Algorithm Engineering for Large Graphs

Fast Route Planning

Veit Batz, Robert Geisberger, Dennis Luxen, Peter Sanders, Christian Vetter

Universität Karlsruhe (TH)

Zurich, October 22, 2008

Route Planning

Goals:

\square exact shortest (i.e. fastest) paths in large road networksfast queries (point-to-point, many-to-many)fast preprocessinglow space consumptionfast update operations

Applications:

\square route planning systems in the internet, car navigation systems,
\square ride sharing, traffic simulation, logistics optimisation

Sanders et al.: Route Planning

Overview

\square Exact Contraction Hierarchies - a very simple approach
\square Transit Node Routing - getting really fast
\square Mobile Contraction Hierarchies
\square Many-to-many Routing
\square Ride Sharing
\square Dynamic Scenario
\square Time-dependent Contraction Hierarchies
\square Future Work

Contraction Hierarchies (CH)

Main Idea

Contraction Hierarchies (CH)

- contract only one node at a time \Rightarrow local and cache-efficient operation
in more detail:
- order nodes by "importance", $V=\{1,2, \ldots, n\}$
- contract nodes in this order, node v is contracted by foreach pair (u, v) and (v, w) of edges do if $\langle u, v, w\rangle$ is a unique shortest path then add shortcut (u, w) with weight $w(\langle u, v, w\rangle)$
- query relaxes only edges to more "important" nodes \Rightarrow valid due to shortcuts

Sanders et al.: Route Planning

Example: Construction

Sanders et al.: Route Planning

Sanders et al.: Route Planning
Example: Construction

Construction

to identify necessary shortcuts

- local searches from all nodes u with incoming edge (u, v)
- ignore node v at search
- add shortcut (u, w) iff found distance $d(u, w)>w(u, v)+w(v, w)$

Construction

to identify necessary shortcuts

- local searches from all nodes u with incoming edge (u, v)
- ignore node v at search
- add shortcut (u, w) iff found distance $d(u, w)>w(u, v)+w(v, w)$

Node Order

use priority queue of nodes, node v is weighted with a linear combination of:

- edge difference \#shortcuts - \#edges incident to v
- uniformity e.g. \#deleted neighbors
integrated construction and ordering:

1. remove node v on top of the priority queue

$2-3=-1$
2. contract node v
3. update weights of remaining nodes

Query

- modified bidirectional Dijkstra algorithm
- upward graph $\quad G_{\uparrow}:=\left(V, E_{\uparrow}\right)$ with $E_{\uparrow}:=\{(u, v) \in E: u<v\}$ downward graph $G_{\downarrow}:=\left(V, E_{\downarrow}\right)$ with $E_{\downarrow}:=\{(u, v) \in E: u>v\}$
- forward search in G_{\uparrow} and backward search in G_{\downarrow}

Query

- modified bidirectional Dijkstra algorithm
- upward graph $\quad G_{\uparrow}:=\left(V, E_{\uparrow}\right)$ with $E_{\uparrow}:=\{(u, v) \in E: u<v\}$ downward graph $G_{\downarrow}:=\left(V, E_{\downarrow}\right)$ with $E_{\downarrow}:=\{(u, v) \in E: u>v\}$
- forward search in G_{\uparrow} and backward search in G_{\downarrow}

Query

- modified bidirectional Dijkstra algorithm
- upward graph $\quad G_{\uparrow}:=\left(V, E_{\uparrow}\right)$ with $E_{\uparrow}:=\{(u, v) \in E: u<v\}$ downward graph $G_{\downarrow}:=\left(V, E_{\downarrow}\right)$ with $E_{\downarrow}:=\{(u, v) \in E: u>v\}$
- forward search in G_{\uparrow} and backward search in G_{\downarrow}

