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To solve logistics problems, it is
necessary to know the travel times
between all locations.
In the time-independent scenario, it is
possible to compute a 10 000× 10 000
table in 10 seconds.
But there is no efficient algorithm when
travel times depend on the departure
time.
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Edge weights are travel time functions (TTFs)
{point in time 7→ travel time period}
piecewise linear
FIFO-property – waiting does not help

Kinds of queries to a table cell
Time query:

Earliest arrival depending on a given departure time
Profile query:

travel time profile:
{departure time 7→ travel time period}



Operations on Travel Time Functions
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We need three operations
Evaluation: f (τ) “O(1)” Time
Merging: min(f ,g) O(|f |+ |g|) Time
Chaining: f ∗ g (f “after” g) O(|f |+ |g|) Time

Note: min(f ,g) and f ∗ g have O(|f |+ |g|) points each.
⇒ Increase of complexity

g f

f * g

τ

Profile Dijkstra algorithm
implemented using merging and chaining on TTFs
label-correcting
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Time-dependent Profile Dijkstra
SSSP computation not feasible on large graphs.

Time-dependent Time Dijkstra for set of departure times
Provides no approximation guarantee.
Requires to much space as times are stored redundantly.

Point-to-point speed-up techniques:
Faster than Dijkstra.
Still require quadratic time and space to compute table.

S

T
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Static Many-to-Many Algorithm
use bidirected and non goal-directed speedup technique
for each t ∈ T , perform backward search, store search space
entries (t ,u,

←−
δ t (u))

arrange search spaces: create a bucket for each u
for each s ∈ S, perform forward search, at each node u,
scan all entries (t ,u,

←−
δ t (u)) and compute

−→
δ s(u) +

←−
δ t (u),

minimum over all candidate nodes u is shortest paths distance.



Problems in Time-Dependent Scenario
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Cheap operations in the static scenario (add, min on integers) are
mapped to expensive operations on travel time functions (TTF).

⇒ use a more sophisticated approach to skip a lot of these
operations

The computation of table of TTFs for all S × T require inherently
Θ(|S| · |T |) time and space.

⇒ Redefine the problem to the implementation of a query interface:
time query: (s, t , τ) 7→ earliest arrival time
profile query: (s, t) 7→ travel time profile



Our Contributions
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Straightforward:
Usage of a bidirected and non-goaldirected time-dependent
speedup technique: Time-dependent Contraction Hierarchies (TCH)
[ALENEX’09, SEA’10].
Compute forward and backward profile search spaces.
Intersection of search spaces results in sought after travel times.

More complicated:
Compute additional information to speedup intersection of search
spaces.
Reduction of search spaces to relevant nodes.
Usage of approximate TTFs together with approximation
guarantees.



Intersect Algorithm
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Precompute and store forward/backward search spaces Fs / Bt
⇒ Θ(|S|+ |T )

Answer by intersecting Fs and Bt .
Use min/max values and lower/upper bounds for pruning.

Fs

(16, f16)

(11, f11)

(10, f10)

(7, f7)

Bt

(15,g15)

(12,g12)

(11,g11)

(10,g10)
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Very cheap operations on minimum/maximum of TTFs
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Very cheap operations on minimum/maximum of TTFs

min

max
of
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Very cheap operations on minimum/maximum of TTFs

min

max
of
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Cheap operations on lower/upper bounds of TTFs
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Cheap operations on lower/upper bounds of TTFs

min

max
of



Pruning

10 Robert Geisberger and Peter Sanders:
Engineering Time-Dependent Many-to-Many Computation

Faculty for Informatics
Institute for Theoretical Informatics, Algorithmics II

Cheap operations on lower/upper bounds of TTFs

min

max
of
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Expensive operations on exact TTFs
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Expensive operations on exact TTFs

travel time profile



5 Algorithms
Enhancing Intersect

11 Robert Geisberger and Peter Sanders:
Engineering Time-Dependent Many-to-Many Computation

Faculty for Informatics
Institute for Theoretical Informatics, Algorithmics II

INTERSECT

MINCANDIDATE computes upper bound using
cmin(s, t) := argminu

{
min gu + min fu

∣∣ (u, fu) ∈ Fs, (u,gu) ∈ Bt
}

⇒ especially good for pruning a time query
RELEVANTCANDIDATE computes the set of candidates where the
exact TTF operations are executed.
⇒ Precomputation only works on lower/upper bounds of TTFs.
⇒ Drop search space entry of a candidate that is in no set.
OPTCANDIDATE computes for each departure time an optimal
candidate.
⇒ Precomputation works on exact TTFs but does not store them.
TABLE uses INTERSECT to computes and stores a whole table.



Error-inducing Approximation
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Benefits of approximations:
require less memory (fewer points)
are faster to process

We can approximate the TTFs
on the edges of the TCH
stored in the forward/backward search
stored in the table

Definition
An ε-approximation is a TTF f l with (1− ε)f ≤ f l ≤ (1 + ε)f .



Approximation Guarantees
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Problem:
How to compute an approximation guarantee for a chain of
ε-approximations?

Errors stack:
Let f l be an εf -approximation and gl be an εg-approximation:

f l ∗ gl : τ 7→ f l(gl(τ) + τ) + gl(τ)

⇒ Error at evaluation of gl is in input of f l.

