
Cache-, Hash- and Space-Efficient Bloom Filters

Felix Putze, Peter Sanders, Johannes Singler
{putze,sanders,singler}@ira.uka.de

Fakultät für Informatik, Universität Karlsruhe, Germany

Abstract. A Bloom filter is a very compact data structure that supports
approximate membership queries on a set, allowing false positives.
We propose several new variants of Bloom filters and replacements with
similar functionality. All of them have a better cache-efficiency and need
less hash bits than regular Bloom filters. Some use SIMD functionality,
while the others provide an even better space efficiency. As a conse-
quence, we get a more flexible trade-off between false positive rate, space-
efficiency, cache-efficiency, hash-efficiency, and computational effort. We
analyze the efficiency of Bloom filters and the proposed replacements in
detail, in terms of the false positive rate, the number of expected cache-
misses, and the number of required hash bits. We also describe and ex-
perimentally evaluate the performance of highly-tuned implementations.
For many settings, our alternatives perform better than the methods
proposed so far.

1 Introduction

The term Bloom filter names a data structure that supports membership queries
on a set of elements. It was introduced already in 1970 by Burton Bloom [1]. It
differs from ordinary dictionary data structures, as the result for a membership
query might be true although the element is not actually contained in the set.
Since the data structure is randomized by using hash functions, reporting a false
positive occurs with a certain probability, called the false positive rate (FPR).
This impreciseness also makes it impossible to remove an element from a Bloom
filter. The advantage of a Bloom filter over the established dictionary structures
is space efficiency. A Bloom filter needs only a constant number of bits per
(prospective) element, while keeping the FPR constant, independent from the
size of the elements’ universe.

The false positives can often be compensated for by recalculating or retrans-
ferring data. Bloom filters have applications in the fields of databases, network
applications [2] and model checking [4, 5]. The requirements on the Bloom filter
and the way of usage differ greatly among these fields of applications.

Paper Outline. In Section 2 we review “standard” Bloom filters which are based
on setting k bits in a bit array which are determined by k hash functions. Sec-
tion 3 introduces and analyzes a family of cache-efficient variants of standard
Bloom filters. There are two main ideas here: concentrate the k bits in one (or

only few) cache blocks and precompute random bit patterns in order to save both
hash bits and access time. While these Bloom filter variants improve execution
time at the cost of slightly increased FPR, the ones presented in Section 4 saves
space by engineering practical variants of the theoretically space optimal Bloom
filter replacements proposed by Pagh et. al. [11]. The basic idea is a compressed
representation of a Bloom filter with k = 1. Our main algorithmic contribution
is the observation that a technique from information retrieval fits perfectly here:
Since the distances between set bits are geometrically distributed, Golomb codes
yield almost optimal space [10]. After giving some hints on the implementation
in Section 5, we present an experimental evaluation in Section 6. We conclude
our paper in Section 7.

2 Standard Bloom Filters with Variants

The original Bloom filter for representing a set of at most n elements consists
of a bit vector of length m. Let c := m/n be the bits-per-element rate. Initially,
all bits are set to 0. For inserting an element e into the filter, k bits are set in
the Bloom filter according to the evaluations of k independent hash functions
h1(e), . . . , hk(e). The membership query consists of testing all those bits for the
query element. If all bits are set, the element is likely to be contained in the set,
otherwise, it is surely not contained.

For a fixed number of contained elements, the FPR is lowest possible if the
probability of a bit being set is as close as possible to 1

2 . One can easily show
that it is optimal to choose k = ln 2 · c = ln 2 · m

n ≈ 0.693m
n .

The probability that a bit has remained 0 after inserting n elements, is1

p′ :=
(

1− 1
m

)kn
i=kn
≈ lim

i→∞

(
1− kn

mi

)i

= e−kn/m . (1)

The false positive rate for a standard Bloom filter (std) is

fstd(m,n, k) = (1− p′)k =

(
1−

(
1− 1

m

)kn
)k

≈
(
1− e−kn/m

)k !
≈ 1

2k
(2)

for the optimal k. The detailed calculation can be found in Mitzenmacher’s
survey paper [2].

Classification. The original Bloom filter can be termed a semi-static data
structure, since it does not support deletions. Variants that do support deletion
are called dynamic. The other extreme is a static filter where not even additions
to the set may occur after construction.

