Vertex Cover Problems

Consider a graph $G = (V, E)$
$S \subseteq V$ is a vertex cover if

$$\forall \{u, v\} \in E : u \in S \lor v \in S$$

minimum vertex cover (MIN-VCP):
find a vertex cover S that minimizes $|S|$.
Motivation

☐ This problem has many applications

☐ Example: placing ATMs in a city

☐ Each additional ATM costs money

☐ Want to have an ATM in every street (block, district)

☐ Where should they be placed so that we need as little ATMs as possible?
Greedy Algorithm

Function greedyVC(V, E)

\[C := \emptyset \]

While \(E \neq \emptyset \) do

Select any \(\{u, v\} \in E \)

\[C := C \cup \{u, v\} \]

\[C := C \cup \{u, v\} \]

Remove all edges incident to \(u \) or \(v \) from \(E \)

Return \(C \)

Exercise: explain how to implement the algorithm to run in time \(\mathcal{O}(|V| + |E|) \)
Greedy Algorithm

Function greedyVC(V, E)

$C := \emptyset$

while $E \neq \emptyset$ do

select any $\{u, v\} \in E$

$C := C \cup \{u, v\}$

remove all edges incident to u or v from E

return C

Exercise: explain how to implement the algorithm to run in time $\Theta(|V| + |E|)$
Greedy Algorithm

Function greedyVC(V, E)

\[C := \emptyset \]

while \(E \neq \emptyset \) do

select any \(\{u, v\} \in E \)

\[C := C \cup \{u, v\} \]

remove all edges incident to \(u \) or \(v \) from \(E \)

return \(C \)

Exercise: explain how to implement the algorithm to run in time \(\mathcal{O}(|V| + |E|) \)
Greedy Algorithm

Function greedyVC(V, E)

\[C := \emptyset \]

while \(E \neq \emptyset \) do

select any \(\{u, v\} \in E \)

\[C := C \cup \{u, v\} \]

remove all edges incident to \(u \) or \(v \) from \(E \)

return \(C \)

Exercise: explain how to implement the algorithm to run in time \(\mathcal{O}(|V| + |E|) \)
Theorem 1. Algorithm greedyVC computes a two-approximation of MIN-VCP.

Proof. Correctness: trivial since only covered edges are removed.

Quality: Let A denote the set of edges selected by greedyVC. We have $|C| = 2|A|$. A is a matching, i.e., no node covers two edges in A. Hence, any vertex cover contains at least one node from each edge in A, i.e., $\text{opt} \geq |A|$. \qed
Weighted Vertex Cover

Consider a graph $G = (V, E)$
$S \subseteq V$ is a vertex cover if

$$\forall \{u, v\} \in E : u \in S \lor v \in S$$

minimum WEIGHT vertex cover

(WEIGHT-VCP):
find a vertex cover S that minimizes

$$\sum_{v \in S} c(s)$$
0-1 ILP Formulation

Assume \(V = \{1, \ldots, n\} \)

Variables: \(x_v = 1 \) iff \(v \in V \)

\textbf{minimize} \(c \cdot x \)

subject to

\(\forall \{u, v\} \in E : x_u + x_v \geq 1 \)

