Mixtures & Monitoring

(work in progress)

Dennis Schieferdecker (schiefer@ira.uka.de)

ITI Sanders, Universtiy of Karlsruhe (TH)

04.12.2008

Dennis Schieferdecker – M&Ms

Table of Contents

Gaussian Mixture Reduction

- Introduction
- Clustering Algorithm
- Results

🕽 Area Monitoring

- Motivation
- Problem Formulation
- Approximation Algorithm

3 Conclusion

Dennis Schieferdecker – M&Ms

Gaussian Mixture Reduction	Conclusion
	Results

approximating functions

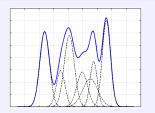
Gaussian Mixture Reduction	
Introduction	

Introduction

Motivation

Gaussian Mixtures (GMs)

- weighted sum of gaussians: $G = \sum_{i=1}^{N} w_i \cdot g_i$
- universal function approximator
- versatile applications:
 - machine learning
 - density estimation
 - . . .



Problems in Application

- recursive processing of GMs
- number of components grows rapidly (exponential)

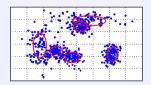
Gaussian Mixture Reduction	
Introduction	

Introduction

Motivation

Gaussian Mixtures (GMs)

- weighted sum of gaussians: $G = \sum_{i=1}^{N} w_i \cdot g_i$
- universal function approximator
- versatile applications:
 - machine learning
 - density estimation
 - . . .



Problems in Application

- recursive processing of GMs
- number of components grows rapidly (exponential)

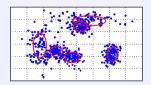
Gaussian Mixture Reduction	
Introduction	

Introduction

Motivation

Gaussian Mixtures (GMs)

- weighted sum of gaussians: $G = \sum_{i=1}^{N} w_i \cdot g_i$
- universal function approximator
- versatile applications:
 - machine learning
 - density estimation
 - Ο...



Problems in Application

- recursive processing of GMs
- number of components grows rapidly (exponential)

Gaussian Mixture Reduction Introduction

Area Monitoring

Clustering Algorithm

Conclusion Results

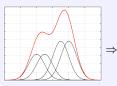
Introduction

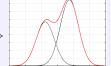
Related Work

Classic Algorithms

West, Williams, Runnalls, ...

- top-down approaches
- greedy merging of components





slow or good quality

Modern Algorithm

Progressive Gaussian Mixture Reduction

- bottom-up method
- successive construction of approximated mixture

average fast and better quality

Dennis Schieferdecker – M&Ms

Gaussian Mixture Reduction Introduction

Area Monitoring

Conclusion Results

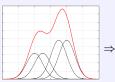
Introduction

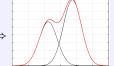
Related Work

Classic Algorithms

West, Williams, Runnalls, ...

- top-down approaches
- greedy merging of components



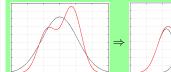


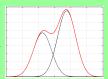
slow or good quality

Modern Algorithm

Progressive Gaussian Mixture Reduction

- bottom-up method
- successive construction of approximated mixture





• average fast and better quality

Dennis Schieferdecker – M&Ms

Area Monitoring

Clustering Algorithm

Conclusion

Results

Clustering Algorithm

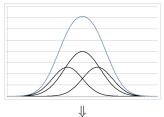
Problem formulation

Gaussian Mixture Reduction

• given: gaussian mixture $G = \sum_{i=1}^{N} w_i \cdot g_i$

• wanted: approximation $A = \sum_{j=1}^{K} w_j \cdot a_j$ minimizing a distance measure to G (i.e. ISD)

(joint work with Marco Huber at ISAS)



Area Monitoring

Clustering Algorithm

Conclusion

Introduction

Clustering Algorithm

Initial Ideas

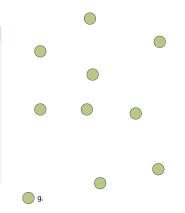
Approach with Algorithmics - P.o.V.

Idea: clustering / facility location

- Consider g_{1..N}, a_{1..K} as points on a plane
- Separate g_{1..N} into K groups (clustering), each with an associated cluster center a_j

Goal:

 Minimize distance measure d(g_i, a_j) within each group j for all group members g_i



Area Monitoring

Introduction

Clustering Algorithm

Conclusion

Results

Clustering Algorithm

Initial Ideas

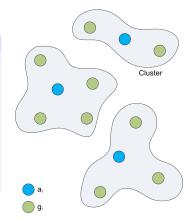
Approach with Algorithmics - P.o.V.

Idea: clustering / facility location

- Consider $g_{1..N}, a_{1..K}$ as points on a plane
- Separate g_{1..N} into K groups (clustering), each with an associated cluster center a_j

Goal:

 Minimize distance measure d(g_i, a_j) within each group j for all group members g_i



Area Monitoring

Clustering Algorithm

Conclusion

Results

Clustering Algorithm

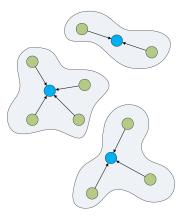
Description of the algorithm - 1

Clustering algorithm

loosely based on Llyod's algorithm

Initialisation

- generate initial approximation A = {a_j}
 → yields initial cluster centers (here: using Runnalls' algorithm)
- compute initial assignments of Gaussians g_{1..N} to cluster centers a_{1..K}: center(·) : g_i → a_j (here: using Kullback-Leibler discrimination)



