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Abstract. For a static array A of n totally ordered objects, a range minimum query asks for the
position of the minimum between two specified array indices. We show how to preprocess A into a
scheme of size 2n + o(n) bits that allows to answer range minimum queries on A in constant time. This
space is asymptotically optimal in the important setting where access to A is not permitted after the
preprocessing step. Our scheme can be computed in linear time, using only n + o(n) additional bits for
construction. We also improve on LCA-computation in BPS- or DFUDS-encoded trees.

1 Introduction

For an array A[1, n] of n natural numbers or other objects from a totally ordered universe, a
range minimum query rmqA(i, j) for i ≤ j returns the position of where the minimum element in
the sub-array A[i, j] occurs; i.e., rmqA(i, j) = argmini≤k≤j{A[k]}. This fundamental algorithmic
problem has numerous applications, e.g., in text indexing [1,15,35], text compression [7], document
retrieval [30, 36, 41], flowgraphs [19], range queries [39], position-restricted pattern matching [8],
just to mention a few.

In all of these applications, the array A in which the range minimum queries (RMQs) are
performed is static and known in advance, which is also the scenario considered in this article. In
this case it makes sense to preprocess A into a (preprocessing-) scheme such that future RMQs can
be answered quickly. We can hence formulate the following problem.

Problem 1 (RMQ-Problem).

Given: a static array A[1, n] of n totally ordered objects.
Compute: an (ideally small) data structure, called scheme, that allows to answer RMQs on A in

constant time.

The historically first such scheme due to Gabow et al. [16] is based on the following idea: because
an RMQ-instance can be transformed into an instance of lowest common ancestors (LCAs) in the
Cartesian Tree [42], one can use any linear-time preprocessing scheme for O(1)-LCAs [3, 5, 22, 40]
in order to answer RMQs in constant time.

The problem of this transformation [16], both in theory and in practice, can be seen by the fol-
lowing dilemma: storing the Cartesian Tree explicitly (i.e., with labels and pointers) needs O(n log n)
bits of space, while storing it succinctly in 2n + o(n) bits [4, 29] does not allow to map the array-
indices to the corresponding nodes (see Sect. 1.1 for more details on why this is difficult).

A succinct data structure uses space that is close to the information-theoretic lower bound, in
the sense that objects from a universe of cardinality L are stored in (1 + o(1)) logL bits.1 Research
on succinct data structures is very active, and we just mention some examples from the realm of
trees [4, 9, 18, 25, 29, 38], dictionaries [32, 33], and strings [10, 11, 20, 21, 34, 37], being well aware of
the fact that this list is far from complete. This article presents the first succinct data structure for
1 Throughout this article, space is measured in bits, and log denotes the binary logarithm.



Table 1. Preprocessing schemes for O(1)-RMQs, where |A| denotes the space for the (read-only) input array.

reference final space construction space comments

[5, 22,40] O(n log n) + |A| O(n log n) + |A| originally devised for LCA, but solve RMQ via Cartesian Tree

[3] O(n log n) + |A| O(n log n) + |A| significantly simpler than previous schemes

[2] O(n log n) + |A| O(n log n) + |A| only solution not based on Cartesian Trees

[13] 2n + o(n) + |A| 2n + o(n) + |A| generalizes to 2
c
n + o(n) + |A| bits, const. c (see Footnote 2)

[14] O(nHk) + o(n) 2n + o(n) + |A| Hk is the empirical entropy [27] of A (small if A is compressible)

[35] n + o(n) n + o(n) only for ±1rmq; A must be encoded as an n-bit-vector

[36] 4n + o(n) O(n log n) + |A| only non-systematic data structure so far

this article 2n + o(n) 3n + o(n) + |A| final space requirement optimal

O(1)-RMQs in the standard word-RAM model of computation (which is also the model used in all
LCA- and RMQ-schemes cited in this article).

Before detailing our contribution, we first classify and summarize existing solutions for O(1)-
RMQs.

