Overview

- The paging problem
- Several algorithms
- Resource augmentation analysis
- Randomization
- Types of adversaries
Paging

- Computers usually have a small amount of fast memory (cache)
- This can be used to store data (pages) that are often used
- Problem when the cache is full and a new page is requested
- Which page should be thrown out (evicted)?
Definitions

- $k =$ size of cache (number of pages)
- We assume that access to the cache is free, since accessing main memory costs much more
- Thus, a cache hit costs 0 and a miss (fault) costs 1
- The goal is to minimize the number of page faults
Paging algorithms

- Last In First Out (LIFO): evict newest page
- First In First Out (FIFO): evict oldest page
- Least Frequently used (LFU): evict page that was requested least often
- Least Recently Used (LRU): evict page that was requested least recently
- Flush When Full (FWF): on a fault, evict all pages
- Longest Forward Distance (LFD): evict page that will be requested the latest
Longest Forward Distance is optimal

We show: any optimal offline algorithm can be changed to act like LFD without increasing the number of page faults.

Inductive claim: given an algorithm ALG, we can create ALG_i such that

- ALG and ALG_i are identical on the first i – 1 requests
- If request i causes a fault, ALG_i evicts page with longest forward distance
- ALG_i(σ) ≤ ALG(σ)
Using the claim

- Start with a given request sequence σ and an optimal offline algorithm ALG
- Use the claim for $i = 1$ on ALG to get ALG_1, which evicts the LFD page on the first request (if needed)
- Use the claim for $i = 2$ on ALG_1 to get ALG_2
- …
- Final algorithm ALG_n is equal to OPT
Proof of the claim

Suppose that after request i, ALG has page a while ALG_i has page $b \neq a$. Remaining pages are the same.

Until now, both algorithms have the same number of faults.
Proof of the claim

Until a is requested, ALG_i does the same as ALG, but it evicts b if ALG evicts a. Then both algorithms again have the same pages in the cache, and we are done.
Proof of the claim

If a is requested before ALG evicts a, ALG$_i$ has a fault. But a was the LFD page, so before this ALG must have had a fault where ALG$_i$ did not. ALG$_i$ now evicts b and loads a.
Comparison of algorithms

- OPT is not online, since it looks forward

- Which is the best online algorithm?

- LIFO is not competitive: consider an input sequence

 \[p_1, p_2, \ldots, p_{k-1}, \overline{p_k, p_{k+1}}, p_k, p_{k+1}, \ldots \]

- LFU is also not competitive: consider

 \[p_1^m, p_2^m, \ldots, p_{k-1}^m, (p_k, p_{k+1})^{m-1} \]
A general lower bound

- To illustrate the problem, we show a lower bound for any online paging algorithm ALG.
- There are $k + 1$ pages.
- At all times, ALG has k pages in its cache.
- There is always one page missing: request this page at each step.
- OPT only faults *once every k steps*: lower bound of k on the competitive ratio.
Resource augmentation

- We will compare an online algorithm ALG to an optimal offline algorithm which has a smaller cache.
- We hope to get more realistic results in this way.
- Size of offline cache = $h < k$.
- This problem is known as (h,k)-paging.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>...</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALG</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>h</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conservative algorithms

- An algorithm is **conservative** if it has at most k page faults on any request sequence that contains at most k distinct pages.
- The request sequence may be **arbitrarily long**.
- LRU and FIFO are conservative.
- LFU and LIFO are **not** conservative (recall that they are not competitive).
Competitive ratio

Theorem 1. Any conservative algorithm is \(\frac{k}{k-h+1} \)-competitive.

Proof: divide request sequence \(\sigma \) into **phases**.

- Phase 0 is the empty sequence
- Phase \(i > 0 \) is the maximal sequence following phase \(i - 1 \) that contains at most \(k \) distinct pages

Phase partitioning does **not depend on algorithm**. A conservative algorithm has at most \(k \) faults per phase.
Counting the faults of OPT

Consider some phase $i > 0$, denote its first request by f

Thus OPT has at least $k - (h - 1) = k - h + 1$ faults on the grey requests
Conclusion

- In each phase, a conservative algorithm has k faults.
- To each phase except the last one, we can assign (charge) $k - h + 1$ faults of OPT.
- Thus

$$\text{ALG}(\sigma) \leq \frac{k}{k - h + 1} \cdot \text{OPT}(\sigma) + r$$

where $r \leq k$ is the number of page faults of ALG in the last phase.

- This proves the theorem.
Notes

- For $h = k/2$, we find that conservative algorithms are 2-competitive.

- The previous lower bound construction does not work for $h < k$.

- In practice, the “competitive ratio” of LRU is a small constant.

