
Engineering Time-dependent One-To-All

Computation

Robert Geisberger
Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

geisberger@kit.edu

October 5, 2010

Abstract

Very recently a new algorithm to the nonnegative single-source shortest
path problem on road networks has been discovered. It is very cache-
efficient, but only on static road networks. We show how to augment it
to the time-dependent scenario. The advantage if the new approach is
that it settles nodes, even for a profile query, by scanning all downward
edges. We improve the scanning of the downward edges with techniques
developed for time-dependent many-to-many computations.

1 Introduction

The new algorithm for the nonnegative single-source shortest path problem on
road networks [5] uses contraction hierarchies [8]. First, it performs a forward
upward search, and then it processes all nodes in descending order of importance.
The algorithm is so efficient because it can order the edges very cache-efficient
and can be parallelized. We consider the time-dependent scenario, where the
travel time depends on the departure time, the edge weights are complex travel
time functions (TTFs). Such a TTF maps a departure time to the travel time.
We want to solve the problem of computing the travel time profiles from one
source node to all other nodes in the graph. A travel time profile is a TTF
that maps the departure time at the source to the earliest arrival time at the
target node. Significantly the most work on solving our problem is to process
the TTFs, the traversal of the graph takes negligible time. So the cache-efficient
order of the edges brings is no longer a significant speed-up. But the way the
edges are processed allows to prune a lot of expensive TTF operations by using
approximate TTFs.

1.1 Related Work

Many new algorithms for the time-dependent point-to-point shortest path prob-
lem have been developed recently. We refer to [6] for an overview. Also, a
time-dependent version of contraction hierarchies (TCH) [1, 2] exists, and we
use it for our new algorithm. It was augmented to compute travel time tables
by [7].

1

2 Preliminaries

2.1 Time-Dependent Road Networks

Let G = (V,E) be a directed graph representing a road network.1 Each edge
(u, v) ∈ E has a function f : R→ R≥0 assigned as edge weight. This function f
specifies the time f(τ) needed to reach v from u via edge (u, v) when starting at
departure time τ . So the edge weights are called travel time functions (TTFs).

In road networks we usually do not arrive earlier when we start later. So
all TTFs f fulfill the FIFO-property: ∀τ ′ > τ : τ ′ + f(τ ′) ≥ τ + f(τ). In this
work all TTFs are sequences of points representing piecewise linear functions.2

With |f | we denote the complexity (i.e., the number of points) of f . We define
f ∼ g :⇔ ∀τ : f(τ) ∼ g(τ) for ∼∈ {<,>,≤,≥}.

For TTFs we need the following three operations:

• Evaluation. Given a TTF f and a departure time τ we want to compute
f(τ). Using a bucket structure this runs in constant average time.

• Linking. Given two adjacent edges (u, v), (v, w) with TTFs f, g we want
to compute the TTF of the whole path 〈u→f v →g w〉. This is the TTF
g ∗f : τ 7→ g(f(τ)+τ)+f(τ) (meaning g “after” f). It can be computed in
O(|f |+ |g|) time and |g ∗ f | ∈ O(|f |+ |g|) holds. Linking is an associative
operation, i.e., f ∗ (g ∗ h) = (f ∗ g) ∗ h for TTFs f, g, h.

• Minimum. Given two parallel edges e, e′ from u to v with TTFs f, f ′, we
want to merge these edges into one while preserving all shortest paths.
The resulting single edge e′′ from u to v gets the TTF min(f, f ′) defined
by τ 7→ min{f(τ), f ′(τ)}. It can be computed in O(|f |+ |f ′|) time and
|min(f, f ′)| ∈ O(|f |+ |f ′|) holds.

In a time-dependent road network, shortest paths depend on the departure
time. For given start node s and destination node t there might be different
shortest paths for different departure times. The minimal travel times from s to
t for all departure times τ are called the travel time profile from s to t and are
represented by a TTF.

Approximations. Give a TTF f . A lower bound is a TTF f↓ with f↓ ≤ f
and a lower ε-bound if further (1 − ε)f ≤ f↓. An upper bound is a TTF f↑

with f ≤ f↑ and an upper ε-bound if further f↑ ≤ (1 + ε)f . An ε-approximation
is a TTF fl with (1− ε)f ≤ fl ≤ (1 + ε)f . Approximate TTFs usually have
fewer points and are therefore faster to process and require less memory. To
compute ε-bounds and ε-approximations from an exact TTF f we use the efficient
geometric algorithm described by Imai and Iri [9]. It yields a TTF with minimal
number of points for ε in time O(|f |).

