Usage:
mpirun -n P kaffpaE file --k=<int> [--help] [--seed=<int>] [--preconfiguration=variant] [--imbalance=<double>]

[--time_limit=<double>] [--mh_enable_quickstart] [--mh_optimize_communication_volume]
[--mh_enable_kabapE] [--mh_enable_tabu_search] [--kabaE_internal_bal=<double>]
[--input_partition=<string>] [--balance_edges] [--output_filename=<string>]

Options:

P Number of processes to use.
file Path to graph file that you want to partition.
--k=<int> Number of blocks to partition the graph into.
--help Print help.
--seed=<int> Seed to use for the random number generator.
--preconfiguration=variant Use a preconfiguration. (Default: strong) [strong | eco | fast | fastso-

cial | ecosocial | strongsocial]. Strong should be used if quality is
paramount, eco if you need a good tradeoff between partition qual-
ity and running time, and fast if partitioning speed is in your focus.
Configurations with a social in their name should be used for social
networks and web graphs.

--imbalance=<double> Desired balance. Default: 3 (%).
--time_limit=<double> Time limit in seconds s. The default value is set to 0s, i.e. one parti-

tioner call will be made by each PE. In order to use combine opera-
tions you have to set a time limit t > 0. kaffpaE will return the best
solution after the time limit is reached. A time limit t = 0 means that
the algorithm will only create the initial population.

--mh_enable_quickstart Enables the quickstart option. In this case each PE creates a few
partitions and these partitions are distributed among the PEs.

--mh_optimize_communication_volume Modifies the fitness function of the evolutionary algorithm so that
communication volume is optimized.

--mh_enable_kabapE Enables the combine operator of KaBaPE.
--mh_enable_tabu_search Enables our version of combine operation by block matching.
--kabaE_internal_bal=<double> The internal balance parameter for KaBaPE (Default: 0.01) (1 %)
--balance_edges Use this option to balance the edges among the blocks as well as the

nodes. In this case node weights are set to c(v) + degω(v) for a node
v ∈ V and the balance constraint is adapted accordingly.

--input_partition=<string> You can specify an input partition. If you do so, KaFFPaE will try to
improve it.

--output_filename=<string> Specify the output filename (default tmppartition$k).

9

4.3 Node Separators

Description: This is the program that computes a k-way vertex separator given a k-way partition of the graph.
Use this approach if k > 2.

Usage:
partition_to_vertex_separator file --k=<int> --input_partition=<string> [--help] [--seed=<int>] [--output_filename]

Options:

file Path to the graph file.
--k=<int> Number of blocks the graph is partitioned in by using the input partition.
--input_partition=<string> Input partition to compute the vertex separator from.
--help Print help.
--seed=<int> Seed to use for the random number generator.
--output_filename=<string> Specify the output filename (default tmpseparator).

Description: This is the program that computes a 2-way vertex separator. Use this approach if k = 2.

Usage:
node_separator file [--seed=<int>] [--preconfiguration=variant] [--help] [--output_filename]

Options:

file Path to the graph file.
--help Print help.
--imbalance=<double> Desired balance. Default: 20 (%).
--seed=<int> Seed to use for the random number generator.
--preconfiguration=variant Use a preconfiguration. (Default: strong) [strong | eco | fast | fastsocial | ecosocial

| strongsocial]. Strong should be used if quality is paramount, eco if you need a
good tradeoff between partition quality and running time, and fast if partitioning
speed is in your focus. Configurations with a social in their name should be
used for social networks and web graphs (they use a different kind of coarsening
scheme).

--output_filename=<string> Specify the output filename (default tmpseparator).

4.4 Label Propagation

Description: This is the program that a size-constrained label propagation clustering.

Usage:
label_propagation file [--cluster_upperbound=<int>] [--label_propagation_iterations] [--help] [--seed=<int>]

[--output_filename]

10

Options:

file Path to the graph file.
--cluster_upperbound=<int> Set a size-constraint on the size of a cluster. For example, specifying

a value of 10 means that each cluster can have at most 10 vertices (or
a weight of 10 if the graph is weighted). By default there is no size-
constraint, so that each node can potentially be in on cluster.

--label_propagation_iterations=<int> Set the number of label propgation iterations. The default value is 10.
--help Print help.
--seed=<int> Seed to use for the random number generator.
--output_filename=<string> Specify the output filename (default tmpclustering).