1 We assume throughout the paper that the hash functions are perfectly random.

Existing Variants for Different Requirements. A variant called Counting
Bloom Filters [6] allows deletion of elements from the Bloom filter by using
(small) counters instead of a single bit at every position. This basic technique is
also used by [11] in combination with a space-efficient multiset data structure,
to yield an asymptotically space-optimal data structure.

In [7], Mitzenmacher et al. show that we can weaken the prerequisite of
independent hash functions. The hash values can also be computed from a linear
combination of two hash functions h1(e) and h2(e). This trick does not worsen
the false positive rates in practice.

3 Blocked Bloom Filters

We will now analyze the cache efficiency of a standard Bloom filter, which we
assume to be much larger than the cache. For negative queries, only less than
two cache misses are generated, on the average. This is because each bit is set
with probability q = 1/2, when choosing the optimal k, and the program will
return false as soon as an unset bit is found. This cannot be improved much,
since at most one cache fault is needed for accessing some randomly specified
cell in the data structure.

Standard Bloom filters are cache-inefficient since k cache misses are gener-
ated by every input operation and (false or true) positive membership query.

In this section, we present a cache-efficient variant called blocked Bloom filter
(blo). It consists of a sequence of b comparatively small standard Bloom filters
(Bloom filter blocks), each of which fits into one cache-line. Nowadays, a common
cache line size is 64 bytes = 512 bits. For best performance, those small filters
are stored cache-line-aligned. For each potential element, the first hash value
selects the Bloom filter block to be used. Additional hash values are then used
to set or test bits as usual, but only inside this one block. A blocked Bloom filter
therefore only needs one cache miss for every operation. In the setting of an
external memory Bloom filter, the idea of blocking was already suggested in [8],
but the increase of the FPR was found negligible for the test case there (k = 5),
and no further analysis was done. The blocked Bloom filter scheme differs from
the partition schemes mentioned in [7, Section 4.1], where each bit is inserted
into a different block.

Let primed identifiers refer to the “local” parameters of the Bloom filter
block. On the first glance, blocked Bloom filters should have the same FPR as
standard Bloom filters of the same size since the FPR in Equation (2) only
depends on k and n/m, since k = k′ and since the expected value of n′/m′ is
n/m. However, we are dealing with small values of m so that the approximation
is not perfect. More importantly, n′ is a random variable that fluctuates from
block to block. Some blocks will be overloaded and others will be underloaded.
The net effect is not clear on the first glance. The occupancies of the blocks
follow a binomial distribution B(n, 1/b) that can be closely approximated by a
Poisson distribution with parameter n/b = B/c since n is usually large, and B/c
is a small constant. An advantage of this approximation is that it is independent

of the specific value of n. For the overall FPR of a blocked Bloom filter with
local FPR finner(B, i, k) we get the following infinite but quickly converging sum:

fblo(B, c, k) :=
∞∑

i=0

PoissonB/c(i) · finner(B, i, k) (3)

For a blocked Bloom filter using the typical value c = 8 bits per element,
the decline in accuracy is not particularly bad; the FPR is 0.0231 instead of
0.0215 for B = 512 bits. By increasing c by one, we can (over-)compensate for
that. For larger c, the effect of the non-uniform distribution can be diminished
by choosing a smaller k than otherwise optimal. Still, for c = 20 and k = 14,
the FPR almost triples: it rises from 0.0000671 to 0.000194, which might not
be acceptable in certain applications. Thus, we have to increase c to 24. The
numerically computed results for many values of c are shown in Table 1. These
values are impractical for c > 28, since more than 50% additional memory must
be used to compensate for the blocking. However, for c < 20, the additional
memory required is only 20%. This can be acceptable, and often even comes
with an improvement to the FPR, in the end. For c > 34, the blocked Bloom
filter with B = 512 cannot compensate the FPR any more, for a reasonable
number of bits per element.

c 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
c’ 6 7 8 9 10 11 12 13 14 16 17 18 20 21 23 25 26 28 30 32 35 38 40 44 48 51 58 64 74 90
+% 20 16 14 12 11 10 9 8 7 14 13 12 17 16 21 25 23 27 30 33 40 46 48 57 65 70 87 100 124 165

Table 1. Increasing the space for a blocked Bloom filter to compensate the FPR
(B=512).