Dennis Schieferdecker – M&Ms

Conclusion

Results

Clustering Algorithm

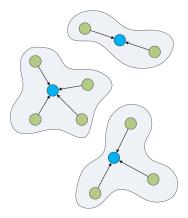
Description of the algorithm - 2

Program Flow

- iterate through all Gaussians $g_{1..N}$, for each
 - compute distance $d(g_i, a_j)$ to all centers $a_{1..K}$
 - assign to center a_j with minimal distance
- update cluster center a_j
 - Gaussian with weight, mean and variance equal to $\sum_{center(g_{i=1..N})=a_j} w_i \cdot g_i$

Comment

• Iteration order is important



Clustering Algorithm

Conclusion

Results

Clustering Algorithm

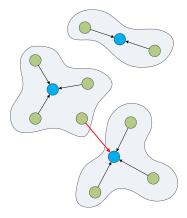
Description of the algorithm - 2

Program Flow

- iterate through all Gaussians $g_{1..N}$, for each
 - compute distance $d(g_i, a_j)$ to all centers $a_{1..K}$
 - assign to center a_j with minimal distance
- update cluster center a;
 - Gaussian with weight, mean and variance equal to $\sum_{center(g_{i=1..N})=a_j} w_i \cdot g_i$

Comment

• Iteration order is important



Clustering Algorithm

Conclusion

Results

Clustering Algorithm

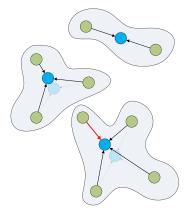
Description of the algorithm - 2

Program Flow

- iterate through all Gaussians $g_{1..N}$, for each
 - compute distance $d(g_i, a_j)$ to all centers $a_{1..K}$
 - assign to center a_j with minimal distance
- update cluster center a;
 - Gaussian with weight, mean and variance equal to $\sum_{center(g_{i=1..N})=a_j} w_i \cdot g_i$

Comment

• Iteration order is important



Clustering Algorithm

Conclusion

Results

Clustering Algorithm

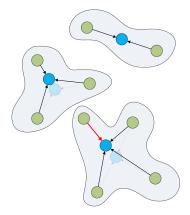
Description of the algorithm - 2

Program Flow

- iterate through all Gaussians $g_{1..N}$, for each
 - compute distance $d(g_i, a_j)$ to all centers $a_{1..K}$
 - assign to center a_j with minimal distance
- update cluster center a;
 - Gaussian with weight, mean and variance equal to $\sum_{center(g_{i=1..N})=a_j} w_i \cdot g_i$

Comment

• Iteration order is important!



Clustering Algorithm

Conclusion

Results

Clustering Algorithm

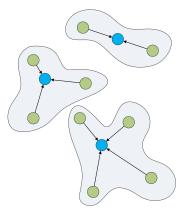
Description of the algorithm - 3

Termination

- repeat iterating until
 - quality of approximation is adequate
 - center assignments stay constant

Postprocessing

- Solution usually not optimal
- apply Newton approach to improve solution
 - Clustering algorithm yields solution close to a local optimum
 - Newton approach reaches local optimum



Dennis Schieferdecker – M&Ms

Clustering Algorithm

Conclusion

Results

Clustering Algorithm

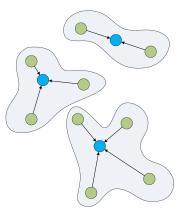
Description of the algorithm - 3

Termination

- repeat iterating until
 - quality of approximation is adequate
 - center assignments stay constant

Postprocessing

- Solution usually not optimal
- apply Newton approach to improve solution
 - Clustering algorithm yields solution close to a local optimum
 - Newton approach reaches local optimum



Area Monitoring

Clustering Algorithm

Conclusion

Results

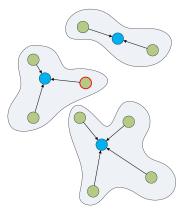
Clustering Algorithm

Description of the algorithm - 3

Distance measure $d(\mathbf{g}_i, \mathbf{a}_j)$ in use

- ISD between original mixture density G and an approximation A'
- A' equals the current approximation, only g_i is reassigned to center a_j

ISD: normalized Integrated Squared Distance between two functions



Area Monitoring

Clustering Algorithm

Conclusion

Results

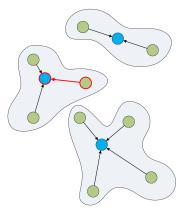
Clustering Algorithm

Description of the algorithm - 3

Distance measure $d(\mathbf{g}_i, \mathbf{a}_j)$ in use

- ISD between original mixture density G and an approximation A'
- A' equals the current approximation, only g_i is reassigned to center a_j

ISD: normalized Integrated Squared Distance between two functions



Area Monitoring

Clustering Algorithm

Conclusion

Results

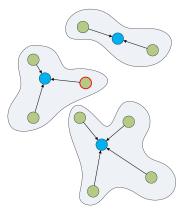
Clustering Algorithm

Description of the algorithm - 3

Distance measure $d(\mathbf{g}_i, \mathbf{a}_j)$ in use

- ISD between original mixture density G and an approximation A'
- A' equals the current approximation, only g_i is reassigned to center a_j

ISD: normalized Integrated Squared Distance between two functions



Area Monitoring

ion

Clustering Algorithm

Conclusion

Results

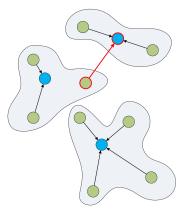
Clustering Algorithm

Description of the algorithm - 3

Distance measure $d(\boldsymbol{g}_i,\boldsymbol{a}_j)$ in use

- ISD between original mixture density G and an approximation A'
- A' equals the current approximation, only g_i is reassigned to center a_j