4.5 Graph Format Checker

Description: This program checks if the graph specified in a given file is valid.

Usage:
graphchecker file

Options:

file Path to the graph file.

11

5 Library

Some of the programs above can be directly accessed in C/C++ by using the library that we provide, i.e. the graph
partitioners KaFFPaFast, KaFFPaEco and KaFFPaStrong (more will follow) can be called using this library. In
this section we describe how the library can be used, the methods can be accessed and describe the parameters of
these functions. The functions described in this section can be found in the file interface/kaHIP_interface.h. An
example program that calls and links the library can be found in misc/example_library_call/. To try, go into
this directory, run ./compile.sh and then the program ./interfactest.

5.1 Graph Data Structure

To make it easy for you to try KaHIP, we use a more or less similar interface to that provided by Metis. Most
importantly, we use the same graph data structure. The graph data structure is an adjacency structure of the graph
which includes weights for the vertices and edges if there are any. The adjacency structure is a compressed sparse
row (CSR) format. We closely follow the description of the Metis 4.0 user guide:

The CSR format is a widely used scheme for storing sparse graphs. In this format the adjacency structure of
a graph with n vertices and m edges is represented using two arrays xadj and adjncy. The xadj array is of size
n+ 1 whereas the adjncy array is of size 2m (this is because for each edge between vertices v and u we store both
a forward edge (v, u) and a backward edge (u, v)).

The adjacency structure of the graph is stored as follows. First of all, the vertex numbering starts from 0. The
adjacency list of vertex i is stored in the array adjncy starting at index xadj[i] and ending at (but not including)
index xadj[i+ 1] (i.e. adjncy[xadj[i]] through and including adjncy[xadj[i+ 1]−1]). That is, for each vertex i, its
adjacency list is stored in consecutive locations in the array adjncy, and the array xadj is used to point to where it
begins and where it ends.

The weights of the vertices (if any) are stored in an additional array called vwgt. If the graph has n vertices
then the array contains n elements, and vwgt[i] will store the weight of the ith vertex. The vertex-weights must be
integers greater or equal to zero. If all the vertices of the graph have the same weight (e.g. the graph is unweighted),
then the array vwgt can be set to NULL.

The weights of the edges (if any) are stored in additional array called adjwgt. This array contains 2m elements,
and the weight of edge adjncy[j] is stored at location adjwgt[j]. The edge-weights must be integers greater than
zero. The weight of a forward edge (u, v) has to be equal to the weight of the backward edge (v, u) and parallel
edges as well as self-loops are not allowed. If all the edges of the graph have the same weight (e.g. the graph is
unweighted), then the array adjwgt can be set to NULL.

0

1

2 3

4

xadj: 0 2 5 7 9 12
adjncy: 1 4 0 2 4 1 3 2 4 0 1 3

Figure 4: An example unweighted graph with its graph data structure.

12

5.2 Functions

Currently we provide two functions, e.g. kaffpa and node_separator. The function kaffpa corresponds to the
mulilevel partitioner KaFFPa and the function node_separator used KaFFPa to compute a partition and from that a
node separator is derived.

Main Partitioner Call

void kaffpa(int* n, int* vwgt, int* xadj, int* adjcwgt, int* adjncy,
int* nparts, double* imbalance, bool suppress_output, int seed, int mode,
int* edgecut, int* part);

Parameters

n Number of vertices of the graph.
vwgt This is the vertex weight array described in Section 5.1. The array should have size n. If your

graph does not have vertex weight you can use a null pointer as an argument.
xadj This is the xadj array described in Section 5.1 which holds the pointers to the adjacency lists

of the vertices. The array should have size n+ 1.
adjcwgt This is the adjacency weight array described in Section 5.1 which holds the weights of the

edges if they exists. The array should have size 2m. If your graph does not have edge weights
you can use a null pointer as an argument.

adjncy This is the adjacency array described in Section 5.1 which holds the adjacency lists of the
vertices. The array should have size 2m.

nparts This parameter specifies the number of blocks you want the graph to be partitioned in.
imbalance This parameter controls the amount of imbalance that is allowed. For example, setting it to

0.03 specifies an imbalance of 3% which means on unweighted graphs that each block has to
fulfill the constraint |Vi| ≤ (1 + 0.03)|V |/k.

suppress_output If this option is enabled then no output of the partitioning library is printed to stdout.
seed Seed to use for the random number generator.
mode One out of FAST, ECO, STRONG, FASTSOCIAL, ECOSOCIAL, STRONGSOCIAL. Con-

figuration names correpond to the default configuration names of the multilevel partitioner
KaFFPa.

edgecut This is an output parameter. It represents the edge cut of the computed partition.
part This is an output parameter. It has to be an already allocated array of size n. After the

function call this array contains the information of the blocks of the vertices, i.e. the block of
the ith vertex is given in part[i].