Bit Patterns (pat). A cache miss is usually quite costly in terms of execution
time. However, the advantage in performance by saving cache misses can still
be eaten up if the computation is too complex. For the blocked Bloom filters,
we still have to set or test k bits in for every insertion or positive query. On the
other hand, modern processors have one or two SIMD units which can handle up
to 128 bits in a single instruction. Hence, a complete cache-line can be handled
in only two steps.

To benefit from this functionality, we propose to implement blocked Bloom
filters using precomputed bit patterns. Instead of setting k bits through the
evaluation of k hash functions, a single hash function chooses a precomputed
pattern from a table of random k-bit pattern of width B. With this solution,
only one small (in terms of bits) hash value is needed, and the operation can be
implemented using few SIMD instructions. When transferring the Bloom filter,
the table need not be included explicitly in the data, but can be reconstructed
using the seed value.

The main disadvantage of the bit pattern approach is that two elements may
cause a table collision when they are hashed to the same pattern. This leads to
an increased FPR. If ` is the number of table entries, the collision probability
in an n element Bloom filter block is pcoll(n, `) := 1 −

(
1− 1

`

)n. Hence we can
bound the FPR for one block by

fpat(m,n, k, `) ≤ pcoll(`) + (1− pcoll(`))fstd(m,n, k) . (4)

This local FPR can be plugged into Equation (3) to yield the total FPR. Bit
patterns work well when on the one hand, the pattern table is small enough to
fit into the cache and on the other hand, the table is big enough to ensure that
table collisions do not increase the FPR by too much.

Multiplexing Patterns. To refine this idea once more, we can achieve a larger
variety of patterns from a single table by bitwise-or-ing x patterns with an
average number of k/x set bits. Ignoring rounding problems, dependencies, etc.

fpat[x](m,n, k, `) ≈ fpat(m,xn, k/x, `)x . (5)

Multi-Blocking. One more variant that helps improving the FPR, is called
multi-blocking. We allow the query operation to access X Bloom filters blocks,
setting or testing k/X bits respectively in each block. (When k is not divisible
by X, we set an extra bit in the first k mod X blocks.) Multi-blocking performs
better that just increasing the block size to XB, since more variety is introduced
this way. If we divide the set bits among several blocks, the expected number
of 1 bits per block remains the same. However, only k/X bits are considered in
each participating block, when accessing an element. Thus, we have to generalize
Equation (2):

fstd[X](m,n, k) =

(
1−

(
1− 1

m

)kn/X
)k

(6)

We get an estimate for the total FPR of

fblo[X](B, c, k) :=
∞∑

i=0

PoissonXB/c(i) · fstd[X](B, i/X, k)X (7)

This can be adapted to bit patterns as before. The multiplexing and the multi-
blocking factor will be denoted by appending them to either variant, i. e. blo[X]
and pat[x,X] respectively.

Combinations. Using the formulas presented, all combinations of the variants
presented here can be theoretically analyzed. Although the calculations make
simplifying assumptions, mainly through disregarding dependencies, they match
the experimental results closely, as shown in Figure 1. The differences are very
small, and only appear for large c, where random noise in the experimental values
comes into play.

0.1

0.01

10-3

10-4

10-5

10-6

10-7

 0 5 10 15 20 25 30 35

F
P

R

Bits per element (c)

emp pat[1,1]
emp pat[2,1]

emp blo[1]
emp blo[2]

emp std
theo pat[1,1]
theo pat[2,1]

theo blo[1]
theo blo[2]

theo std

Fig. 1. Comparing the empirical FPR to the theoretically computed one, for some vari-
ants. The lines represent the theoretical, the points indicate the experimental results.

Operation Insert / Positive Query Negative Query

std k log m 2 log m

blo[X] X log(m/B) + k log B log(m/B) + 2 log B

pat[x, X] X(log(m/B) + x log `) log(m/B) + x log `

ch log n/f log n/f

gcs log n/f log n/f

Table 2. Number of hash bits used by the various variants. f is the desired FPR, n
the number of elements, and m the available space, B the block size, and ` the length
of the pattern table. Throughout this paper, log x stands for log2 x.

Hash Complexity Besides the cost for memory access, Bloom filters incur a
cost for evaluating hash functions. Since the time needed for this is very appli-
cation dependent, we choose to compare the different algorithms based on the
number of hash bits needed for a filter access. Table 2 summarizes the results.