1.1 Previous Solutions for RMQ

In accordance with common nomenclature [17], preprocessing schemes for O(1)-RMQs can be clas-
sified into two different types: systematic and non-systematic. Systematic schemes must store the
input array A verbatim along with the additional information for answering the queries. In such
a case the query algorithm can consult A when answering the queries; this is indeed what all
systematic schemes make heavy use of. On the contrary, non-systematic schemes must be able to
obtain their final answer without consulting the array. This second type is important for at least
two reasons:

1. In some applications, e.g., in algorithms for document retrieval [30, 36] or position restricted
substring matching [8], only the position of the minimum matters, but not the value of this
minimum. In such cases it would be a waste of space (both in theory and in practice) to keep
the input array in memory, just for obtaining the final answer to the RMQs, as in the case of
systematic schemes.

2. If the time to access the elements in A is ω(1), this slowed-down access time propagates to
the time for answering RMQs if the query algorithm consults the input array. As a prominent
example, in string processing RMQ is often used in conjunction with the array of longest common
prefixes of lexicographically consecutive suffixes, the so-called LCP-array [26]. However, storing
the LCP-array efficiently in 2n+ o(n) bits [35] increases the access-time to the time needed to
retrieve an entry from the corresponding suffix array [26], which is Ω(logε n) (constant ε > 0)
at the very best if the suffix array is also stored in compressed form [20, 34]. Hence, with a
systematic scheme the time needed for answering RMQs on LCP could never be O(1) in this
case. But exactly this would be needed for constant-time navigation in RMQ-based compressed
suffix trees [15] (where for different reasons the LCP-array is still needed, so this is not the same
as the above point).

In the following, we briefly sketch previous solutions for RMQ schemes. For a summary, see Tbl. 1,
where, besides the final space consumption, in the third column we list the peak space consumption
at construction time of each scheme, which sometimes differs from the former term.

2



Systematic Schemes. Most schemes are based on the Cartesian Tree [42], the only exception
being the scheme due to Alstrup et al. [2]. All direct schemes [2, 3, 13, 35] are based on the idea of
splitting the query range into several sub-queries, all of which have been precomputed, and then
returning the overall minimum as the final result. The schemes from the first three rows of Tbl. 1
have the same theoretical guarantees, with Bender et al.’s scheme [3] being less complex than the
previous ones, and Alstrup et al.’s [2] being even simpler (and most practical). The only O(n)-bit
scheme is due to Fischer and Heun [13] and achieves 2n + o(n) bits of space in addition to the
space for the input array A. It is based on an “implicit” enumeration of Cartesian Trees only for
very small blocks (instead of the whole array A). Its further advantage is that it can be adapted
to achieve entropy-bounds for compressible inputs [14]. For systematic schemes, no lower bound on
space is known.2

An important special case is Sadakane’s n+o(n)-bit solution [35] for ±1rmq, where it is assumed
that A has the property that A[i] − A[i − 1] = ±1 for all 1 < i ≤ n, and can hence be encoded
as a bit-vector S[1, n], where a ‘1’ at position i in S indicates that A increases by 1 at position i,
and a ‘0’ that it decreases. Because we will make use of this scheme in our new algorithm, and also
improve on its space consumption in Sect. 5, we will describe it in greater detail in Sect. 2.2.

Non-Systematic Schemes. The only existing scheme is due to Sadakane [36] and uses 4n+ o(n)
bits. It is based on the balanced-parentheses-encoding (BPS) [29] of the Cartesian Tree T of the
input array A and a o(n)-LCA-computation therein [35]. The difficulty that Sadakane overcomes is
that in the “original” Cartesian Tree, there is no natural mapping between array-indices in A and
positions of parentheses (basically because there is no way to distinguish between left and right
nodes in the BPS of T ); therefore, Sadakane introduces n “fake” leaves to get such a mapping.
There are two main drawbacks of this solution.

1. Due to the introduction of the “fake” leaves, it does not achieve the information-theoretic lower
bound (for non-systematic schemes) of 2n − Θ(log n) bits. This lower bound is easy to see
because any scheme for RMQs allows to reconstruct the Cartesian Tree by iteratively querying
the scheme for the minimum (in analogy to the definition of the Cartesian Tree); and because
the Cartesian Tree is binary and each binary tree is a Cartesian Tree for some input array, any
scheme must use at least log(

(
2n−1
n−1

)
/(2n− 1)) = 2n−Θ(log n) bits [29].