13

Node+Edge Balanced Partitioner Call

This function will try to balance nodes and edges among the blocks. Use this function if you want to use KaFFPa
for applications in which workload is also associated with edges, e.g. sparse matrix vector multiplications or in
graph processing frameworks.

void kaffpa_balance_NE(int* n, int* vwgt, int* xadj, int* adjcwgt, int* adjncy,
int* nparts, double* imbalance, bool suppress_output, int seed, int mode,
int* edgecut, int* part);

Parameters

n Number of vertices of the graph.
vwgt This is the vertex weight array described in Section 5.1. The array should have size n. If your

graph does not have vertex weight you can use a null pointer as an argument.
xadj This is the xadj array described in Section 5.1 which holds the pointers to the adjacency lists

of the vertices. The array should have size n+ 1.
adjcwgt This is the adjacency weight array described in Section 5.1 which holds the weights of the

edges if they exists. The array should have size 2m. If your graph does not have edge weights
you can use a null pointer as an argument.

adjncy This is the adjacency array described in Section 5.1 which holds the adjacency lists of the
vertices. The array should have size 2m.

nparts This parameter specifies the number of blocks you want the graph to be partitioned in.
imbalance This parameter controls the amount of imbalance that is allowed. For example, setting it to

0.03 specifies an imbalance of 3% which means on unweighted graphs that each block has to
fulfill the constraint |Vi| ≤ (1 + 0.03)|V |/k.

suppress_output If this option is enabled then no output of the partitioning library is printed to stdout.
seed Seed to use for the random number generator.
mode One out of FAST, ECO, STRONG, FASTSOCIAL, ECOSOCIAL, STRONGSOCIAL. Con-

figuration names correpond to the default configuration names of the multilevel partitioner
KaFFPa.

edgecut This is an output parameter. It represents the edge cut of the computed partition.
part This is an output parameter. It has to be an already allocated array of size n. After the

function call this array contains the information of the blocks of the vertices, i.e. the block of
the ith vertex is given in part[i].

14

Node Separator

void node_separator(int* n, int* vwgt, int* xadj, int* adjcwgt, int* adjncy,
int* nparts, double* imbalance, bool suppress_output, int seed, int mode,
int* num_separator_vertices, int** separator);

Parameters

n Number of vertices of the graph.
vwgt This is the vertex weight array described in Section 5.1. The array should have size n.

If your graph does not have vertex weight you can use a null pointer as an argument.
xadj This is the xadj array described in Section 5.1 which holds the pointers to the adja-

cency lists of the vertices. The array should have size n+ 1.
adjcwgt This is the adjacency weight array described in Section 5.1 which holds the weights

of the edges if they exists. The array should have size 2m. If your graph does not
have edge weights you can use a null pointer as an argument.

adjncy This is the adjacency array described in Section 5.1 which holds the adjacency lists
of the vertices. The array should have size 2m.

nparts This parameter specifies the number of blocks you want the graph to be partitioned
in as a base to compute a separator from. If the size of the separator is your objective,
we recommend to set this parameter to 2.

imbalance This parameter controls the amount of imbalance that is allowed. For example, setting
it to 0.03 specifies an imbalance of 3% which means on unweighted graphs that each
block has to fulfill the constraint |Vi| ≤ (1 + 0.03)|V |/k.

suppress_output If this option is enabled then no output of the partitioning library is printed to stdout.
seed Seed to use for the random number generator.
mode One out of FAST, ECO, STRONG, FASTSOCIAL, ECOSOCIAL, STRONGSO-

CIAL. Configuration names correpond to the default configuration names of the mul-
tilevel partitioner KaFFPa.

num_separator_vertices This is an output parameter. It represents the number of separator vertices, i.e. the
size of the array separator.

separator This is an output parameter. After the function call this array contains the ids of the
separator vertices.