- Resource augmentation can give better (more realistic) results than pure competitive analysis.
New results (Panagiotou & Souza, STOC 2006)

- Restrict the adversary to get more “natural” input sequences
- **Locality of reference**: most consecutive requests to pages have short distance
- **Typical memory access patterns**: consecutive requests have either short or long distance compared to the cache size
- In our analysis of LRU: distance *exactly* k for all pages
Characteristic vector

- Two requests to the same page with exactly \(\ell \) distinct pages in between are called a pair with distance \(\ell \)

- \(c_\ell(\sigma) = \) number of pairs with distance \(\ell \)

- \(p = \) number of distinct pages in \(\sigma \)

- Characteristic vector \(c(\sigma) = (c_0(\sigma), \ldots, c_{p-1}(\sigma)) \)
Characteristic vector

\[
c(\sigma) = (c_0(\sigma), \ldots, c_{p-1}(\sigma))
\]

- We have

\[
\text{LRU}(\sigma) = \sum_{\ell \geq k} c_\ell(\sigma) + p(\sigma)
\]

- Each page causes a fault when it is requested for the first time (contribution \(p(\sigma))\)

- Remaining faults for one page depend only on whether at least \(k\) distinct pages were requested between two successive requests to it
Reasonable input sequences

- It is possible to show

\[\text{OPT}(\sigma) \geq \frac{1}{2} \sum_{\ell \geq k} \frac{\ell - k + 1}{\ell} c_\ell(\sigma) \]

- This is much more difficult

- Reasonable input sequences are those for which

\[\sum_{\ell=k}^{\alpha k-1} c_\ell(\sigma) \leq \beta \sum_{\ell=\alpha k}^{p-1} c_\ell(\sigma) \]

- There should not be “too many” pairs with “difficult” distances
Why this definition?

- **Short** pairs (small distance) are easy: at most one LRU fault
- **Long** pairs are also easy: “all” algorithms have two faults
- **Requests in between** are crucial
- Consider the input \((1, \ldots, \ell + 1)^N\) for \(\ell \geq k\)
- Competitive ratio of LRU on this input is

\[
\frac{\ell}{\ell - k + 1}
\]

- For \(\ell = k\), this is \(k\)
- For \(\ell = \alpha k - 1\), this is \(\alpha / (\alpha - 1)\)
Reasonable input sequences

\[\sum_{\ell=k}^{\alpha k - 1} c_\ell(\sigma) \leq \beta \sum_{\ell=\alpha k}^{p-1} c_\ell(\sigma) \]

- Idea: there should not be too many request pairs with critical distance

- Number of request pairs with small distance (\(\leq k \)) is unrestricted (locality of reference)

- Number of request pairs with large distance is also unrestricted (typical memory access patterns)
Result

□ We have seen: $\text{LRU}(\sigma) = \sum_{\ell \geq k} c_\ell(\sigma) + p(\sigma)$ and $\text{OPT}(\sigma) \geq \frac{1}{2} \sum_{\ell \geq k} \frac{\ell - k + 1}{\ell} c_\ell(\sigma)$

□ On reasonable inputs, competitive ratio of LRU is at most

$$2(1 + \beta) \frac{\alpha}{\alpha - 1} + \varepsilon$$

□ In practice, α is large, β is small

□ Competitive ratio becomes a small constant (can be 2)

□ This gives theoretical justification for the empirically observed “competitive ratio” of LRU
Randomized algorithms

- Another way to avoid the lower bound of k for paging is to use a randomized algorithm.

- Such an algorithm is allowed to use random bits in its decision making.

- Crucial is what the adversary knows about these random bits.
Three types of adversaries

- **Oblivious**: knows only the probability distribution that ALG uses, determines input in advance

- **Adaptive online**: knows random choices made so far, bases input on these choices

- **Adaptive offline**: knows random choices in advance (!)

Randomization *does not help* against adaptive offline adversary

We focus on the **oblivious** adversary
The MARK Algorithm

- This algorithm marks pages which are requested
- It never evicts a marked page
- When all pages are marked and there is a fault, it unmarks everything (but marks the page which caused the fault)
- Eviction strategy: evict randomly and uniformly chosen page from the set of all unmarked pages
- LRU and FWF are also marking algorithms
- Only difference is in eviction strategies
Competitive ratio of MARK

- Consider the harmonic numbers $H_k (k = 1, \ldots)$

 $$H_k = 1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{k}$$

- We have $\ln k < H_k \leq 1 + \ln k$

- We show that MARK is $2H_k$-competitive
Analysis of MARK (1)

- Consider the phase partitioning of an input σ (does not depend on algorithm!)