\(\forall v \in V : x_v \in \{0, 1\} \)
0-1 ILP Formulation

Assume $V = \{1, \ldots, n\}$

Variables: $x_v = 1$ iff $v \in V$

minimize $c \cdot x$

subject to

$\forall \{u, v\} \in E : x_u + x_v \geq 1$

$\forall v \in V : x_v \in \{0, 1\}$

Linear Relaxation

Assume $V = \{1, \ldots, n\}$

Variables: $x_v = 1$ iff $v \in V$

minimize $c \cdot x$

subject to

$\forall \{u, v\} \in E : x_u + x_v \geq 1$

$\forall v \in V : x_v \geq 0$
0-1 ILP Formulation

Assume $V = \{1, \ldots, n\}$

Variables: $x_v = 1$ iff $v \in V$

minimize $c \cdot x$

subject to

$\forall \{u, v\} \in E : x_u + x_v \geq 1$

$\forall v \in V : x_v \in \{0, 1\}$

Linear Relaxation

Assume $V = \{1, \ldots, n\}$

Variables: $x_v = 1$ iff $v \in V$

minimize $c \cdot x$

subject to

$\forall \{u, v\} \in E : x_u + x_v \geq 1$

$\forall v \in V : x_v \geq 0$

LP Rounding Algorithm for WEIGHT-VCP

Function $lpWeightedVC(V, E, c)$

$x := lpSolve(linearRelaxation(V, E, c))$

return $\{v \in V : x_v \geq 1/2\}$
Theorem 2. Algorithm \textit{lpWeightedVC} computes a two-approximation of \textit{WEIGHT-VCP}.

Correctness:
Consider any edge \(\{u, v\} \in E\).
We have \(x_u + x_v \geq 1\),
hence, \(\max \{x_u, x_v\} \geq 1/2\),
i.e., rounding will put at least one of \(\{u, v\}\) into the output.
Theorem 2. Algorithm $lpWeightedVC$ computes a two-approximation of WEIGHT-VCP.

Quality: Let

\(~x\) := the solution computed by $lpWeightedVC$

\(~x^*\) := the optimal solution, and

\(~\bar{x}\) := the optimal solution of the linear relaxation

\[\begin{align*}
 c \cdot x &= \sum_{\bar{x}_i \geq 1/2} c_i \\
 c \cdot x^* &\leq 2c \cdot \bar{x}
\end{align*}\]
Theorem 2. Algorithm $lpWeightedVC$ computes a two-approximation of $WEIGHT-VCP$.

Quality: Let

$x :=$ the solution computed by $lpWeightedVC$

$x^* :=$ the optimal solution, and

$ar{x} :=$ the optimal solution of the linear relaxation

\[
c \cdot x = \sum_{\bar{x}_i \geq 1/2} c_i \leq \sum_{\bar{x}_i \geq 1/2} 2\bar{x}_i c_i
\]
Theorem 2. Algorithm \textit{lpWeightedVC} computes a two-approximation of \textit{WEIGHT-VCP}.

Quality: Let

\begin{align*}
\mathbf{x} &: \text{ the solution computed by \textit{lpWeightedVC}} \\
\mathbf{x}^* &: \text{ the optimal solution, and} \\
\bar{x} &: \text{ the optimal solution of the linear relaxation}
\end{align*}

\[
\mathbf{c} \cdot \mathbf{x} = \sum_{\bar{x}_i \geq 1/2} c_i \leq \sum_{\bar{x}_i \geq 1/2} 2\bar{x}_i c_i \leq 2 \sum_{i=1}^n \bar{x}_i c_i
\]
Theorem 2. Algorithm lpWeightedVC computes a two-approximation of WEIGHT-VCP.

Quality: Let
\[x \] be the solution computed by lpWeightedVC
\[x^* \] be the optimal solution, and
\[\bar{x} \] be the optimal solution of the linear relaxation

\[
 c \cdot x = \sum_{\bar{x}_i \geq 1/2} c_i \leq \sum_{\bar{x}_i \geq 1/2} 2\bar{x}_i c_i \leq 2 \sum_{i=1}^{n} \bar{x}_i c_i = 2c \cdot \bar{x}
\]
Theorem 2. Algorithm \text{lpWeightedVC} computes a two-approximation of WEIGHT-VCP.