ISD: normalized Integrated Squared Distance between two functions



Area Monitoring

Clustering Algorithm

Conclusion

Results

Clustering Algorithm

Description of the algorithm - 3

Distance measure $d(\boldsymbol{g}_i,\boldsymbol{a}_j)$ in use

between two functions

- ISD between original mixture density G and an approximation A'
- A' equals the current approximation, only g_i is reassigned to center a_j

ISD: normalized Integrated Squared Distance

Dennis Schieferdecker – M&Ms

Area Monitoring

Clustering Algorithm

Conclusion

Results

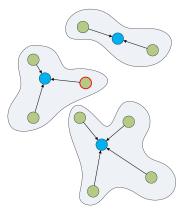
Clustering Algorithm

Description of the algorithm - 3

Distance measure $d(\mathbf{g}_i, \mathbf{a}_j)$ in use

- ISD between original mixture density G and an approximation A'
- A' equals the current approximation, only g_i is reassigned to center a_j

ISD: normalized Integrated Squared Distance between two functions



Area Monitoring

luction

Clustering Algorithm

Conclusion

Results

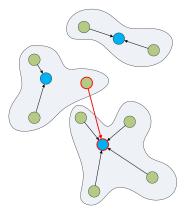
Clustering Algorithm

Description of the algorithm - 3

Distance measure $d(\boldsymbol{g}_i,\boldsymbol{a}_j)$ in use

- ISD between original mixture density G and an approximation A'
- A' equals the current approximation, only g_i is reassigned to center a_j

ISD: normalized Integrated Squared Distance between two functions



Area Monitoring

Clustering Algorithm

Conclusion

Results

Clustering Algorithm

Description of the algorithm - 3

Distance measure $d(\boldsymbol{g}_i,\boldsymbol{a}_j)$ in use

between two functions

- ISD between original mixture density G and an approximation A'
- A' equals the current approximation, only g_i is reassigned to center a_j

ISD: normalized Integrated Squared Distance

Dennis Schieferdecker – M&Ms

Area Monitoring

Clustering Algorithm

Conclusion

Results

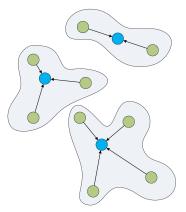
Clustering Algorithm

Description of the algorithm - 3

Distance measure $d(\boldsymbol{g}_i,\boldsymbol{a}_j)$ in use

- ISD between original mixture density G and an approximation A'
- A' equals the current approximation, only g_i is reassigned to center a_j

ISD: normalized Integrated Squared Distance between two functions



Preliminary results

Numbers

Running times and approximation quality

algorithm	Ν	К	running time	approx. error
Clustering	100	5	0.79s	$\overline{3.10\pm2.60}$
	100	10	1.09s	0.88 ± 0.74
	200	5	2.37s	1.99 ± 0.96
	200	10	3.04s	0.67 ± 0.32
	400	5	8.15s	1.30 ± 0.34
	400	10	9.53s	0.54 ± 0.11
$West^*$	200	10	0.04s	3.81
Williams*	200	10	57.92s	1.03
PGMR*	200	5	4.78s	0.64

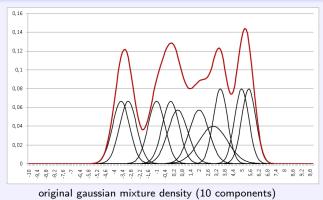
* results taken from [HuberHa08]

Results

Preliminary results

Graphical Analysis

Function Plots



Clustering Algorithm

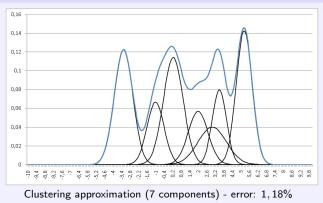
Conclusion

Results

Preliminary results

Graphical Analysis

Function Plots



Dennis Schieferdecker – M&Ms

Clustering Algorithm

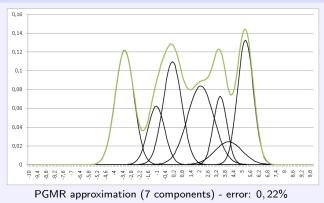
Conclusion

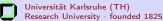
Results

Preliminary results

Graphical Analysis

Function Plots





Clustering Algorithm

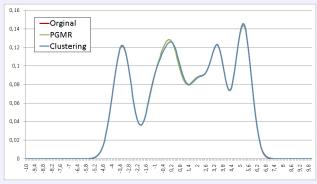
Conclusion

Results

Preliminary results

Graphical Analysis

Function Plots



comparison of PGMR and Clustering

Dennis Schieferdecker – M&Ms

Motivatio	

- II -Area Monitoring

energy-efficient, sensor-based

Motivation

Problem Formulation

Approximation Algorithm

Motivation

Overview - 1

Area Monitoring

Task:

Permanent monitoring of an area (e.g. temperature, intrusion detection, ...)

Tools:

Wireless sensor nodes

- limited power supply
- more sensors spread than necessary

Idea:

Activate only as many sensors as necessary

← maximize lifetime

Motivation

Problem Formulation

Approximation Algorithm

Motivation

Overview - 1

Area Monitoring

Task:

Permanent monitoring of an area (e.g. temperature, intrusion detection, ...)

Tools:

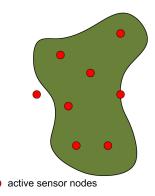
Wireless sensor nodes

- limited power supply
- more sensors spread than necessary

Idea:

Activate only as many sensors as necessary

← maximize lifetime



Motivation

Motivation

Overview - 1

Area Monitoring

Task:

Permanent monitoring of an area (e.g. temperature, intrusion detection, ...)