2. For getting an O(n)-time construction algorithm, the (modified) Cartesian Tree needs to be
first constructed in a pointer-based implementation, and then converted to the space-saving
BPS. This leads to a construction space requirement of O(n log n) bits, as each node occupies
O(log n) bits in memory. The problem why the BPS cannot be constructed directly in O(n)
time (at least we are not aware of such an algorithm) is that a “local” change in A (be it only
appending a new element at the end) does not necessarily lead to a “local” change in the tree;
this is also the intuitive reason why maintaining dynamic Cartesian Trees is difficult [6].

1.2 Our Results

We address the two aforementioned problems of Sadakane’s solution [36] and resolve them in the
following way:

2 The claimed lower bound of 2n + o(n) + |A| bits under the “min-probe-model” [13] turned out to be wrong, as
was kindly pointed out to the authors by S. Srinivasa Rao (personal communication, November 2007). In fact, it is
easy to lower the space consumption of [13] to 2

c
n + o(n) + |A| bits (constant integer c > 0) by grouping c adjacent

elements in A’s blocks together, and “building” the Cartesian Trees only on the minima of these groups.
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1. We introduce a new preprocessing scheme for O(1)-RMQs that occupies only 2n + o(n) bits
in memory, thus being the first that asymptotically achieves the information-theoretic lower
bound for non-systematic schemes. The critical reader might call this “lowering the constants”
or “micro-optimization,” but we believe that data structures using the smallest possible space
are of high importance, both in theory and in practice. And indeed, there are many examples
of this in literature: for instance, Munro and Raman [29] give a 2n + o(n)-bit-solution for
representing ordered trees, while supporting most navigational operations in constant time,
although a O(n)-bit-solution (roughly 10n bits [29]) had already been known for some 10 years
before [24]. Another example comes from compressed text indexing [31], where a lot of effort
has been put into achieving indexes of size nHk + o(n log σ) [11], although indexes of size
O(nHk) + o(n log σ) had been known earlier [10, 21, 34]. (Here, Hk is the k-th-order empirical
entropy of the input text T [27] and measures the “compressibility” of T , while σ is T ’s alphabet
size.)

2. We give a direct construction algorithm for the above scheme that needs only n + o(n) bits of
space in addition to the space for the final scheme, thus lowering the construction space for non-
systematic schemes from O(n log n) to O(n) bits (on top of A). This is a significant improvement,
as the space for storing A is not necessarily Θ(n log n); for example, if the numbers in A are
integers in the range [1, logO(1) n], A can be stored as an array of packed words using only
O(n log logn) bits of space. See Sect. 6 for a different example. The construction space is an
important issue and often limits the practicality of a data structure, especially for large inputs
(as they arise nowadays in web-page-analysis or computational biology).

The intuitive explanation why our scheme works better than Sadakane’s scheme [36] is that ours
is based on a new tree in which the preorder-numbers of the nodes correspond to the array-indices
in A, thereby rendering the introduction of “fake” leaves (as described earlier) unnecessary. In
summary, this article is devoted to proving

Theorem 1. For an array A of n objects from a totally ordered universe, there is a preprocessing
scheme for O(1)-RMQs on A that occupies only 2n+O(n log logn

logn ) bits of memory, while not needing
access to A after its construction, thus meeting the information-theoretic lower bound. This scheme
can be constructed in O(n) time, using only n+ o(n) bits of space in addition to the space for the
input and the final scheme.

This result is not only appealing in theory, but also important in practice. For example, when
RMQs are used in conjunction with sequences of DNA (genomic data), where the alphabet size σ is
4, storing the DNA even in uncompressed form takes only 2n bits, already less than then 4n bits of
Sadakane’s solution [36]. Hence, halving the space for RMQs leads to a significant reduction of total
space. Further, because n is typically very large (n ≈ 232 for the human genome), a construction
space of O(n log n) bits is much higher than the O(n log σ) bits for the DNA itself. An additional
(practical) advantage of our new scheme is that it also halves the space of the lower order terms
(“o(2n) vs. o(4n) bits”). This is particularly relevant for realistic problem sizes, where the lower
order terms dominate the linear term. An implementation in C++ of our new scheme can be
downloaded from http://www-ab.informatik.uni-tuebingen.de/people/fischer/optimalRMQ.tgz.