- Pages in cache at start of phase i are old

- Non-old pages requested in phase i are new

- Let m_i be the number of new pages requested in phase i

- What is the worst order of new pages vs. old pages?
Analysis of MARK (2)

- Worst case is that the new pages come first in a phase
- This means m_i page faults on those pages
- How many faults are there on the $k - m_i$ old pages?

phase i

<table>
<thead>
<tr>
<th>new</th>
<th>old</th>
</tr>
</thead>
</table>

m_i pages
The jth old page is in the cache at the moment it is first requested with probability

$$\frac{k - m_i - (j - 1)}{k - (j - 1)}.$$

Explanation:

- $k - m_i - (j - 1) =$ number of old unmarked pages in the cache
- $k - (j - 1) =$ total number of old unmarked pages
Analysis of MARK (4)

- So, the jth old page causes a fault with probability

$$1 - \frac{k - m_i - (j - 1)}{k - (j - 1)} = \frac{m_i}{k - j + 1}.$$

- Expected number of faults is

$$m_i + \sum_{j=1}^{k-m_i} \frac{m_i}{k - j + 1} = m_i + m_i(H_k - H_{m_i})$$

$$= m_i(H_k - H_{m_i} + 1) \leq m_i H_k$$

- Now we still need a lower bound for OPT
Lower bound for OPT

There are m_i new pages in phase i

Thus, in phases $i-1$ and i together, $k + m_i$ pages are requested

OPT makes at least m_i faults in phases i and $i-1$ for any i

Total number of OPT faults is at least $\frac{1}{2} \sum_i m_i$
Upper bound for MARK

- Expected number of faults in phase i is at most $m_i H_k$ for MARK

- Total expected number of faults is at most $H_k \sum_i m_i$

- OPT has at least $\frac{1}{2} \sum_i m_i$ faults

- Conclusion: MARK is $2H_k$-competitive
Discussion

- The upper bound for MARK holds against an oblivious adversary (the input sequence is fixed in advance)

- Question: is it possible to improve MARK?

- We show that no algorithm can be better than H_k-competitive

- Thus, MARK is optimal apart from a factor of 2

- Note that H_k is much smaller than k
Randomized lower bound

- Idea: use $k + 1$ pages
- Keep track of probabilities p_j that page j is not in the cache
- Create the sequence based on these probabilities
- The adversary can do this because it knows the description of the algorithm, and creates the input sequence
- Construction uses phases
- In each phase, ALG will make H_k faults, OPT makes 1 fault
A phase in the lower bound

- Each phase consists of k subphases
- The adversary uses a marking algorithm to serve the sequence
- We make no assumptions about the online algorithm!
- At the start of subphase i, there will be $k - i + 1$ unmarked pages
- Subphase 1: k unmarked pages (the page which caused the fault that ended the previous phase is marked)
A phase in the lower bound

- The expected cost of ALG for subphase i will be $1/(k - i + 1)$.

- Thus, the total cost for phase is

$$\sum_{i=1}^{k} \frac{1}{k - i + 1} = H_k.$$

- Since OPT pays 1 per phase, this proves the lower bound
Construction of subphase j

- Each subphase contains
 - some (maybe 0) requests to marked pages
 - one request for an unmarked page

- Let M be the set of marked pages at the start of subphase j
 (so $|M| = j$)

- There are $u = k + 1 - j$ unmarked pages

- Consider $\gamma = \sum_{i \in M} p_i$ (note: p_i is probability that page i is not in the cache)
Subphase j: $\gamma = \sum_{i \in M} p_i$

- If $\gamma = 0$, there exists an unmarked page a with $p_a \geq 1/u$; request this page and end this subphase.

- Else, there exists a marked page $m \in M$ with $p_m > 0$.

- Define $\varepsilon = p_m$ and start with a request for page m.

- Repeatedly request marked pages as follows:

 While (expected cost for ALG is less than $1/u$ and $\gamma > \varepsilon$) request marked page ℓ with maximal p_ℓ.
Subphase j: the case $\gamma = \sum_{i \in M} p_i > 0$

While (expected cost for ALG is less than $1/u$ and $\gamma > \varepsilon$)
request marked page ℓ with maximal p_ℓ

☐ The expected cost of ALG increases in each step of this loop, so the loop terminates

☐ In fact, if $\gamma > \varepsilon$ then cost increases by at least $\gamma/|M| > \varepsilon/|M|$.
After the loop

While (expected cost for ALG is less than $1/u$ and $\gamma > \varepsilon$) request marked page ℓ with maximal p_ℓ

- If expected cost for ALG is at least $1/u$, request an arbitrary unmarked page
- Else, $\gamma \leq \varepsilon$
- In this case, request unmarked page b with maximal p_b
- We have $p_b \geq (1 - \gamma)/u$
- Cost for ALG is

\[p_m + p_b \geq \varepsilon + \frac{1 - \gamma}{u} \geq \varepsilon + \frac{1 - \varepsilon}{u} \geq \frac{1}{u}. \]
Result

☐ No algorithm ALG is better than H_k-competitive against an oblivious adversary.

☐ Against stronger adversaries, this holds a fortiori.

☐ There exists an H_k-competitive algorithm.

☐ It is substantially more complicated than MARK.

☐ Competitiveness for (h,k)-paging is still unknown.