Tools:

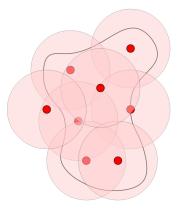
Wireless sensor nodes

- limited power supply
- more sensors spread than necessary

Idea:

Activate only as many sensors as necessary

\hookrightarrow maximize lifetime



Motivation

Problem Formulation

Approximation Algorithm

Motivation

Overview - 1

Area Monitoring

Task:

Permanent monitoring of an area (e.g. temperature, intrusion detection, ...)

Tools:

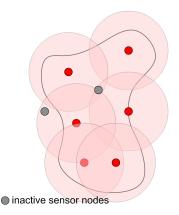
Wireless sensor nodes

- limited power supply
- more sensors spread than necessary

Idea:

Activate only as many sensors as necessary

← maximize lifetime



Motivation

Problem Formulation

Approximation Algorithm

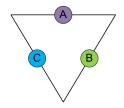
Motivation

Overview - 2

Example

- Sensors A, B, C with equal capacity
- 3 possible covers: AB, BC, AC
- (a) Let AB be active for t = 1.0

 → after t_{total} = 1.0, no further covers possible
- (a) Let AB be active for t = 0.5, then, let BC active for t = 0.5, then, let CA active for t = 0.5 $\hookrightarrow t_{total} = 1.5$, lifetime increased by 50%



Problem Denotation

Scheduling of nodes for Lifetime maximization of area Coverage (SLC) (see [BermanCa04] for previous work)

Dennis Schieferdecker – M&Ms

Motivation

Problem Formulation

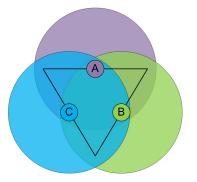
Approximation Algorithm

Motivation

Overview - 2

Example

- Sensors A, B, C with equal capacity
- 3 possible covers: AB, BC, AC
- (a) Let AB be active for t = 1.0 \hookrightarrow after $t_{total} = 1.0$, no further covers possible
- (a) Let AB be active for t = 0.5, then, let BC active for t = 0.5, then, let CA active for t = 0.5 $\hookrightarrow t_{total} = 1.5$, lifetime increased by 50%



Problem Denotation

Scheduling of nodes for Lifetime maximization of area Coverage (SLC) (see [BermanCa04] for previous work)

Dennis Schieferdecker – M&Ms

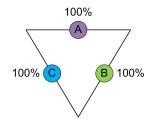
Motivation

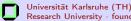
Motivation

Overview - 2

Example

- Sensors A, B, C with equal capacity
- 3 possible covers: AB, BC, AC
- (a) Let AB be active for t = 1.0 \hookrightarrow after $t_{total} = 1.0$, no further covers possible
- (a) Let AB be active for t = 0.5, then, let BC active for t = 0.5. then, let CA active for t = 0.5 $\hookrightarrow t_{total} = 1.5$, lifetime increased by 50%





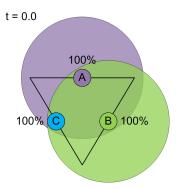
Motivation

Motivation

Overview - 2

Example

- Sensors A, B, C with equal capacity
- 3 possible covers: AB, BC, AC
- (a) Let AB be active for t = 1.0 \hookrightarrow after $t_{total} = 1.0$, no further covers possible
- (a) Let AB be active for t = 0.5, then, let BC active for t = 0.5, then, let CA active for t = 0.5 $\hookrightarrow t_{total} = 1.5$, lifetime increased by 50%



Problem Denotation

Scheduling of nodes for Lifetime maximization of area Coverage (SLC) (see [BermanCa04] for previous work)

Dennis Schieferdecker – M&Ms

Motivation

Problem Formulation

Approximation Algorithm

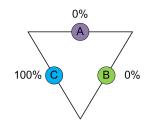
Motivation

Overview - 2

t = 1.0

Example

- Sensors A, B, C with equal capacity
- 3 possible covers: AB, BC, AC
- (a) Let AB be active for t = 1.0 \hookrightarrow after $t_{total} = 1.0$, no further covers possible
- (a) Let AB be active for t = 0.5, then, let BC active for t = 0.5, then, let CA active for t = 0.5 $\hookrightarrow t_{total} = 1.5$, lifetime increased by 50%



Problem Denotation

Scheduling of nodes for Lifetime maximization of area Coverage (SLC) (see [BermanCa04] for previous work)

Conclusion

Motivation

Problem Formulation

Approximation Algorithm

Motivation

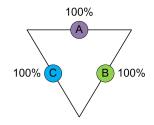
Overview - 2

Example

- Sensors A, B, C with equal capacity
- 3 possible covers: AB, BC, AC
- (a) Let AB be active for t = 1.0

 → after t_{total} = 1.0, no further covers possible

(a) Let AB be active for t = 0.5, then, let BC active for t = 0.5, then, let CA active for t = 0.5 $\hookrightarrow t_{total} = 1.5$, lifetime increased by 50%



Problem Denotation

Scheduling of nodes for Lifetime maximization of area Coverage (SLC) (see [BermanCa04] for previous work)

Motivation

Problem Formulation

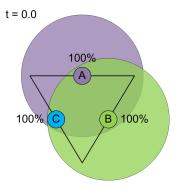
Approximation Algorithm

Motivation

Overview - 2

Example

- Sensors A, B, C with equal capacity
- 3 possible covers: AB, BC, AC
- (a) Let AB be active for t = 1.0 \hookrightarrow after $t_{total} = 1.0$, no further covers possible
- (a) Let AB be active for t = 0.5, then, let BC active for t = 0.5, then, let CA active for t = 0.5 $\hookrightarrow t_{total} = 1.5$, lifetime increased by 50%