1.3 Outline

Sect. 2 presents some basic tools. Sect. 3 introduces the new preprocessing scheme. Sect. 4 addresses
the linear-time construction of the scheme. Sect. 5 lowers the second-order term by giving a new
data structure for LCA-computation in succinct trees. Sect. 6 shows a concrete example of an
application where our new preprocessing scheme improves on the total space.
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2 Preliminaries

This section sketches some known data structures that we are going to make use of. Throughout
this article, we use the standard word-RAM model of computation, where fundamental arithmetic
operations on words consisting of Θ(log n) consecutive bits can be computed in O(1) time.

2.1 Rank and Select on Binary Strings

Consider a bit-string S[1, n] of length n. We define the fundamental rank - and select-operations
on S as follows: rank1(S, i) gives the number of 1’s in the prefix S[1, i], and select1(S, i) gives the
position of the i’th 1 in S, reading S from left to right (1 ≤ i ≤ n). Operations rank0(S, i) and
select0(S, i) are defined similarly for 0-bits. There are data structures of size O(n log logn

logn ) bits in
addition to S that support rank- and select-operations in O(1) time [28].

2.2 Data Structures for ±1RMQ

Consider an array E[1, n] of natural numbers, where the difference between consecutive elements
in E is either +1 or −1 (i.e. E[i] − E[i − 1] = ±1 for all 1 < i ≤ n). Such an array E can be
encoded as a bit-vector S[1, n], where S[1] = 0, and for i > 1, S[i] = 1 iff E[i] − E[i − 1] = +1.
Then E[i] can be obtained by E[1] + rank1(S, i) − rank0(S, i) + 1 = E[1] + i − 2rank0(S, i) + 1.
Under this setting, Sadakane [35] shows how to support RMQs on E in O(1) time, using S and
additional structures of size O(n log2 logn

logn ) bits. We will improve this space to O(n log logn
logn ) in Sect.

5. A technical detail is that ±1rmq(i, j) yields the position of the leftmost minimum in E[i, j] if
there are multiple occurrences of this minimum.

2.3 Sequences of Balanced Parentheses

A string B[1, 2n] of n opening parentheses ‘(’ and n closing parentheses ‘)’ is called balanced if
in each prefix B[1, i], 1 ≤ i ≤ 2n, the number of ‘)’s is no more than the number of ‘(’s. Oper-
ation findopen(B, i) returns the position j of the “matching” opening parenthesis for the clos-
ing parenthesis at position i in B. This position j is defined as the largest j < i for which
rank((B, i) − rank)(B, i) = rank((B, j) − rank)(B, j). The findopen-operation can be computed
in constant time [29]; the most space-efficient data structure for this needs O(n log logn

logn ) bits [18].

2.4 Depth-First Unary Degree Encoding of Ordered Trees

The Depth-First Unary Degree Sequence (DFUDS) U of an ordered tree T is defined as follows [4].
If T is a leaf, U is given by ‘()’. Otherwise, if the root of T has w subtrees T1, . . . , Tw in this order,
U is given by the juxtaposition of w + 1 ‘(’s, a ‘)’, and the DFUDS’s of T1, . . . , Tw in this order,
with the first ‘(’ of each Ti being omitted. It is easy to see that the resulting sequence is balanced,
and that it can be interpreted as a preorder-listing of T ’s nodes, where, ignoring the very first ‘(’,
a node with w children is encoded in unary as ‘(w)’ (hence the name DFUDS).

3 The New Preprocessing Scheme

We are now ready to dive into the technical details of our new preprocessing scheme. The basis
will be a new tree, the 2d-Min-Heap, defined as follows. Recall that A[1, n] is the array to be
preprocessed for RMQs. For technical reasons, we define A[0] = −∞ as the “artificial” overall
minimum.
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Fig. 1. Top: The 2d-Min-HeapMA of the input array A. Bottom:MA’s DFUDS U and U ’s excess sequence E. Two
example queries rmqA(i, j) are underlined, including their corresponding queries ±1rmqE(x, y).

Definition 1. The 2d-Min-Heap MA of A is a labeled and ordered tree with vertices v0, . . . , vn,
where vi is labeled with i for all 0 ≤ i ≤ n. For 1 ≤ i ≤ n, the parent node of vi is vj iff j < i,
A[j] < A[i], and A[k] ≥ A[i] for all j < k ≤ i. The order of the children is chosen such that their
labels are increasing from left to right.