Using KaHIP within Java Projects

KaHIP can be used within Java project via JNI. A small example on how to do this is provided in the folder
misc/java_jni_wrapper/ of the project. To run the example perform the following commands in the main folder:

./compile.sh
cd misc/java_jni_wrapper
./makeWrapper.sh
java KaHIPWrapper

15

References

[1] C. J. Alpert and A. B. Kahng. Recent Directions in Netlist Partitioning: A Survey. Integration, the VLSI
Journal, 19(1-2):1–81, 1995.

[2] C. J. Alpert, A. B. Kahng, and S. Z. Yao. Spectral Partitioning with Multiple Eigenvectors. Discrete Applied
Mathematics, 90(1):3–26, 1999.

[3] D. Bader, H. Meyerhenke, P. Sanders, and D. Wagner. 10th DIMACS Implementation Challenge – Graph
Partitioning and Graph Clustering, http://www.cc.gatech.edu/dimacs10/.

[4] E. G. Boman, K. D. Devine, and S. Rajamanickam. Scalable Matrix Computations on Large Scale-Free
Graphs Using 2D Graph Partitioning. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC’13. ACM, 2013.

[5] A. Buluç and K. Madduri. Graph partitioning for scalable distributed graph computations. In Graph Parti-
tioning and Graph Clustering, pages 83–102, 2012.

[6] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. Recent Advances in Graph Partitioning. In
Algorithm Engineering – Selected Topics, to appear, 2014.

[7] Ü. V. Çatalyürek and C. Aykanat. Decomposing Irregularly Sparse Matrices for Parallel Matrix-Vector Multi-
plication. In Proceedings of the 3rd International Workshop on Parallel Algorithms for Irregularly Structured
Problems, volume 1117 of LNCS, pages 75–86. Springer, 1996.

[8] J. Cong and J. Shinnerl. Multilevel Optimization in VLSICAD. Springer, 2003.

[9] D. Delling, A. V. Goldberg, T. Pajor, and R. F. Werneck. Customizable Route Planning. In Proceedings of the
10th International Symposium on Experimental Algorithms, volume 6630 of LCNS, pages 376–387. Springer,
2011.

[10] D. Delling and R. F. Werneck. Faster Customization of Road Networks. In 12th Symposium on Experimental
Algorithms, volume 7933 of LNCS, pages 30–42. Springer, 2013.

[11] C. M. Fiduccia and R. M. Mattheyses. A Linear-Time Heuristic for Improving Network Partitions. In Pro-
ceedings of the 19th Conference on Design Automation, pages 175–181, 1982.

[12] J. Fietz, M. Krause, C. Schulz, P. Sanders, and V. Heuveline. Optimized Hybrid Parallel Lattice Boltzmann
Fluid Flow Simulations on Complex Geometries. In Proceedings of Euro-Par 2012 Parallel Processing,
volume 7484 of LNCS, pages 818–829. Springer, 2012.

[13] A. George. Nested Dissection of a Regular Finite Element Mesh. SIAM Journal on Numerical Analysis,
10(2):345–363, 1973.

[14] R. Glantz, H. Meyerhenke, and C. Schulz. Tree-based Coarsening and Partitioning of Complex Networks.
Technical Report ArXiv:1402.2782, 2014.

[15] B. Hendrickson. Chaco: Software for Partitioning Graphs. http://www.cs.sandia.gov/
~bahendr/chaco.html.

[16] M. Holtgrewe, P. Sanders, and C. Schulz. Engineering a Scalable High Quality Graph Partitioner. Proceedings
of the 24th IEEE International Parallal and Distributed Processing Symposium, pages 1–12, 2010.

16

[17] A. B. Kahng, J. Lienig, I. L. Markov, and J. Hu. VLSI Physical Design - From Graph Partitioning to Timing
Closure. Springer, 2011.

[18] G. Karypis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs.
SIAM Journal on Scientific Computing, 20(1):359–392, 1998.

[19] T. Kieritz, D. Luxen, P. Sanders, and C. Vetter. Distributed Time-Dependent Contraction Hierarchies. In
Proceedings of the 9th International Symposium on Experimental Algorithms, volume 6049 of LNCS, pages
83–93. Springer, 2010.