Problem Denotation

Scheduling of nodes for Lifetime maximization of area Coverage (SLC) (see [BermanCa04] for previous work)

Dennis Schieferdecker – M&Ms

Motivation

Problem Formulation

Approximation Algorithm

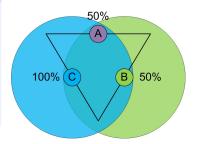
Motivation

Overview - 2

t = 0.5

Example

- Sensors A, B, C with equal capacity
- 3 possible covers: AB, BC, AC
- (a) Let AB be active for t = 1.0 \hookrightarrow after $t_{total} = 1.0$, no further covers possible
- (a) Let AB be active for t = 0.5, then, let BC active for t = 0.5, then, let CA active for t = 0.5 $\hookrightarrow t_{total} = 1.5$, lifetime increased by 50%



Problem Denotation

Scheduling of nodes for Lifetime maximization of area Coverage (SLC) (see [BermanCa04] for previous work)

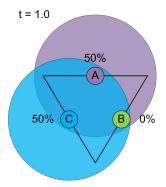
Motivation

Motivation

Overview - 2

Example

- Sensors A, B, C with equal capacity
- 3 possible covers: AB, BC, AC
- (a) Let AB be active for t = 1.0 \hookrightarrow after $t_{total} = 1.0$, no further covers possible
- (a) Let AB be active for t = 0.5, then, let BC active for t = 0.5. then, let CA active for t = 0.5 $\hookrightarrow t_{total} = 1.5$, lifetime increased by 50%



Motivation

Problem Formulation

Approximation Algorithm

Motivation

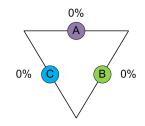
Overview - 2

t = 1.5

Example

- Sensors A, B, C with equal capacity
- 3 possible covers: AB, BC, AC
- (a) Let AB be active for t = 1.0

 → after t_{total} = 1.0, no further covers possible
- (a) Let AB be active for t = 0.5, then, let BC active for t = 0.5, then, let CA active for t = 0.5 $\hookrightarrow t_{total} = 1.5$, lifetime increased by 50%



Problem Denotation

Scheduling of nodes for Lifetime maximization of area Coverage (SLC) (see [BermanCa04] for previous work)

Motivation

Problem Formulation

Approximation Algorithm

Motivation

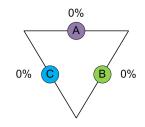
Overview - 2

t = 1.5

Example

- Sensors A, B, C with equal capacity
- 3 possible covers: AB, BC, AC
- (a) Let AB be active for t = 1.0

 → after t_{total} = 1.0, no further covers possible
- (a) Let AB be active for t = 0.5, then, let BC active for t = 0.5, then, let CA active for t = 0.5 $\hookrightarrow t_{total} = 1.5$, lifetime increased by 50%



Problem Denotation

Scheduling of nodes for Lifetime maximization of area Coverage (SLC) (see [BermanCa04] for previous work)

Problem Formulation

Problem Formulation

Model Description

Wanted:

- Maximum time T, the whole area can be monitored (lifetime)
- A feasible solutions includes:
 - grouping of sensors into M covers $\{C_i\}$, each monitoring the whole area
 - durations $\{t_i\}$, for which each cover C_i is active (scheduling)

Conclusion

Problem Formulation

Approximation Algorithm

Problem Formulation

Formulation with Linear Programming (LP)

LP formulation

maximize: lifetime T

$$T = max\{\mathbf{1}^T \mathbf{t} | \mathbf{t} \in \mathbb{R}^M\}$$

subject to: limited node capacities $\{c_i\}$

$$\sum_{j=1}^{M} A_{i,j} t_j \le c_i \qquad i=1,\ldots N$$

- t_j : duration for which cover C_j is active
- $A_{i,j}$: 1, if node s_i in cover C_j is active, 0 otherwise
- c_i: capacity of node s_i

Dennis Schieferdecker – M&Ms

Conclusion

Approximation Algorithm

Problem Formulation

Remaining problems

Solution by CPLEX

- General conception: problem phraseable as LP \rightarrow solvable with CPLEX
- But: #covers M is exponential in #nodes N
- Thus:

approximation algorithm required for large instances (N > 100)

Problem Formulation

Hardness of SLC

• Problem is NP-complete

(remains so for squared areas

• Proof by reduction of Minimum Dominating Set

Dennis Schieferdecker – M&Ms

Conclusion

Approximation Algorithm

Problem Formulation

Remaining problems

Solution by CPLEX

- General conception: problem phraseable as LP \rightarrow solvable with CPLEX
- But: #covers *M* is exponential in #nodes *N*
- Thus:

approximation algorithm required for large instances (N > 100)

Problem Formulation

Hardness of SLC

Problem is NP-complete

remains so for squared areas

• Proof by reduction of Minimum Dominating Set

roblem Formulation

Approximation Algorithm

Approximation Algorithm

Prelimenaries

Approach

- Relax two attributes to provide a fast approximation algorithm
 - sensor radii r
 - maximum lifetime T

Naming Conventions

- T_r : feasible solution of an SLC instance with sensor radii r
- $T_r = opt_r$: optimal solution

Problem Formulation

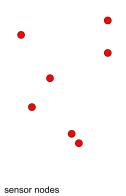
Approximation Algorithm

Approximation Algorithm

First Relaxation

Sensor Radii

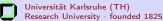
- Relocation of all sensor nodes to a grid of size $r \cdot \delta/2$
- Let algorithm A provide an α-approximation for this reduced problem
 - $\rightarrow \mathcal{A} \text{ yields solution for the general problem} \\ \text{with } \mathcal{T}_r \geq \alpha \cdot opt_{(1-\delta)r}$