Solution: Max. slope α of f : ∀τ′ > τ : f (τ′)− f (τ) ≤ α(τ′ − τ).
⇒ f l ∗ gl is a max

{
εf , εg

(
1 + (1 + εf )α

)}
-approximation of f ∗ g.



Experiments
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Graph:
Real-world time-dependent road network of Germany
4.7 million nodes, 10.8 million edges
Midweek (Tue-Thu) traffic with 8% time dependent edges

εe [%] - 0.1 1 10
TCH [MiB] 4 497 1 324 1 002 551

Hardware/Software:
2× Intel Xeon X5550 processors (Quad-Core) @ 2.67 GHz
48 GiB of RAM
GCC 4.3.2



Intersect
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preprocessing search query
size εe εs εp search RAM space time profile

[%] [%] [%] [s] [GiB] [MiB] [µs] [µs]
100 - - 0.1 7.5 6.5 1 639 5.17 1 329
500 - - 0.1 33.8 13.1 8 228 7.43 1 494

1 000 - - 0.1 68.0 21.4 16 454 7.97 1 412
1 000 - - - 53.1 20.8 15 897 7.99 7 633
1 000 1 - - 1.5 1.6 349 6.13 108.2
1 000 - 1 - 64.9 5.3 72 6.46 18.4
1 000 0.1 0.1 - 4.7 1.7 189 6.29 52.8
1 000 1 1 - 1.8 1.3 65 5.48 15.1
1 000 10 10 - 0.7 0.9 47 6.34 22.0

10 000 1 1 - 18.2 2.0 650 6.80 16.3

TCH 720 µs time query
32.75 ms exact profile query
2.94 ms approximate profile query (εe = 1%)



MinCandidate
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εe preprocessing search query
size εs srch link RAM cmin space time profile

[%] [s] [s] [GiB] [MiB] [MiB] [µs] [µs]
100 - 6.0 0.0 6.5 1 1 583 3.11 6 941

1 000 - 53.1 0.4 20.8 7 15 897 4.97 7 087
1 000 1 1.8 0.4 1.3 7 65 4.09 13.8

10 000 1 18.2 49.0 2.8 649 650 4.94 14.4



RelevantCandidate
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εe preprocessing search query
size εs εp srch link RAM crel space time profile

[%] [%] [s] [s] [GiB] [MiB] [MiB] [µs] [µs]
100 - 0.1 7.5 0.3 6.5 1 246 0.72 1 202

1 000 - 0.1 68.0 59.7 35.6 32 3 565 1.29 1 412
1 000 - 1 67.4 14.2 23.9 34 4 195 1.36 2 032
1 000 - - 53.1 6.1 20.9 49 9 343 2.00 7 651
1 000 1 - 1.8 5.0 1.4 46 31 1.02 10.5

10 000 1 - 18.2 651.3 9.3 4 605 415 1.71 11.7



OptCandidate
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εe preprocessing search query
size εs εp srch link RAM copt space time profile

[%] [%] [s] [s] [GiB] [MiB] [MiB] [µs] [µs]
100 - 0.1 7.5 2.1 6.5 1 241 0.49 1 168
500 - 0.1 33.8 53.7 13.1 10 1 608 0.73 1 391

1 000 - 0.1 68.0 213.8 21.4 39 3 489 0.81 1 332
1 000 0.1 - 4.7 11.5 1.8 39 42 0.54 9.8
1 000 1 - 1.8 6.3 1.4 38 15 0.48 3.0
1 000 10 - 0.7 7.6 1.0 62 19 0.49 5.7

10 000 1 - 18.2 788.3 7.7 3 775 226 0.90 3.5



Table
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preprocessing table query
size εe εs εp εt srch link RAM [MiB] time

[%] [%] [%] [%] [s] [s] [GiB] [µs]
100 - - 0.1 - 7.5 1.9 7.6 1 086 0.25
500 - - 0.1 - 33.8 58.5 45.7 27 697 0.42
500 - - - - 26.6 266.7 45.5 27 697 0.42
500 1 - - - 0.8 4.8 1.9 427 0.26

1 000 1 - - - 1.5 19.0 3.6 1 689 0.32
1 000 1 1 - - 1.8 6.3 1.6 180 0.25
1 000 - - 0.1 1 68.0 298.2 21.5 110 0.25
1 000 0.1 0.1 - 0.1 4.7 12.3 2.1 270 0.26
1 000 1 1 - 1 1.8 6.7 1.5 94 0.23
1 000 10 10 - 10 0.7 7.1 1 76 0.22

10 000 1 1 - 1 18.2 815.2 17.8 9 342 0.38
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εe = 1%
εs = 1%

0
m
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preproc. time preproc. space time query profile query

size 1000
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εe [%] 1 - 0.1 1 10 - 0.1 1 10
εs [%] - 1 0.1 1 10 - 0.1 1 10
εt [%] - - - - - 1 0.1 1 10

avg. [%] 0.08 0.12 0.01 0.18 2.1 0.17 0.02 0.30 3.1
max. [%] 0.89 0.98 0.17 1.75 16.9 1.00 0.27 2.66 24.9
theo. [%] 2.07 1.44 0.35 3.55 41.0 1.00 0.45 4.58 55.1
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Computation of search spaces gives linear algorithm INTERSECT.
Computation of data additional decreases query times and can also
decrease space.
Approximate TTFs significantly reduce time and space.
Guaranteed error bounds based on max. slope.
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Thanks for your attention.

Any question?
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