Observe that this is a well-defined tree with the root being always labeled as 0, and that a node
vi can be uniquely identified by its label i, which we will do henceforth. See Fig. 1 for an example.

We note the following useful properties of MA.

Lemma 1. Let MA be the 2d-Min-Heap of A.

1. The node labels correspond to the preorder-numbers of MA (counting starts at 0).
2. Let i be a node in MA with children x1, . . . , xk. Then A[i] < A[xj ] for all 1 ≤ j ≤ k.
3. Again, let i be a node in MA with children x1, . . . , xk. Then A[xj ] ≤ A[xj−1] for all 1 < j ≤ k.

Proof. Because the root ofMA is always labeled with 0 and the order of the children is induced by
their labels, property 1 holds. Property 2 follows immediately from Def. 1. For property 3, assume
for the sake of contradiction that A[xj ] > A[xj−1] for two children xj and xj−1 of i. From property
1, we know that i < xj−1 < xj , contradicting the definition of the parent-child-relationship inMA,
which says that A[k] ≥ A[xj ] for all i < k ≤ xj . ut

Properties 2 and 3 of the above lemma explain the choice of the name “2d-Min-Heap,” because
MA exhibits a minimum-property on both the parent-child- and the sibling-sibling-relationship,
i.e., in two dimensions.

The following lemma will be central for our scheme, as it gives the desired connection of 2d-
Min-Heaps and RMQs.

Lemma 2. Let MA be the 2d-Min-Heap of A. For arbitrary nodes i and j, 1 ≤ i < j ≤ n, let `
denote the LCA of i and j in MA (recall that we identify nodes with their labels). Then if ` = i,
rmqA(i, j) is given by i, and otherwise, rmqA(i, j) is given by the child of ` that is on the path
from ` to j.

Proof. For an arbitrary node x inMA, let Tx denote the subtree ofMA that is rooted at x. There
are two cases to prove.
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` = i. This means that j is a descendant of i. Due to property 1 of Lemma 1, this implies that all
nodes i, i+ 1, . . . , j are in Ti, and the recursive application of property 2 implies that A[i] is the
minimum in the query range [i, j].

` 6= i. Let x1, . . . , xk be the children of `. Further, let α and β (1 ≤ α ≤ β ≤ k) be defined such
that Txα contains i, and Txβ contains j. Because ` 6= i and property 1 of Lemma 1, we must
have ` < i; in other words, the LCA is not in the query range. But also due to property 1, every
node in [i, j] is in Txγ for some α ≤ γ ≤ β, and in particular xγ ∈ [i, j] for all α < γ ≤ β. Taking
this together with property 2, we see that {xγ : α < γ ≤ β} are the only candidate positions
for the minimum in A[i, j]. Due to property 3, we see that xβ (the child of ` on the path to j)
is the position where the overall minimum in A[i, j] occurs. ut

Note that (unlike for ±1rmq) this algorithm yields the rightmost minimum in the query range if
this is not unique. However, it can be easily arranged to return the leftmost minimum by adapting
the definition of the 2d-Min-Heap, if this is desired.

To achieve the optimal 2n + o(n) bits for our scheme, we represent the 2d-Min-Heap MA by
its DFUDS U and o(n) structures for rank)-, select)-, and findopen-operations on U (see Sect. 2).
We further need structures for ±1rmq on the excess-sequence E[1, 2n] of U , defined as E[i] =
rank((U, i)−rank)(U, i). This sequence clearly satisfies the property that subsequent elements differ
by exactly 1, and is already encoded in the right form (by means of the DFUDS U) for applying
the ±1rmq-scheme from Sect. 2.2.

The reasons for preferring the DFUDS over the BPS-representation [29] of MA are (1) the
operations needed to perform onMA are particularly easy on DFUDS (see the next corollary), and
(2) we have found a fast and space-efficient algorithm for constructing the DFUDS directly (see
the next section).

Corollary 1. Given the DFUDS U of MA, rmqA(i, j) can be answered in O(1) time by the fol-
lowing sequence of operations (1 ≤ i < j ≤ n).