Results

• possibly constant approximation factor by increasing r by $1/(1-\delta)$

Algorithmics Group II Faculty of Informatics

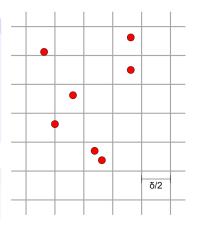


First Relaxation

Sensor Radii

- Relocation of all sensor nodes to a grid of size $r \cdot \delta/2$
- Let algorithm A provide an α-approximation for this reduced problem
 - $\rightarrow \mathcal{A} \text{ yields solution for the general problem} \\ \text{with } \mathcal{T}_r \geq \alpha \cdot opt_{(1-\delta)r}$

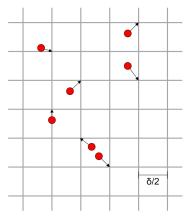
• possibly constant approximation factor by increasing r by $1/(1-\delta)$

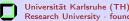


First Relaxation

Sensor Radii

- Relocation of all sensor nodes to a grid of size $r \cdot \delta/2$
- Let algorithm \mathcal{A} provide an α -approximation for this reduced problem
 - $\rightarrow \mathcal{A}$ yields solution for the general problem with $T_r \geq \alpha \cdot opt_{(1-\delta)r}$



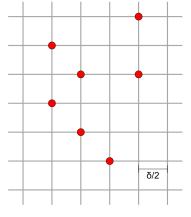


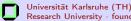
Approximation Algorithm

First Relaxation

Sensor Radii

- Relocation of all sensor nodes to a grid of size $r \cdot \delta/2$
- Let algorithm \mathcal{A} provide an α -approximation for this reduced problem
 - $\rightarrow \mathcal{A}$ yields solution for the general problem with $T_r \geq \alpha \cdot opt_{(1-\delta)r}$





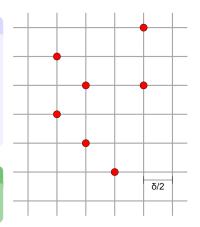
First Relaxation

Sensor Radii

- Relocation of all sensor nodes to a grid of size $r \cdot \delta/2$
- Let algorithm ${\mathcal A}$ provide an $\alpha\text{-approximation}$ for this reduced problem
 - $\rightarrow \mathcal{A} \text{ yields solution for the general problem} \\ \text{with } \mathcal{T}_r \geq \alpha \cdot opt_{(1-\delta)r}$

Results

• possibly constant approximation factor by increasing r by $1/(1-\delta)$



Conclusion

Problem Formulation

Approximation Algorithm

Approximation Algorithm

Second Relaxation - 1

Maximum Lifetime

- Generate tiling *T* of the area with width k = [¹⁰/_ϵ]
- Generate shiftings *T_i* of *T* by (*i*, *i*) with *i* ∈ ℤ_k

Observations for r = 1

- each monitoring area
 - is cut by at most 2 of the tilings T_i ,
 - intersects at most 4 squares

Dennis Schieferdecker – M&Ms

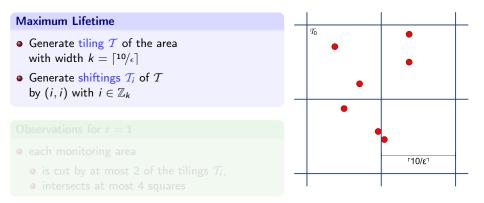
Conclusion

Problem Formulat

Approximation Algorithm

Approximation Algorithm

Second Relaxation - 1



Conclusion

Problem Formulation

Approximation Algorithm

Approximation Algorithm

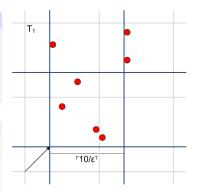
Second Relaxation - 1

Maximum Lifetime

- Generate tiling *T* of the area with width k = [¹⁰/_ℓ]
- Generate shiftings *T_i* of *T* by (*i*, *i*) with *i* ∈ ℤ_k

Observations for r = 1

- each monitoring area
 - is cut by at most 2 of the tilings \mathcal{T}_i ,
 - intersects at most 4 squares



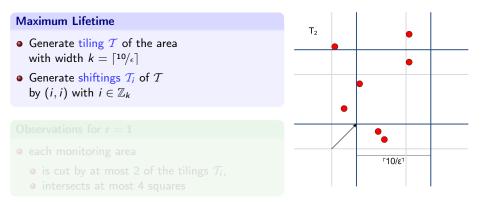
Conclusion

Problem Form

Approximation Algorithm

Approximation Algorithm

Second Relaxation - 1



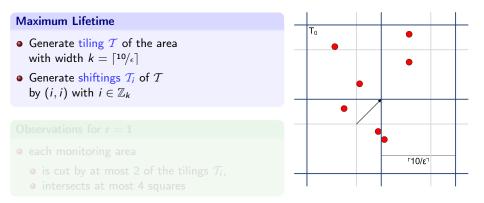
Conclusion

Problem Formulati

Approximation Algorithm

Approximation Algorithm

Second Relaxation - 1



Approximation Algorithm

Approximation Algorithm

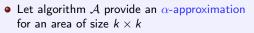
Second Relaxation - 1

Maximum Lifetime Τá • Generate tiling \mathcal{T} of the area with width $k = \begin{bmatrix} 10/\epsilon \end{bmatrix}$ • Generate shiftings \mathcal{T}_i of \mathcal{T} by (i, i) with $i \in \mathbb{Z}_k$ Observations for r = 1 each monitoring area Γ10/ε[¬] • is cut by at most 2 of the tilings T_i , intersects at most 4 squares