Exemplary values for m = 800, 000, 000 are shown in Figure 2. The values
follow the theoretical computation in Table 2. Obviously, the proposed variants
perform better than the standard Bloom filters, for a reasonable choice of c.

4 Space-Efficient Bloom Filter Replacements

In the previous section, we have proposed methods for making Bloom filters
produce less cache faults and use less hash bits. The aim was to improve the
execution time, while at the same time, sacrificing FPR and/or space efficiency.
In this section, we describe Bloom filters with near optimal space consumption
that are also cache-efficient. We pay for this with a trade-off between execution
time and an additive term in the space requirement.

 0

 100

 200

 300

 400

 500

 600

 700

 800

10.10.0110-310-410-510-610-7

30 20 8

N
um

be
r

of
 h

as
h

bi
ts

FPR

Number of bits per element (c) for standard Bloom filter

query pos std
query pos std[1]
query pos std[2]
query pos blo[1]
query pos blo[2]

query pos pat[1,1]
query pos pat[1,2]
query pos pat[2,1]
query pos pat[2,2]
query pos pat[3,1]
query pos pat[3,2]

Fig. 2. Number of hash bits used against the FPR.

Our basic solution is also static, i. e. the data structure must be constructed
in a preprocessing step, with all elements given, before any query can be posed.
At the end of this section we outline how the data structure can be dynamized.

The original Bloom filters are space-efficient, but not space-optimal [11].
When ignoring membership query time, one could just store one hash value in
the range {1, . . . , n/f} to obtain an FPR of f . This would cost only log

(
n/f
n

)
≈

n log e
f bits instead of n

ln 2 log(1/f) bits. Hence, a traditional Bloom filter needs
about 1/ ln 2 ≈ 1.44 times as much space, even worse by an additive constant
when compared to the information-theoretic minimum, n log(1/f) bits. This
amount of extra memory can be saved by sacrificing some access time. Pagh
and Pagh [11] use a asymptotically space-optimal hash data structure invented
by Cleary [3] for storing just those hash values. Let this approach be termed
CH filter (ch) here. However, to guarantee expected constant membership query
time, a constant number of bits must be spent additionally for each contained
element. Those bits comprise a structure that gives some hints to find the desired
element more quickly. The more extra bits are provided, the faster the data
structures will work. Although the number of bits is independent of n, and more
importantly, of the FPR, it eats up most of the savings achieved, for reasonably
small values of c. Another point is that a hash data structure should never get
close to full, i. e. there must be some maximal load α, which in turn increases
memory usage. Summarizing this, access time must be traded off with space
efficiency again, but this time with the ability to get arbitrarily close to the
theoretical optimum, asymptotically.

Our own solution proposed here is based on an approach used in search en-
gines to store sorted lists of integers [12]. Imagine a simple Bloom filter with
k = 1, i. e. a hashed bitmap, yielding an FPR of 1/c. This bitmap can be greatly

compressed, as the 1 bits are sparse. However, differently to [9], we do not use
(optimal) arithmetic coding, since this prohibits random access (without un-
packing all the data again). Instead, we do not compress the bitmap, but the
sorted sequence of hash values in the range {0, . . . , nc} for all the contained
elements. These values are uniformly distributed, therefore, the differences be-
tween two successive values are geometrically distributed with p = 1/c. For a
geometric distribution, Golomb coding [10, p. 36] is a minimal-redundancy code,
i. e. by choosing the right parameter, we lose only at most half a bit per element,
compared to the information-theoretic optimum.

However, this compressed sequence still does not allow any random-access,
since the Golomb codes have value-dependent sizes. Hence, we have to augment
it with a index data structure so we can seek to a place near the desired location
quickly. Therefore, we divide the number range of the hash function into parts
of equal size I. In addition, for each of these blocks, a bit-accurate pointer to the
beginning of the subsequence that contains the corresponding values, is stored.
So there is a trade-off once again: For a small search time we want a small I,
but large I are good for saving space.

This data structure, termed Golomb-Compressed Sequence (gcs) is static, in
contrast to the compact-hash approach, i.e., all hash values and thus, all elements
in the set must be known beforehand.