1. x← select)(U, i+ 1)
2. y ← select)(U, j)
3. w ← ±1rmqE(x, y)
4. if rank)(U,findopen(U,w)) = i then return i

5. else return rank)(U,w)

Proof. Let ` be the true LCA of i and j inMA. Inspecting the details of how LCA-computation in
DFUDS is done [25, Lemma 3.2], we see that after the ±1rmq-call in line 3 of the above algorithm,
w+ 1 contains the starting position in U of the encoding of `’s child that is on the path to j.3 Line
4 checks if ` = i by comparing their preorder-numbers and returns i in that case (case 1 of Lemma
2) — it follows from the description of the parent-operation in the original article on DFUDS [4]
that this is correct. Finally, in line 5, the preorder-number of `’s child that is on the path to j is
computed correctly (case 2 of Lemma 2). ut

We have shown these operations so explicitly in order to emphasize the simplicity of our ap-
proach. Note in particular that not all operations on DFUDS have to be “implemented” for our
RMQ-scheme, and that we find the correct child of the LCA ` directly, without finding ` explicitly.
We encourage the reader to work on the examples in Fig. 1, where the respective RMQs in both A
and E are underlined and labeled with the variables from Cor. 1.
3 In line 1, we correct a minor error in the original article [25] by computing the starting position x slightly differently,

which is necessary in the case that i = lca(i, j) (confirmed by K. Sadakane, personal communication, May 2008).
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4 Construction of 2d-Min-Heaps

We now show how to construct the DFUDS U of MA in linear time and n + o(n) bits of extra
space. We first give a general O(n)-time algorithm that uses O(n log n) bits (Sect. 4.1), and then
show how to reduce its space to n+ o(n) bits, while still having linear running time (Sect. 4.2).

4.1 The General Linear-Time Algorithm

We show how to construct U (the DFUDS ofMA) in linear time. The idea is to scan A from right
to left and build U from right to left, too. Suppose we are currently in step i (n ≥ i ≥ 0), and
A[i + 1, n] have already been scanned. We keep a stack S[1, h] (where S[h] is the top) with the
properties that A[S[h]] ≥ · · · ≥ A[S[1]], and i < S[h] < · · · < S[1] ≤ n. S contains exactly those
indices j ∈ [i + 1, n] for which A[k] ≥ A[j] for all i < k < j. Initially, both S and U are empty.
When in step i, we first write a ‘)’ to the current beginning of U , and then pop all w indices from
S for which the corresponding entry in A is strictly greater than A[i]. To reflect this change in U ,
we write w opening parentheses ‘(’ to the current beginning of U . Finally, we push i on S and move
to the next (i.e. preceding) position i − 1. It is easy to see that these changes on S maintain the
properties of the stack. If i = 0, we write an initial ‘(’ to U and stop the algorithm.

The correctness of this algorithm follows from the fact that due to the definition of MA, the
degree of node i is given by the number w of array-indices to the right of i which have A[i] as their
closest smaller value (properties 2 and 3 of Lemma 1). Thus, in U node i is encoded as ‘(w)’, which
is exactly what we do. Because each index is pushed and popped exactly once on/from S, the linear
running time follows.

4.2 O(n)-bit Solution

The only drawback of the above algorithm is that stack S requires O(n log n) bits in the worst
case. We solve this problem by representing S as a bit-vector S′[1, n]. S′[i] is 1 if i is on S, and 0
otherwise. In order to maintain constant time access to S, we use a standard blocking-technique
as follows. We logically group s = d logn

2 e consecutive elements of S′ into blocks B0, . . . , Bbn−1
s
c.

Further, s′ = s2 elements are grouped into super-blocks B′0, . . . , B
′
bn−1
s′ c

.