[20] U. Lauther. An Extremely Fast, Exact Algorithm for Finding Shortest Paths in Static Networks with Geo-
graphical Background. In Proceedings of the Münster GI-Days, 2004.

[21] D. Luxen and D. Schieferdecker. Candidate Sets for Alternative Routes in Road Networks. In Proceedings
of the 11th International Symposium on Experimental Algorithms (SEA’12), volume 7276 of LNCS, pages
260–270. Springer, 2012.

[22] J. Maue, P. Sanders, and D. Matijevic. Goal Directed Shortest Path Queries Using
Precomputed Cluster Distances. ACM Journal of Experimental Algorithmics, 2007.

[23] H. Meyerhenke, P. Sanders, and C. Schulz. Partitioning Complex Networks via Size-constrained Clustering.
Technical Report ArXiv:1402.3281, 2014.

[24] R. H. Möhring, H. Schilling, B. Schütz, D. Wagner, and T. Willhalm. Partitioning Graphs to Speedup Dijk-
stra’s Algorithm. Journal of Experimental Algorithmics (JEA), 11(2006), 2007.

[25] F. Pellegrini. Scotch Home Page. http://www.labri.fr/pelegrin/scotch.

[26] A. Pothen, H. D. Simon, and K. P. Liou. Partitioning Sparse Matrices with Eigenvectors of Graphs. SIAM
Journal on Matrix Analysis and Applications, 11(3):430–452, 1990.

[27] I. Safro, P. Sanders, and C. Schulz. Advanced Coarsening Schemes for Graph Partitioning. In Proceedings
of the 11th International Symposium on Experimental Algorithms (SEA’12), volume 7276 of LNCS, pages
369–380. Springer, 2012.

[28] S. Salihoglu and J. Widom. GPS: A Graph Processing System. In SSDBM, page 22, 2013.

[29] P. Sanders and C. Schulz. Engineering Multilevel Graph Partitioning Algorithms. In Proceedings of the 19th
European Symposium on Algorithms, volume 6942 of LNCS, pages 469–480. Springer, 2011.

[30] P. Sanders and C. Schulz. Distributed Evolutionary Graph Partitioning. In Proceedings of the 12th Workshop
on Algorithm Engineering and Experimentation (ALENEX’12), pages 16–29, 2012.

[31] P. Sanders and C. Schulz. High Quality Graph Partitioning. In Proceedings of the 10th DIMACS Implemen-
tation Challenge - Graph Clustering and Graph Partitioning, pages 1–17. AMS, 2013.

[32] P. Sanders and C. Schulz. Think Locally, Act Globally: Highly Balanced Graph Partitioning. In Proceedings
of the 12th International Symposium on Experimental Algorithms (SEA’12), LNCS. Springer, 2013.

[33] Peter Sanders and Christian Schulz. Advanced Multilevel Node Separator Algorithms. In Proceedings of the
15th International Symposium on Experimental Algorithms, 2016.

[34] K. Schloegel, G. Karypis, and V. Kumar. Graph Partitioning for High Performance Scientific Simulations. In
The Sourcebook of Parallel Computing, pages 491–541, 2003.

17

[35] C. Schulz. Hiqh Quality Graph Partititioning. PhD thesis, Karlsruhe Institute of Technology, 2013.

[36] F. Schulz, D. Wagner, and C. D. Zaroliagis. Using Multi-Level Graphs for Timetable Information. In 4th
Workshop on Algorithm Engineering and Experiments, volume 2409 of LNCS, pages 43–59. Springer, 2002.

[37] C. Walshaw. Multilevel Refinement for Combinatorial Optimisation Problems. Annals of Operations Re-
search, 131(1):325–372, 2004.

[38] C. Walshaw and M. Cross. JOSTLE: Parallel Multilevel Graph-Partitioning Software – An Overview. In
Mesh Partitioning Techniques and Domain Decomposition Techniques, pages 27–58. Civil-Comp Ltd., 2007.

[39] M. Zhou, O. Sahni, K. D Devine, M. S. Shephard, and K. E Jansen. Controlling Unstructured Mesh Partitions
for Massively Parallel Simulations. SIAM Journal on Scientific Computing, 32(6):3201–3227, 2010.

18