Dynamization of gcs We can support insertions by maintaining a small dy-
namic hash table Ti for recently inserted elements. It suffices if Ti stores the bit
positions for the main table. When Ti becomes too big, we empty it by recon-
structing the main table. With a bit of caution we can even support deletion
using a deletion buffer Td. This works if both the main table and Td store mul-
tisets of bit positions. This can be done very space efficiently in the main table.
We just need to provide a code word for the distance 0. Since this does not sig-
nificantly increase the lengths of the other code words and since there are only
few collisions, the resulting space and time overhead is small.

5 Implementation Aspects

Blocked Bloom filters with bit patterns profit from storing the Bloom filter in
negated form—a membership query then reduces to testing whether the bitwise-
and of the pattern and the negated filter block is zero. Insertion amounts to a
bitwise-and of negated pattern and negated filter block.

To scale the hash values to the appropriate range, we use floating-point mul-
tiplication and rounding instead division with remainder. Our measurements
indicate that this is crucial for performance.

We implemented all algorithms in a library-style way that makes them easy to
use in real applications. This includes easy configuration of all tuning parameters,
most of them allowed to be changed at runtime. Through generic programming,
we are able to plug in arbitrary data types and hash functions, without any
runtime overhead. The code can be obtained from the authors.

With all those details described, we can state that everything possible was
done to achieve best practical performance for all of the contestants, thus guar-
anteeing a fair comparison.

6 Experimental Evaluation

We evaluate our implementations using one core of an Intel Xeon 5140 dual-core
processor, running at 2.33 GHz with 4MB of L2-cache using 64 Byte cache lines.
They use the automatic vectorization feature of the Intel C++ Compiler2 to
enable SIMD operations without hand-written assembler code. We benchmark
the operations

1. insert an element
2. query an element contained in the set, returning true
3. query an element not contained in the set, returning true or false

The elements are random strings of length 8. They are hashed using one or two
variants of Jenkins’ hash function [5] with different seeds which output a total
of 64 bits. When even more bits are needed, hash values are generated as needed
using a linear combination of those two hash values, as proposed in [7]. In each
case, the number of elements n is chosen so that the filter data structure has
size 95 MB. After inserting n elements, querying for the same set is performed.
Additional n elements are queried for in the second step. This made it possible
to measure the running times for both positive and negative queries. The cache-
line size is 64 bytes, so we chose B = 512. For the pattern-based filters, the table
size is set to the full 4MB, resulting in ` = 64K.

To make the comparison fair, we also include variants of the standard Bloom
filter that for a given c use a k value just large enough to ensure an FPR at least
as good as blo[1] (std[1]) and blo[2] (std[2]) respectively.

Figures 3 and 4 show running times for the positive and negative queries as
well as the filter size, for c from 1 to 34. The insertion times are omitted since
they are very similar to the times for positive queries.

As stated before, there is not much improvement to expect for negative
queries, since their detection is already quite cache-efficient for the original
Bloom filter. Also, they do not use many hash bits. For both positive queries
and insertions, the blocked Bloom Filter variants outperform the original Bloom
filter, in particular for low FPRs, i. e. high reliability. The maximum speedup fac-
tor is close to 4, using 32% more memory than the standard variant. However,
the speedup is actually smaller than one would expect from the difference in
cache misses (see Appendix A). Apparently, the system can hide cache latencies
using prefetching.

The normal pattern variants are only slightly faster than the regular blocked
Bloom filter. One reason is that we use very cheap hash functions. But there is
another cause: When the pattern table occupies all of the cache, almost every

2 Version 9.1.045

0.00

0.20

0.40

0.60

0.80

1.00
30 20 8

T
im

e
[m

ic
ro

se
co

nd
s]

Bits per element (c) for standard Bloom filter

std
std[1]
blo[1]

pat[1,1]
pat[2,1]
pat[3,1]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

T
im

e
[m

ic
ro

se
co

nd
s]

std
std[1]
blo[1]

pat[1,1]
pat[2,1]
pat[3,1]

 0

 5

 10

 15

 20

 25

 30

 35

10.10.0110-310-410-510-610-7

B
its

 p
er

 e
le

m
en

t (
c)

FPR

std
std[1]/blo[1]
std[2]/blo[2]

pat[1,1]
pat[1,2]
pat[2,1]
pat[2,2]
pat[3,1]
pat[3,2]

Fig. 3. Execution times for positive (top), negative (middle) queries, and size of filter
in bits per contained element (bottom). For comparison, lines connect data points with
the same number of bits per element. For readability, only the variants accessing one
block are shown here in (top) and (middle), the two-block variants can be found in
Figure 4.