Query

- modified bidirectional Dijkstra algorithm
- upward graph $\quad G_{\uparrow}:=\left(V, E_{\uparrow}\right)$ with $E_{\uparrow}:=\{(u, v) \in E: u<v\}$ downward graph $G_{\downarrow}:=\left(V, E_{\downarrow}\right)$ with $E_{\downarrow}:=\{(u, v) \in E: u>v\}$
- forward search in G_{\uparrow} and backward search in G_{\downarrow}

Outputting Paths

- for a shortcut (u, w) of a path $\langle u, v, w\rangle$, store middle node v with the edge
- expand path by recursively replacing a shortcut with its originating edges

Stall-on-Demand

- v can be "stalled" by u
(if $d(u)+w(u, v)<d(v)$)
- stalling can propagate to adjacent nodes
- search is not continued from stalled nodes

- does not invalidate correctness (only suboptimal paths are stalled)

Experiments

environment

- AMD Opteron Processor 270 at 2.0 GHz
- 8 GB main memory
- GNU C++ compiler 4.2.1
test instance
- road network of Western Europe (PTV)
- 18029721 nodes
- 42199587 directed edges

Sanders et al.: Route Planning

Performance

HNR: 594 s / $802 \mu \mathrm{~s}$

Sanders et al.: Route Planning

Worst Case Costs

Contraction Hierarchies

\square foundation for our other methodsconceptually very simple
\square handles dynamic scenarios

Static scenario:

$\square 7.5$ min preprocessing
$\square 0.21 \mathrm{~ms}$ to determine the path length
$\square 0.56 \mathrm{~ms}$ to determine a complete path description
\square little space consumption (23 bytes/node)

Transit-Node Routing

[DIMACS Challenge 06, ALENEX 07, Science 07]
joint work with H. Bast, S. Funke, D. Matijevic
\square very fast queries (down to $1.7 \mu s, 3000000$ times faster than DIJKSTRA)

\square winner of the 9th DIMACS Implementation Challenge
\square more preprocessing time (2:37 h) and space (263 bytes/node) needed

SciAm50 Award

Mobile Contraction Hierarchies

preprocess data on a personal computerhighly compressed blocked graph representation 8 bytes/node\square compact route reconstruction data structure

+ 8 bytes/node
experiments on a Nokia N800 at 400 MHz

\square cold query with empty block cache 56 ms
\square compute complete path
73 ms
\square recomputation, e.g. if driver took the wrong exit
14 ms
joint work with S. Knopp, F. Schulz, D. Wagner [ALENEX 07]

\square
efficient many-to-many variant of hierarchical bidirectional algorithms
$\square 10000 \times 10000$ table in 10 s

\[

\]

Ride Sharing

Current approaches:

match only ride offers with identical start/destination (perfect fit)sometimes radial search around start/destination
Our approach:

\square driver picks passenger up and gives him a ride to his destination
\square find the driver with the minimal detour (reasonable fit)

Efficient algorithm:

\square adaption of the many-to-many algorithm

Highway-Node Routing

\square generalization of contraction hierarchies
\square allow multiple nodes in the same 'importance'-level i.e., select node sets $S_{1} \supseteq S_{2} \supseteq S_{3} \ldots$
\square construct multi-level overlay graph
\square perform multi-level query
\square designed for dynamic scenarios

Overlay Graph

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000-2007]
\square graph $G=(V, E)$ is given
\square select node subset $S \subseteq V$

Overlay Graph

[Holzer, Schulz, Wagner, Weihe, Zaroliagis 2000-2007]
\square graph $G=(V, E)$ is given
\square select node subset $S \subseteq V$

\square overlay graph $G^{\prime}:=\left(S, E^{\prime}\right)$ where
$E^{\prime}:=\{(s, t) \in S \times S \mid$ no inner node of the shortest $s-t$-path belongs to $S\}$

Dynamic Scenarios

\square change entire cost function (e.g., use different speed profile)

\square change a few edge weights (e.g., due to a traffic jam)

Constancy of Structure

Assumption:

\square structure of road network does not change
(no new roads, road removal = set weight to ∞)
\rightsquigarrow not a significant restriction
\square classification of nodes by 'importance' might be slightly perturbed, but not completely changed
(e.g., a sports car and a truck both prefer motorways)
\rightsquigarrow performance of our approach relies on that (not the correctness)

Dynamic Highway-Node Routing

change entire cost function

\square keep the node sets $S_{1} \supseteq S_{2} \supseteq S_{3} \ldots$
\square recompute the overlay graphs

speed profile	default	fast car	slow car	slow truck	distance
constr. [min]	$1: 40$	$1: 41$	$1: 39$	$1: 36$	$3: 56$
query [ms]	1.17	1.20	1.28	1.50	35.62
\#settled nodes	1414	1444	1507	1667	7057

Dynamic Highway-Node Routing

change a few edge weights

\square server scenario: if something changes,

- update the preprocessed data structures
- answer many subsequent queries very fast

mobile scenario: if something changes,
- it does not pay to update the data structures
- perform single 'prudent' query that takes changed situation into account

Dynamic Highway-Node Routing

change a few edge weights, server scenario

\square keep the node sets $S_{1} \supseteq S_{2} \supseteq S_{3} \ldots$
\square recompute only possibly affected parts of the overlay graphs

- the computation of the level- ℓ overlay graph consists of $\left|S_{\ell}\right|$ local searches to determine the respective covering nodes
- if the initial local search from $v \in S_{\ell}$ has not touched a now modified edge (u, x), that local search need not be repeated
- we manage sets $A_{u}^{\ell}=\left\{v \in S_{\ell} \mid v\right.$'s level- ℓ preprocessing might be affected when an edge (u, x) changes $\}$

Dynamic Highway-Node Routing

change a few edge weights, server scenario

Dynamic Highway-Node Routing

change a few edge weights, mobile scenario

1. keep the node sets $S_{1} \supseteq S_{2} \supseteq S_{3} \ldots$
2. keep the overlay graphs
3. $C:=$ all changed edges
4. use the sets A_{u}^{ℓ} (considering edges in C) to determine for each node v a reliable level $r(v)$
5. during a query, at node v
\square do not use edges that have been created in some level $>r(v)$
\square instead, downgrade the search to level $r(v)$ (forward search only)

Dynamic Highway-Node Routing

change a few edge weights, mobile scenario

reliable levels: $r(x)=0, \quad r\left(s_{2}\right)=r\left(t_{2}\right)=1$

Dynamic Highway-Node Routing

change a few edge weights, mobile scenario

iterative variant (provided that only edge weight increases allowed)

1. keep everything (as before)
2. $C:=\emptyset$
3. use the sets A_{u}^{ℓ} (considering edges in C) to determine for each node v a reliable level $r(v)$ (as before)
4. 'prudent' query (as before)
5. if shortest path P does not contain a changed edge, we are done
6. otherwise: add changed edges on P to C, repeat from 3 .

Dynamic Highway-Node Routing

change a few edge weights, mobile scenario

	affected queries	single pass query time [ms]	iterative			
\|change set	(motorway edges)			query time [ms]	\#iter avg	tions max
1	0.4 \%	2.3	1.5	1.0	2	
10	5.8 \%	8.5	1.7	1.1	3	
100	40.0\%	47.1	3.6	1.4	5	
1000	83.7\%	246.3	25.3	2.7	9	

Sanders et al.: Route Planning
static routing in road networks is easy
\leadsto applications that require massive amount or routing
\rightsquigarrow instantaneous mobile routing
\leadsto techniques for advanced models
\rightsquigarrow updating a few edge weights is OK

Current / Future Work

\square Time-dependent edge weights challenge: backward search impossible (?)
\square Multiple objective functions and restrictions (bridge height,...)
\square Multicriteria optimization (cost, time,...)
\square Integrate individual and public transportation
\square Other objectives for time-dependent travel
\square Routing driven traffic simulation