For each such (super-)block B that contains at least one 1, in a new tableM (orM ′, respectively)
at position x we store the block number of the leftmost (super-)block to the right of B that contains
a 1, in M only relative to the beginning of the super-block. These tables need O(ns log(s′/s)) =
O(n log logn

logn ) and O( ns′ log(n/s)) = O( n
logn) bits of space, respectively. Further, for all possible bit-

vectors of length s we maintain a table P that stores the position of the leftmost 1 in that vector.
This table needs O(2s · log s) = O(

√
n log log n) = o(n) bits. Next, we show how to use these tables

for constant-time access to S, and how to keep M and M ′ up to date.
When entering step i of the algorithm, we known that S′[i+ 1] = 1, because position i+ 1 has

been pushed on S as the last operation of the previous step. Thus, the top of S is given by i + 1.
For finding the leftmost 1 in S′ to the right of j > i (position j has just been popped from S),
we first check if j’s block Bx, x = b j−1

s c, contains a 1, and if so, find this leftmost 1 by consulting
P . If Bx does not contain a 1, we jump to the next block By containing a 1 by first jumping to
y = x+M [x], and if this block does not contain a 1, by further jumping to y = M ′[b j−1

s′ c]. In block
y, we can again use P to find the leftmost 1. Thus, we can find the new top of S in constant time.

In order to keep M up to date, we need to handle the operations where (1) elements are pushed
on S (i.e., a 0 is changed to a 1 in S′), and (2) elements are popped from S (a 1 changed to a 0).
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Because in step i only i is pushed on S, for operation (1) we just need to store the block number
y of the former top in M [x] (x = b i−1

s c), if this is in a different block (i.e., if x 6= y). Changes to
M ′ are similar. For operation (2), nothing has to be done at all, because even if the popped index
was the last 1 in its (super-)block, we know that all (super-)blocks to the left of it do not contain
a 1, so no values in M and M ′ have to be changed. Note that this only works because elements to
the right of i will never be pushed again onto S. This completes the description of the n+ o(n)-bit
construction algorithm.

5 Lowering the Second-Order-Term

Until now, the second-order-term is dominated by the O(n log2 logn
logn ) bits from Sadakane’s prepro-

cessing scheme for ±1rmq (Sect. 2.2), while all other terms (for rank, select and findopen) are
O(n log logn

logn ). We show in this section a simple way to lower the space for ±1rmq to O(n log logn
logn ),

thereby completing the proof of Thm. 1.
As in the original algorithm [35], we divide the input array E into n′ = bn−1

s c blocks of size
s = d logn

2 e. Queries are decomposed into at most three non-overlapping sub-queries, where the first
and the last sub-queries are inside of the blocks of size s, and the middle one exactly spans over
blocks. The two queries inside of the blocks are answered by table lookups using O(

√
n log2 n) bits,

as in the original algorithm.
For the queries spanning exactly over blocks of size s, we proceed as follows. Define a new

array E′[0, n′] such that E′[i] holds the minimum of E’s i’th block. E′ is represented only implicitly
by an array E′′[0, n′], where E′′[i] holds the position of the minimum in the i’th block, relative
to the beginning of that block. Then E′[i] = is + E[E′′[i]]. Because E′′ stores n/ log n numbers
from the range [1, s], the size for storing E′ is thus O(n log logn

logn ) bits. Note that unlike E, E′ does
not necessarily fulfill the ±1-property. E′ is now preprocessed for constant-time RMQs with the
systematic scheme of Fischer and Heun [13], using 2n′ + o(n′) = O( n

logn) bits of space. Thus, by
querying rmqE′(i, j) for 1 ≤ i ≤ j ≤ n′, we can also find the minima for the sub-queries spanning
exactly over the blocks in E.

Two comments are in order at this place. First, the used RMQ-scheme [13] does allow the input
array to be represented implicitly, as in our case. And second, it does not use Sadakane’s solution
for ±1rmq, so there are no circular dependencies.

As a corollary, this approach also lowers the space for LCA-computation in BPS [35] and
DFUDS [25] from O(n log2 logn

logn ) to O(n log logn
logn ), as these are based on ±1rmq:

Corollary 2. Given the BPS or DFUDS of an ordered tree T , there is a data structure of size
O(n log logn

logn ) bits that allows to answer LCA-queries in T in constant time.

6 Application in Document Retrieval Systems

We now sketch a concrete example of where Thm. 1 lowers the construction space of a different
data structure. This section is meant to show that there are indeed applications where the memory
bottleneck is the construction space for RMQs. We consider the following problem:

Problem 2 (Document Listing Problem [30]).