0.00

0.20

0.40

0.60

0.80

1.00

10.10.0110-310-410-510-610-7

30 20 8
B

its
 p

er
 e

le
m

en
t (

c)
Bits per element (c) for standard Bloom filter

std
std[2]
blo[2]

pat[1,2]
pat[2,2]
pat[3,2]

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

10.10.0110-310-410-510-610-7

B
its

 p
er

 e
le

m
en

t (
c)

FPR

Fig. 4. Execution times for positive (top) and negative (bottom) queries for the variants
accessing two blocks.

filter access evicts a pattern from the cache whose next access will cause a cache
fault. Reducing the table size (slowly) reduces this problem. The normal pattern
variant also does not reach the area of very large FPRs. For c = 34, the FPR
is limited by the probability of table collisions, about 512/34/64K ≈ 2.310−4.
The multiplexing versions are able to overcome this limitation, but need more
computational effort.

Regarding the single-blocking variants, for positives and insertions, pat[1, 1]
performs best for rather high FPRs, while pat[2, 1] extends this behavior to
smaller FPRs, using 2-fold multiplexing.

Regarding the two-blocking variants, for positives and insertions, pat[1, 2]
performs best, being up to almost twice as fast as any standard variant, for a
low FPRs. It this range, pat[1, 2] can also compete for negative queries. When an
even smaller FPR is requested, blo[2] should be used, which is only marginally
slower than pat[1, 2].

We performed a similar test for the space-efficient replacements. The ch data
structure used 3 additional bits per entry, while varying the load factor from
0.90 to 0.99.

 0.1

 1

 10

 100

 25 30 35 40 45 50 55

T
im

e
[m

ic
ro

se
co

nd
s]

Bits per Element

insert std
insert ch

insert gcs
pos query std
pos query ch

pos query gcs
neg query std
neg query ch

neg query gcs

Fig. 5. Execution times of the different operations for many variants and tuning pa-
rameters, FPR equivalent to a standard Bloom filter with c = 40 and optimal k.

The results are stated in Figure 5, comparing to the standard Bloom filter
for c = 40, all featuring the same FPR. For this FPR, the lower bound in space
for storing the hash values is − log 4.5110−9 + log e = 29.14 bits per element.
The minimum space requirement in this experiment for gcs is in fact 29.14 bits
(I →∞), reaching the optimum, while for ch, it is 30.80 bits (α → 1 and omitting
one redundant helper bit per entry). For gcs, the index data structure can be
easily and flexibly rebuilt after compact transmission, but for ch, the whole filter
must be rebuilt to achieve acceptable execution times.

As we can see, the static gcs implementation provides excellent performance
when the memory limitations are tight. If more space is available, Compact hash
(ch) gives better query times, but collapses in terms of insertion performance.

7 Conclusion

Which variant or replacement of a Bloom filter works best depends on the appli-
cation a lot. Standard Bloom filters are still a good choice in many cases. They
are particularly efficient for negative queries. Even insertions and positive queries
work better than one might think because modern hardware can mitigate cache
faults by overlapping multiple memory accesses and because a reduction of k
below the “optimal” value brings considerable speedup at moderate increase in
space consumption or FPR. Blocked Bloom filters, possibly together with pre-
computed bit patterns, can mean a significant speedup if insertions and positive

queries are important operations or when hash bits are expensive. Multiplex-
ing and multiblocking Bloom filters become important when a very low FPR
is required. Space-efficient Bloom filter replacements are particularly interest-
ing when one wants to reduce communication volume for transferring the filter.
Somewhat surprisingly, the price one pays in terms of access time is small or
even negative if one uses our implementation based on bucketed Golomb coding.
If internal space efficiency is less important than access time and saving com-
munication volume, one could accelerate our implementation further by using
Golomb coding only for the communication and by using a faster representation
internally.

We believe that, independent of the particular results, our paper is also in-
structive as a case study in algorithm engineering and its methodology: Modeling
both the machine (cache, prefetching, SIMD instructions) and the application
(operation mix, difficulty of hashing) are very important here. The paper con-
tains nontrivial components with respect to design, analysis, implementation,
experimental evaluation, and algorithm library design. In particular, the analysis
is of a “nonstandard” type, i. e. , analysis only seems tractable with simplifying
assumptions that are then validated experimentally.