\textbf{Quality:} Let

- \(\mathbf{x} := \) the solution computed by \text{lpWeightedVC} \\
- \(\mathbf{x}^* := \) the optimal solution, and \\
- \(\bar{\mathbf{x}} := \) the optimal solution of the linear relaxation

\[
\mathbf{c} \cdot \mathbf{x} = \sum_{\bar{x}_i \geq 1/2} c_i \leq \sum_{\bar{x}_i \geq 1/2} 2\bar{x}_i c_i \leq 2 \sum_{i=1}^{n} \bar{x}_i c_i = 2\mathbf{c} \cdot \bar{\mathbf{x}} \leq 2\mathbf{c} \cdot \mathbf{x}^*
\]
Iterated Rounding

[Vazirani Section 23.2]

Function iteratedLpWeightedVC(V, E, c)

\[M := \emptyset \]

while $|E| > 0$ do

\[x := \text{lpSolve}(\text{linearRelaxation}(V, E, c)) \]

let v denote the node which maximizes x_v

\[M := M \cup \{v\} \]

\[V := V \setminus \{v\} \]

\[E := E \setminus \{\{u, v\} \in E\} \]

return M
Iterated Rounding: Discussion

- Might give better solutions for many inputs
- No better approximation guarantees for VC
- Larger (still polynomial) execution time
- But: Resolving an LP is often quite fast
- Important technique for other problems
A Randomized Algorithm

[Ausielo et al. Section 5.1]

Function randWeightedVC(V, E, c)

\[
C := \emptyset
\]

while \(E \neq \emptyset \) do

select any \(\{v, t\} \in E \)

flip a coin with sides \(\{v, t\} \) and

\[
\Pr [v] = \frac{c_t}{c_v + c_t}
\]

\(x := \) upper side of coin

\(C := C \cup \{x\} \)

remove all edges incident to \(x \) from \(E \)

return \(C \)
Theorem 3. Algorithm randWeightedVC computes a vertex cover x with $\mathbb{E}[c \cdot x] \leq 2c \cdot x^*$.

Correctness: as for greedyVC.
Theorem: Algorithm randWeightedVC computes a vertex cover x with $\mathbb{E}[c \cdot x] \leq 2c \cdot x^\ast$.

Quality: Define the random variables

$$X_v := \begin{cases} c_v & \text{if } v \in x \\ 0 & \text{otherwise} \end{cases} \quad (1)$$

$$X_{\{v,t\},v} := \begin{cases} c_v & \text{if } \{v,t\} \text{ is selected and } v \in x \\ 0 & \text{otherwise} \end{cases} \quad (2)$$

Note that $X_v = \sum_{\{t: \{v,t\} \in E\}} X_{\{v,t\},v}$.
Lemma 4. $\mathbb{E}[X_{\{v,t\},v}] = \mathbb{E}[X_{\{v,t\},t}]$

Proof.

$\mathbb{E}[X_{\{v,t\},v}] = c_v \mathbb{P}[\{v,t\} \text{ is selected}] \mathbb{P}[v \in x]$
Lemma 4. \(\mathbb{E}[X_{\{v,t\},v}] = \mathbb{E}[X_{\{v,t\},t}] \)

Proof.

\[
\mathbb{E}[X_{\{v,t\},v}] = c_v \mathbb{P}[\{v,t\} \text{ is selected }] \mathbb{P}[v \in x]
\]

\[
\mathbb{E}[X_{\{v,t\},v}] = c_v \mathbb{P}[\{v,t\} \text{ is selected }] \frac{c_t}{c_v + c_t}
\]
Lemma 4. \[\mathbb{E}[X_{\{v,t\},v}] = \mathbb{E}[X_{\{v,t\},t}] \]

Proof.

\[
\mathbb{E}[X_{\{v,t\},v}] = c_v \mathbb{P}[\{v, t\} \text{ is selected }] \mathbb{P}[v \in \mathbf{x}]
\]

\[
\mathbb{E}[X_{\{v,t\},v}] = c_v \mathbb{P}[\{v, t\} \text{ is selected }] \frac{c_t}{c_v + c_t}
\]

\[
= c_t \mathbb{P}[\{v, t\} \text{ is selected }] \frac{c_v}{c_v + c_t}
\]

\[
= \mathbb{E}[X_{\{v,t\},t}]
\]
Lemma 5. $\sum_{v \not\in x^*} \mathbb{E}[X_v] \leq \sum_{t \in x^*} \mathbb{E}[X_t]$