Dennis Schieferdecker – M&Ms

Approximation Algorithm

Second Relaxation - 2



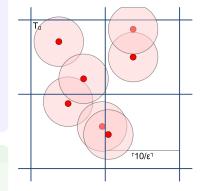
- Run \mathcal{A} for each square of \mathcal{T}_i :
 - $T_1 = \alpha \cdot opt_1$
 - at most 4x excess use of each node

• Combine solutions of all \mathcal{T}_i weighted by $\frac{1-\epsilon}{k}$:

- $T_1 = (1 \epsilon) \cdot \alpha \cdot opt_1$
- no violation of capacity constraints

Results

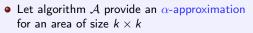
• possibly constant approximation factor by reducing T_1 by $(1 - \epsilon)$



Dennis Schieferdecker – M&Ms

Approximation Algorithm

Second Relaxation - 2



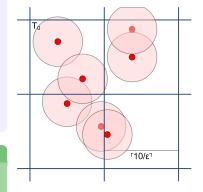
- Run \mathcal{A} for each square of \mathcal{T}_i :
 - $T_1 = \alpha \cdot opt_1$
 - at most 4x excess use of each node

• Combine solutions of all \mathcal{T}_i weighted by $\frac{1-\epsilon}{k}$:

- $T_1 = (1 \epsilon) \cdot \alpha \cdot opt_1$
- no violation of capacity constraints

Results

• possibly constant approximation factor by reducing T_1 by $(1 - \epsilon)$

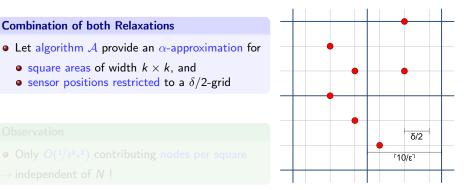


roblem Formulation

Approximation Algorithm

Approximation Algorithm

Joined Relaxations

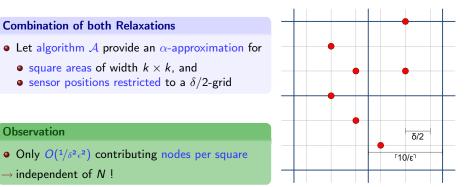


ation

Approximation Algorithm

Approximation Algorithm

Joined Relaxations



Results - 1

Approximation guarantee

- $T_{1/(1-\delta)} \ge (1-\epsilon) \cdot \alpha \cdot opt_1$
- $(1-\epsilon)$: Segmentation of the area into smaller squares
- α : Approximation guarantee of algorithm $\mathcal A$
- opt1: Restriction of sensor positions to a grid

Applied relaxations

- Sensor radii can be larger than r
- Maximum lifetime can be smaller than the optimum

Dennis Schieferdecker – M&Ms

Results - 1

Approximation guarantee

$$T_{1/(1-\delta)} \ge (1-\epsilon) \cdot \alpha \cdot opt_1$$

• $(1-\epsilon)$: Segmentation of the area into smaller squares

- α : Approximation guarantee of algorithm $\mathcal A$
- opt1: Restriction of sensor positions to a grid

Applied relaxations

- Sensor radii can be larger than r
- Maximum lifetime can be smaller than the optimum

Dennis Schieferdecker – M&Ms

Approximation Algorithm

Results - 1

Approximation guarantee

$$T_{1/(1-\delta)} \ge (1-\epsilon) \cdot \alpha \cdot opt_1$$

• $(1-\epsilon)$: Segmentation of the area into smaller squares

- α : Approximation guarantee of algorithm $\mathcal A$
- opt1: Restriction of sensor positions to a grid

Applied relaxations

- Sensor radii can be larger than r
- Maximum lifetime can be smaller than the optimum

Dennis Schieferdecker – M&Ms

Approximation Algorithm

Results - 1

Approximation guarantee

- $T_{1/(1-\delta)} \ge (1-\epsilon) \cdot \alpha \cdot opt_1$
- $(1-\epsilon)$: Segmentation of the area into smaller squares
- α : Approximation guarantee of algorithm ${\cal A}$
- opt1: Restriction of sensor positions to a grid

Applied relaxations

- Sensor radii can be larger than r
- Maximum lifetime can be smaller than the optimum

Dennis Schieferdecker – M&Ms

oblem Formulation

Approximation Algorithm

Approximation Algorithm

Results - 1

Approximation guarantee

- $\mathcal{T}_{1/(1-\delta)} \ge (1-\epsilon) \cdot lpha \cdot opt_1$
- $(1-\epsilon)$: Segmentation of the area into smaller squares
- α : Approximation guarantee of algorithm ${\cal A}$
- opt1: Restriction of sensor positions to a grid

Applied relaxations

- Sensor radii can be larger than r
- Maximum lifetime can be smaller than the optimum

Dennis Schieferdecker – M&Ms

Approximation Algorithm

Approximation Algorithm

Results - 2

Asymptotic running time

$$O\left(N+\frac{1}{\epsilon}\cdot\frac{\epsilon^{2}\cdot N}{opt_{1}}\cdot f(O\left(\frac{1}{\delta^{2}\epsilon^{2}}\right))\right)$$

- O(N): relocation of sensor nodes to grid points
- $O(1/\epsilon)$: Number of tilings \mathcal{T}_i
- $O(\frac{\epsilon^2 \cdot N}{opt_1})$: Number of squares to be considered per tiling
- $O(f(O(1/\delta^2 \epsilon^2)))$: Running time of algorithm \mathcal{A}

Observation

- Overall running time is linear in N
- Running time of \mathcal{A} independent of N, allowed to take exponential time