Acknowledgments We would like to thank M. Dietzfelbinger for valuable dis-
cussions and hints how to analyze the false positive rate of blocked Bloom filters.
Frederik Transier provided a first implementation of Golomb coding.

References

1. B. H. Bloom. Space-time trade-offs in hash coding with allowable errors. Commu-
nications of the ACM, 13(7), 1970.

2. A. Broder and M. Mitzenmacher. Network applications of bloom filters: A survey.
Internet Mathematics, 1(4), 2004.

3. J. G. Cleary. Compact hash tables using bidirectional linear probing. IEEE Trans-
actions on Computers, 33(9):828–834, 1984.

4. P. C. Dillinger and P. Manolios. Bloom filters in probabilistic verification. In
FMCAD, volume 3312 of LNCS, pages 367–381, 2004.

5. P. C. Dillinger and P. Manolios. Fast and accurate bitstate verification for SPIN.
In SPIN, volume 2989 of LNCS, pages 57–75, 2004.

6. L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder. Summary cache: a scalable
wide-area web cache sharing protocol. IEEE/ACM TON, 8(3):281–293, 2000.

7. A. Kirsch and M. Mitzenmacher. Less hashing, same performance: Building a
better Bloom filter. In ESA 2006, volume 4168 of LNCS, pages 456–467.

8. U. Manber and S. Wu. An algorithm for approximate membership checking with
application to password security. Information Processing Letters, 50(4):191–197,
25 May 1994.

9. M. Mitzenmacher. Compressed Bloom filters. In PODC 2001, pages 144–150.
10. A. Moffat and A. Turpin. Compression and Coding Algorithms. Kluwer, 2002.
11. A. Pagh, R. Pagh, and S. S. Rao. An optimal Bloom filter replacement. In SODA

2005, pages 823–829.
12. P. Sanders and F. Transier. Intersection in integer inverted indices. In

ALENEX 2007.

Appendix

A Cache-Efficiency Evaluation

Table Size / Operation
64KB 2048KB 4096KB

Algorithm insert / pos neg insert / pos neg insert / pos neg

std 538601538 111606798 538864877 111633776 538878911 111644012

blo[1] 38564348 38547086 38539297 38522083 38508814 38489184

blo[2] 77068492 38929639 77079012 38936222 77077903 38937805

pat[1,1] 38616001 38567585 54681670 54577097 64018108 63925035

pat[1,2] 77270265 40841892 109155069 55279812 128127287 64866149

pat[2,1] 38656675 38602126 54665523 54575523 64065832 63974708

pat[2,2] 77278236 40868585 109409646 55392837 128379947 65000473

pat[3,1] 38657692 38606045 54601020 54510319 63965985 63891726

pat[3,2] 77203292 40808134 109413361 55396675 128109749 64862561

Table 3. Number of cache misses for various algorithms, operations, and table sizes.

Table 3 lists the number of cache faults that are triggered by executing the
experiment. We used a table of size either 64 KB, 2048 KB or 4096 KB. For
c = 20, we inserted and queried 40,000,000 elements, respectively. blo[1] causes
about one cache miss per operation, which is quite accurately reflected by the
numbers. For a insertion or positively answered query, the number of cache faults
is reduced by a factor of 13.96 compared to std. This is also just as expected, since
k = 14. However, Figure 3 indicates that for c = 20, blo[1] is only about 3 times
faster than std. Part of the explanation is that the number of hash bits needed
by the two schemes only differs by a factor of about three. However, since the
execution time is still dominated by the memory access times, an important part
of the explanation seems to be that the compiler schedules memory accesses (or
prefetches) already in the loop iteration before the actual use of the data. Thus,
cache latency can be hidden behind other operations. This prefetching behavior
also explains why there are about 2.9 cache faults per negative query of std
although the analysis predicts only two. Apparently, once the query algorithm
found a zero bit, one more memory access has already been issued.

For the two-blocking variants, the number of cache misses obviously doubles.
When using patterns, the pattern table and the accessed blocks fight for the
cache. When the table is as large as the cache, the numbers go up by a factor of
1.7, compared to a table of negligible size. But still, the number of cache misses
is far lower than for the standard variants.