Proof.

$$\sum_{v \not\in x^*} \mathbb{E}[X_v] = \sum_{v \not\in x^*} \mathbb{E} \left[\sum_{\{t:\{v,t\} \in E\}} X_{\{v,t\},v} \right] \quad (X_v = \sum_{\{t:\{v,t\} \in E\}} X_{\{v,t\},v})$$
Lemma 5. \(\sum_{v \not\in x^*} \mathbb{E}[X_v] \leq \sum_{t \in x^*} \mathbb{E}[X_t] \)

Proof.

\[
\sum_{v \not\in x^*} \mathbb{E}[X_v] = \sum_{v \not\in x^*} \mathbb{E} \left[\sum_{\{t: \{v,t\} \in E\}} X_{\{v,t\},v} \right] \quad (X_v = \sum_{\{t: \{v,t\} \in E\}} X_{\{v,t\},v})
\]

\[
= \sum_{v \not\in x^*} \sum_{\{t: \{v,t\} \in E\}} \mathbb{E}[X_{\{v,t\},v}] \quad \text{Linearity of } \mathbb{E}[\cdot]
\]
Lemma 5. \[\sum_{v \not\in x^*} \mathbb{E}[X_v] \leq \sum_{t \in x^*} \mathbb{E}[X_t] \]

Proof.

\[\sum_{v \not\in x^*} \mathbb{E}[X_v] = \sum_{v \not\in x^*} \mathbb{E} \left[\sum_{\{t:\{v,t\} \in E\}} X_{\{v,t\},v} \right] \]

\[= \sum_{v \not\in x^*} \sum_{\{t:\{v,t\} \in E\}} \mathbb{E}[X_{\{v,t\},v}] \quad \text{Linearity of } \mathbb{E}[\cdot] \]

\[= \sum_{v \not\in x^*} \sum_{\{t:\{v,t\} \in E\}} \mathbb{E}[X_{\{v,t\},t}](*). \quad \text{Lemma 4} \]
Lemma 5. \[\sum_{v \not\in x^*} \mathbb{E}[X_v] \leq \sum_{t \in x^*} \mathbb{E}[X_t] \]

Proof.

\[\sum_{v \not\in x^*} \mathbb{E}[X_v] = \sum_{v \not\in x^*} \mathbb{E} \left[\sum_{\{t : \{v,t\} \in E\}} X_{\{v,t\},v} \right] \]
\[= \sum_{v \not\in x^*} \sum_{\{t : \{v,t\} \in E\}} \mathbb{E}[X_{\{v,t\},v}] \quad \text{Linearity of } \mathbb{E}[\cdot] \]
\[= \sum_{v \not\in x^*} \sum_{\{t : \{v,t\} \in E\}} \mathbb{E}[X_{\{v,t\},t}] (*). \quad \text{Lemma 4} \]

But also \[\sum_{t \in x^*} \mathbb{E}[X_t] = \sum_{t \in x^*} \sum_{\{v : \{v,t\} \in E\}} \mathbb{E}[X_{\{v,t\},t}] (**). \]

Every term in (*) shows up in (**).
Theorem: Algorithm randWeightedVC computes a vertex cover x with $\mathbb{E}[c \cdot x] \leq 2c \cdot x^*$.

Quality: (Finishing Up)

$$\sum_{v \in V} \mathbb{E}[X_v] = \sum_{v \notin x^*} \mathbb{E}[X_v] + \sum_{t \in x^*} \mathbb{E}[X_t]$$
Theorem: Algorithm randWeightedVC computes a vertex cover x with $\mathbb{E}[c \cdot x] \leq 2c \cdot x^*$.