Given: a collection of k text documents D = {D1, . . . , Dk} of total length n.
Compute: an index that, given a search pattern P of length m, returns all d documents from D

that contain P , in time proportional to m and d (in contrast to all occurrences of P in D).
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Sadakane [36, Sect. 4] gives a succinct index for this problem. It uses three parts, for convenience
listed here together with their final size:

– Compressed suffix array [34] A of the concatenation of all k documents, |A| = 1
εH0n + O(n)

bits.
– Array of document identifiers D, defined by D[i] = j iff the A[i]’th suffix “belongs to” document
j. Its size is O(k log n

k ) bits
– Range minimum queries on an array C, |RMQ| = 4n+ o(n) bits. Here, C stores positions in A

of nearest previous occurrences of indexed positions from the same document, C[i] = max{j <
i : D[j] = D[i]}. In the query algorithm, only the positions of the minima matter; hence, this is
a non-systematic setting.

Apart from halving the space for RMQ from 4n to 2n bits, our new scheme also lowers the
peak space consumption of Sadakane’s index for the Document Listing Problem. Let us consider
the construction time and space for each part in turn:

– Array A can be built in O(n) time and O(n) bits (constant alphabet), or O(n log log |Σ|) time
using O(n log |Σ|) bits (arbitrary alphabet Σ) of space [23].

– Array D is actually implemented as a fully indexable dictionary [33] called D′, and can certainly
be built in linear time using O(n) bits working space, as we can always couple the block-
encodings [33] with the o(n)-bit structures for uncompressed solutions for rank and select [28].

– As already mentioned before, for a fast construction of Sadakane’s scheme for O(1)-RMQs on
C, we would have needed Θ(n log n) bits. Our new method lowers this to O(n) bits construction
space. Note that array C needs never be stored plainly during the construction: because C is
scanned only once when building the DFUDS (Sect. 4) and is thus accessed only sequentially,
we only need to store the positions in A of the last seen document identifier for each of the k
documents. This can be done using a plain array, so |C| = O(k log n) bits.

In summary, we get:

Theorem 2. The construction space for Sadakane’s Index for Document Listing [36] is lowered
from O(n log n) bits to O(n+k log n) bits (constant alphabet) or O(n log |Σ|+k log n) bits (arbitrary
alphabet Σ) with our scheme for RMQs from Thm. 1, while not increasing the construction time.

This is especially interesting if k, the number of documents, is not too large, k = O(n log |Σ|
logn ).

7 Concluding Remarks

We have given the first optimal preprocessing scheme for O(1)-RMQs under the important as-
sumption that the input array is not available after preprocessing. To the expert, it might come
as a surprise that our algorithm is not based on the Cartesian Tree, a concept that has proved to
be very successful in former schemes. Instead, we have introduced a new tree, the 2d-Min-Heap,
which seems to be better suited for our task.4 We hope to have thereby introduced a new versatile
data structure to the algorithms community. And indeed, we are already aware of the fact that the

4 The Cartesian Tree and the 2d-Min-Heap are certainly related, as they are both obtained from the array, and it
would certainly be possible to derive the 2d-Min-Heap (or a related structure obtained from the natural bijection
between binary and ordered rooted trees) from the Cartesian Tree, and then convert it to the BPS/DFUDS. But
see the second point in Sect. 1.2 why this is not a good idea.
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2d-Min-Heap, made public via a preprint of this article [12], is pivotal to a new data structure for
succinct trees [38].

We leave it as an open research problem whether the 3n+o(n)-bit construction space be lowered
to an optimal 2n+ o(n)-bit “in-place” construction algorithm. (A simple example shows that it is
not possible to use the leading n bits of the DFUDS for the stack.)
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11. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro. Compressed representations of sequences and full-text

indexes. ACM Transactions on Algorithms, 3(2):Article No. 20, 2007.
12. J. Fischer. Optimal succinctness for range minimum queries. CoRR, abs/0812.2775, 2008.
13. J. Fischer and V. Heun. A new succinct representation of RMQ-information and improvements in the enhanced

suffix array. In Proc. ESCAPE, volume 4614 of LNCS, pages 459–470. Springer, 2007.
14. J. Fischer, V. Heun, and H. M. Stühler. Practical entropy bounded schemes for O(1)-range minimum queries. In

Proc. DCC, pages 272–281. IEEE Press, 2008.
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