Dennis Schieferdecker – M&Ms

Problem Formulation

Approximation Algorithm

Approximation Algorithm

Results - 2

Asymptotic running time

$$O\left(N + \frac{1}{\epsilon} \cdot \frac{\epsilon^2 \cdot N}{opt_1} \cdot f(O(\frac{1}{\delta^2 \epsilon^2}))\right)$$

- O(N): relocation of sensor nodes to grid points
- $O(1/\epsilon)$: Number of tilings \mathcal{T}_i
- $O(\frac{\epsilon^2 \cdot N}{opt_1})$: Number of squares to be considered per tiling
- $O(f(O(1/\delta^2 \epsilon^2)))$: Running time of algorithm A

Observation

- Overall running time is linear in N
- Running time of A independent of N, allowed to take exponential time

Dennis Schieferdecker – M&Ms

Motivation

Problem Formulation

Approximation Algorithm

Approximation Algorithm

Results - 2

Asymptotic running time

$$O\left(N+\frac{1}{\epsilon}\cdot\frac{\epsilon^{2}\cdot N}{opt_{1}}\cdot f(O(1/\delta^{2}\epsilon^{2}))\right)$$

- O(N): relocation of sensor nodes to grid points
- $O(1/\epsilon)$: Number of tilings \mathcal{T}_i
- $O(\frac{\epsilon^2 \cdot N}{opt_1})$: Number of squares to be considered per tiling
- $O(f(O(1/\delta^2 \epsilon^2)))$: Running time of algorithm \mathcal{A}

Observation

- Overall running time is linear in N
- Running time of A independent of N, allowed to take exponential time

Dennis Schieferdecker – M&Ms

Approximation Algorithm

Results - 2

Asymptotic running time

$$O\left(N+\frac{1}{\epsilon}\cdot\frac{\epsilon^{2}\cdot N}{opt_{1}}\cdot f(O(1/\delta^{2}\epsilon^{2}))\right)$$

- O(N): relocation of sensor nodes to grid points
- $O(1/\epsilon)$: Number of tilings \mathcal{T}_i
- $O(\frac{\epsilon^2 \cdot N}{opt_1})$: Number of squares to be considered per tiling
- $O(f(O(1/\delta^2 \epsilon^2)))$: Running time of algorithm \mathcal{A}

Observation

- Overall running time is linear in N
- Running time of A independent of N, allowed to take exponential time

Dennis Schieferdecker – M&Ms

Motivation

Problem Formulation

Approximation Algorithm

Approximation Algorithm

Results - 2

Asymptotic running time

$$O\left(N+\frac{1}{\epsilon}\cdot\frac{\epsilon^{2}\cdot N}{opt_{1}}\cdot f\left(O\left(\frac{1}{\delta^{2}\epsilon^{2}}\right)\right)\right)$$

- O(N): relocation of sensor nodes to grid points
- $O(1/\epsilon)$: Number of tilings T_i
- $O(\frac{\epsilon^2 \cdot N}{opt_1})$: Number of squares to be considered per tiling
- $O(f(O(1/\delta^2 \epsilon^2)))$: Running time of algorithm \mathcal{A}

Observation

- Overall running time is linear in N
- Running time of A independent of N, allowed to take exponential time

Dennis Schieferdecker – M&Ms

Approximation Algorithm

Approximation Algorithm

Results - 2

Asymptotic running time

$$O\left(N+\frac{1}{\epsilon}\cdot\frac{\epsilon^{2}\cdot N}{opt_{1}}\cdot f(O\left(\frac{1}{\delta^{2}\epsilon^{2}}\right))\right)$$

- O(N): relocation of sensor nodes to grid points
- $O(1/\epsilon)$: Number of tilings T_i
- $O(\frac{\epsilon^2 \cdot N}{opt_1})$: Number of squares to be considered per tiling
- $O(f(O(1/\delta^2 \epsilon^2)))$: Running time of algorithm \mathcal{A}

Observation

- Overall running time is linear in N
- Running time of \mathcal{A} independent of N, allowed to take exponential time

Dennis Schieferdecker – M&Ms

- III -Conclusion Summary and Outlook

Dennis Schieferdecker – M&Ms

Summary and Outlook

Gaussian Mixture Reduction

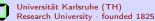
Summary

- provided point of view of algorithmics (up to now only approaches from numerics)
- fast clustering approach (PGMR yields better approximations but takes longer)

Outlook

- apply different initialization algorithms (hierarchical approach?)
- evaluate different distance measures (speed-up?)
- student thesis in cooperation with Marco Huber (ISAS)

Dennis Schieferdecker – M&Ms



Summary and Outlook

Area Monitoring

Summary

- Proof of NP completeness (omitted in this talk)
- Linear-time, constant-factor approximation scheme ([BermanCa04]: O(n log n) algorithm with similar approximation guarantees)

Outlook

- Implementation of approximation algorithm (applying exact algorithm implemented with CPLEX)
- Generalisation to arbitrary (convex) monitoring areas and general metriks (David Steurer - Princeton University)

Dennis Schieferdecker – M&Ms

Time for questions

Thank you, for your attention!

Dennis Schieferdecker – M&Ms

[HuberHa08] M. Huber and U. D. Hanebeck, "Progressive Gaussian Mixture Reduction", in *Proceedings of the 11th International Conference on Information Fusion (Fusion 2008)*, Cologne, Germany, July, 2008

[BermanCa04] P. Berman, G. Calinescu, C. Shah, and A. Zelikovsky, *Power efficient monitoring management in sensor networks*, in "Wireless Communications and Networking Conference", 2004

Dennis Schieferdecker - M&Ms