Quality: (Finishing Up)

\[
\sum_{v \in V} \mathbb{E}[X_v] = \sum_{v \notin x^*} \mathbb{E}[X_v] + \sum_{t \in x^*} \mathbb{E}[X_t]
\]

Lemma 5

\[
\leq 2 \sum_{t \in x^*} \mathbb{E}[X_t]
\]
Theorem: Algorithm randWeightedVC computes a vertex cover \(\mathbf{x} \) with \(\mathbb{E}[c \cdot \mathbf{x}] \leq 2c \cdot \mathbf{x}^* \).

Quality: (Finishing Up)

\[
\sum_{v \in V} \mathbb{E}[X_v] = \sum_{v \notin \mathbf{x}^*} \mathbb{E}[X_v] + \sum_{t \in \mathbf{x}^*} \mathbb{E}[X_t]
\]

Lemma 5

\[
\leq 2 \sum_{t \in \mathbf{x}^*} \mathbb{E}[X_t]
\]

\[
\leq 2 \sum_{t \in \mathbf{x}^*} c_t \quad X_t = 0 \text{ or } X_t = c_t
\]
Theorem: Algorithm randWeightedVC computes a vertex cover x with $E[c \cdot x] \leq 2c \cdot x^*$.

Quality: (Finishing Up)

$$\sum_{v \in V} E[X_v] = \sum_{v \notin x^*} E[X_v] + \sum_{t \in x^*} E[X_t]$$

Lemma 5

$$\leq 2 \sum_{t \in x^*} E[X_t]$$

$$\leq 2 \sum_{t \in x^*} c_t \quad X_t = 0 \text{ or } X_t = c_t$$

$$= 2c \cdot x^*$$
More on Vertex Cover

- There are simple deterministic linear time 2-approximations. (Special case of set covering)

- Best known algorithm: ratio $2 - \Theta(1/\sqrt{\log n})$

- Fixed parameter algorithms: [Niedermeyer Rossmanith] find optimal solution in time $\mathcal{O}(kn + k^21.292^k)$ if $|x| \leq k$. Key idea: (clever) exhaustive search + problem reductions. Example: include nodes of degree $\geq k$. Include neighbors of degree 1 nodes
Scheduling on Unrelated Parallel Machines

[Vazirani Chapter 17]

\(J \): set of \(n \) jobs

\(M \): set of \(m \) machines

\(p_{ij} \): processing time of job \(j \) on machine \(i \)

\(x(j) \): Machine where job \(j \) is executed

\(L_i \): \(\sum_{\{j: x(j) = i\}} p_{ij} \), load of machine \(i \)

Objective: Minimize Makespan \(L_{\text{max}} = \max_i L_i \)
A Misguided ILP model

\[
\begin{align*}
\text{minimize } & \ t \\
\text{subject to } & \\
\forall j \in J : & \sum_{i \in M} x_{ij} = 1 \\
\forall i \in M : & \sum_{j \in J} x_{ij} p_{ij} \leq t \\
\forall i \in M, j \in J : & x_{ij} \in \{0, 1\}
\end{align*}
\]
The problem with this formulation

\[
\begin{align*}
\text{minimize} & \quad t \\
\text{subject to} & \\
\forall j \in J : & \sum_{i \in M} x_{ij} = 1 \\
\forall i \in M : & \sum_{j \in J} x_{ij} p_{ij} \leq t \\
\forall i \in M, j \in J : & x_{ij} \in \{0, 1\}
\end{align*}
\]

One Job, size \(m\) everywhere.
Linear relaxation: makespan 1
Optimal solution: makespan \(m\)

The linear relaxation is far away from the optimal solution and hence yields little useful information
LP-speak: integrality gap \(m\)
The problem with this formulation

minimize t subject to
\[\forall j \in J : \sum_{i \in M} x_{ij} = 1 \]
\[\forall i \in M : \sum_{j \in J} x_{ij} p_{ij} \leq t \]
\[\forall i \in M, j \in J : x_{ij} \in \{0, 1\} \]

In ILP, we always have $x_{ij} = 0$ if $p_{ij} > t$

This is lost in the linear relaxation: some x_{ij} may get small values

We cannot add this constraint since it is not a linear constraint
A Refined LP Relaxation (Parametric Pruning)

guess makespan \(T \) e.g., binary search
feasible assignments: \(S_T := \{(i, j) : p_{ij} \leq T \} \)
A Refined LP Relaxation (Parametric Pruning)

guess makespan T
e.g., binary search

feasible assignments: $S_T := \{(i, j) : p_{ij} \leq T\}$

\[
\text{LP}(T):
\begin{align*}
\forall j \in J : \quad & \sum_{\{i : (i, j) \in S_T\}} x_{ij} = 1 \\
\forall i \in M : \quad & \sum_{\{j : (i, j) \in S_T\}} x_{ij} p_{ij} \leq T \\
\forall (i, j) \in S_T : \quad & x_{ij} \geq 0
\end{align*}
\]

No objective function! We only look for a *feasible* solution
More LP-speak

Consider a solution x of a given LP. x is an extreme point solution if it cannot be expressed as a convex combination $\alpha x' + (1 - \alpha) x''$ with $\alpha \in (0, 1)$ of two other feasible solutions x' and x''.

Theorem 6. $x \in \mathbb{R}^r$ is an extreme point solution iff it corresponds to setting r linearly independent constraints to equality.

Proof. not here.
\(S_T := \{ (i, j) : p_{ij} \leq T \} \)

LP(\(T)\):
\[\forall j \in J : \sum_{\{i: (i,j) \in S_T\}} x_{ij} = 1\]
\[\forall i \in M : \sum_{\{j: (i,j) \in S_T\}} x_{ij} p_{ij} \leq T\]
\[\forall (i, j) \in S_T : x_{ij} \geq 0\]

Lemma 7. An extreme point solution of \(LP(T)\) has at most \(n + m\) nonzero variables.

Proof. \(r = |S_T| \) variables
\(n + m\) constraints (except \(\geq 0\))
\(T^{hm6} \implies \geq r - (n + m)\) of the \(\geq 0\) constraints are tight. \(\square\)
Lemma 7. An extreme point solution of $LP(T)$ has at most $n + m$ nonzero variables.

Corollary 8. An extreme point solution of $LP(T)$ sets $\geq n - m$ jobs integrally.

Proof.

a integrally set jobs $\rightsquigarrow a$ nonzero entries in x

$n - a$ fractionally set jobs $\rightsquigarrow \geq 2(n - a)$ nonzero entries in x

Lemma 7 \rightsquigarrow

$2(n - a) + a \leq n + m$

$\Leftrightarrow a \geq n - m$
One Reason why LP Relaxation is Useful

Theorem 6 often implies that only few variables need to be rounded to obtain an solution of the ILP.

... this does not mean rounding the remaining ones is easy.
The Algorithm: Top Level

\[\alpha := \text{makespan one gets by assigning each job to the fastest machine for it} \]
\[\alpha \text{ is an upper bound for the optimal makespan} \]
The Algorithm: Top Level

\(\alpha := \) makespan one gets by assigning each job to the fastest machine for it
\(\alpha \) is an upper bound for the optimal makespan
Use binary search in the range \([\alpha/m, \alpha]\)
to find the smallest \(T\) such that \(LP(T)\) has a feasible solution \(x\)
The Algorithm: Top Level

$\alpha := \text{makespan one gets by assigning each job to the fastest machine for it}$

α is an upper bound for the optimal makespan

Use binary search in the range $[\alpha/m, \alpha]$ to find the smallest T such that $LP(T)$ has a feasible solution

For this T, find an extremal point solution x
The Algorithm: Top Level

\(\alpha := \) makespan one gets by assigning each job to the fastest machine for it
\(\alpha \) is an upper bound for the optimal makespan
Use binary search in the range \([\alpha/m, \alpha] \) to find the smallest \(T \) such that \(LP(T) \) has a feasible solution
For this \(T \), find an extremal point solution \(x \)
assign integrally set jobs in \(x \)
The Algorithm: Top Level

\[\alpha := \text{makespan one gets by assigning each job to the fastest machine for it} \]
\[\alpha \text{ is an upper bound for the optimal makespan} \]
Use binary search in the range \(\lfloor \alpha / m \rfloor, \alpha \)

to find the smallest \(T \) such that \(LP(T) \) has a feasible solution
For this \(T \), find an extremal point solution \(x \)
assign integrally set jobs in \(x \)
deal with the fractionally set jobs // Rounding
Example

<table>
<thead>
<tr>
<th>p_{ij}</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Four machines, five jobs

For each job, the best machine for it is marked in blue.
Example

<table>
<thead>
<tr>
<th>p_{ij}</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Each job on fastest machine:

<table>
<thead>
<tr>
<th></th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>α</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Initial guess for the makespan is 6

Using binary search, we find smallest makespan in the range $[6/4, 6]$ that can be achieved using a fractional assignment.
Example

<table>
<thead>
<tr>
<th>p_{ij}</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Each job on fastest machine:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>=</td>
<td>α</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solution of LP(3):

<table>
<thead>
<tr>
<th>x_{ij}</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Dealing with Fractionally Set Jobs

Consider the bipartite graph

\[H := (J' \cup M', E') \] where

\[J' := \{ j \in J : \exists i : 0 < x_{ij} < 1 \} \]

\[M' := \{ i \in M : \exists j : 0 < x_{ij} < 1 \} \]

\[E' := \{ \{ i, j \} : x_{ij} \neq 0, i \in M', j \in J' \} \]

Idea: Find a perfect matching in \(H \)
assign jobs according to that matching
Matching

A set of edges M that do not have any nodes in common, i.e., (V, M) has maximum degree one.

Perfect Matching

A matching of size $|V|/2$, i.e., all nodes are matched.
Lemma 9. \(H \) is a *pseudo forest*, i.e., each connected component \(H_C = (V_C, E_C) \) has \(|E_C| \leq |V_C| \) (a tree plus, possibly, one edge)

Proof. It suffices to show this for the larger graph \(G := (J \cup M, E) \) where

\[
E := \{ \{i, j\} : x_{ij} \neq 0, i \in M, j \in J \}
\]

Consider a connected component \(H_C \) of \(G \).

restrict \(x \) and \(LP(T) \) to \(H_C: x_C, LP_C(T) \)

\(x_C \) is extreme point solution of \(LP_C(T) \)

(Otherwise, \(x \) itself could not be extreme point solution)

Lemma 7 \(\Rightarrow \) \(LP_C(T) \) has \(\leq |V_C| \) nonzero vars.,

i.e., \(H_C \) has \(\leq |V_C| \) edges. \(\square \)
Example

<table>
<thead>
<tr>
<th>p_{ij}</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x_{ij}</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
</tr>
</tbody>
</table>

| 4 | $\frac{1}{2}$ | 0 | 0 | 0 | 1 |

$T^* = 3$
Lemma 10. \(H\) has a perfect matching

Proof. We give an algorithm:

\[M := \emptyset\]

invariant \(H\) is a bipartite pseudo forest

invariant all degree one nodes are machines

while \(\exists i \in M'\) with degree one **do**

\[e = \{i, j\} := \text{the sole edge incident to } i\]

\[M := M \cup \{e\}\]

remove \(i, j\) and incident edges

assert \(H\) is a collection of disjoint even cycles

foreach cycle \(C \in H\) **do**

match alternating edges in \(C\)
Theorem 11. The algorithm achieves an approximation guarantee of factor 2 for scheduling unrelated parallel machines.

Proof. Consider solution \(x \) of LPT(\(T^* \)) makespan due to jobs set integrally in \(x \) is \(\leq T^* \leq \text{opt} \).

In addition, each machine \(i \) receives \(\leq 1 \) job \(j \) from the matching \(M \subseteq H \).

\(p_{i,j} \leq T^* \leq \text{opt} \) since otherwise \(\{i, j\} \notin H \). \qed