2.2 Time-Dependent Profile Dijkstra

To compute the travel time profile from a source node s to all other nodes,
we can use a label correcting modification of Dijkstra’s algorithm [10]. The
modifications are as follows:

1Nodes represent junctions and edges represent road segments.
2 Here, all TTFs have period Π = 24h. However, using non-periodic TTFs makes no real

difference. Of course, covering more than 24h will increase the memory usage.

2

• Node labels. Each node v has a tentative TTF from s to v.

• Priority queue (PQ). The keys used are the global minima of the labels.
Reinserts into the PQ are possible and happen (label correcting).

• Edge Relaxation. Consider the relaxation of an edge (u, v) with TTF fuv.
Let the label of node u be the TTF fu. The label fv of the node v is
updated by computing the minimum TTF of fv and fuv ∗ fu.

2.3 Time-Dependent Contraction Hierarchies

Hierarchies. In a time-dependent contraction hierarchy [1] all nodes of G are
ordered by increasing ‘importance’ [8]. In order to simplify matters, we identify
each node with its importance level, i.e. V = 1..n.

Now, the TCH is constructed by contracting the nodes in the above order.
Contracting a node v means removing v from the graph without changing shortest
path distances between the remaining (more important) nodes. This way we
construct the next higher level of the hierarchy from the current one. A trivial
way to contract a node v is to introduce a shortcut edge (u,w) with TTF g ∗ f
for every path u →f v →g w with v < u,w. But in order to keep the graph
sparse, we can try to avoid a shortcut (u,w) by finding a witness – a travel
time profile W from u to v fulfilling W ≤ g ∗ f . Such a witness proves that the
shortcut is never needed. The node ordering and the construction of the TCH
are performed offline in a precomputation and are only required once per graph
independent of S and T .

Queries. In the point-to-point scenario, we compute the travel time profile be-
tween source s and target t by performing a bidirectional time-dependent profile
search in the TCH. The special restriction on a TCH search is that it only goes up-
ward, i.e. we only relax edges where the other node is more important. This prop-
erty is reflected in the upward graph G↑:= (V,E↑) with E↑:= {(u, v) ∈ E | u < v}
and, the downward graph G↓:= (V,E↓) with E↓:= {(u, v) ∈ E | u > v}. Both
search scopes meet at candidate nodes u giving lower/upper bounds on the travel
time between source and target, allowing us to prune the following profile search.
The bidirectional profile search computes forward TTF fu and backward TTF
gu representing a TTF gu ∗ fu from source to target (though not necessarily an
optimal one). The travel time profile is min {gu ∗ fu | u candidate}.

3 Our Algorithm

Given a source node s, we want to compute for each node u in the graph the
travel time profile δ(u) from s to u. We initialize δ(s) := (τ 7→ 0) and all other
TTFs δ(u) = (τ 7→ ∞). Then, we perform a forward search from s in G↑ and
update the tentative travel time profile δ(u) for all nodes visited by this search.
Now, we process all nodes in the graph by descending importance level and
compute

δ(u) := min
(
δ(u),min {fv ∗ δ(v) | v →fv u ∈ E↓}

)
(1)

So essentially, we scan through all incoming downward edges v →f u of u,
link them to δ(v) and build the minimum. Doing this naively is very costly, as
the travel time functions are complex. As not all of the nodes v contribute to the

3

minimum in the end, we improve the performance by using pruning techniques
developed for the time-dependent travel time table computation. Assume that
we have lower/upper ε-bounds f↓v / f↑v for fv and δ(v)↓ / δ(v)↑ for δ(v). Then
we can use Algorithm 1 to accelerate the computation of δ(u).

Algorithm 1: BuildMinimum(u)

1 δ := minv→fvu∈E↓ {max fv + max δ(v)}; // upper bound based on

maxima

2 (v → ·) := argminv→fvu∈E↓
{min f + min δ(v)}; // minimum node

3 δ↑ := f↑v ∗ δ(v)↑; // upper bound based on approximate TTFs

4 δ := min(δ,max δ↑); // tighten upper bound

5 foreach v →fv u ∈ E↓ do // loop over all downward edges

6 if min fv + min δ(v)↓ ≤ δ then // prune using minima

7 δ↑ := min
(
δ↑, f↑v ∗ δ(v)↑

)
; // update upper bound

8 δ(u) := min
(
δ(u), fv ∗ δ(v)

)
; // tentative travel time profile

9 foreach v →fv u ∈ E↓ do // loop over all downward edges

10 if ¬(f↓v ∗ δ(u)↓ > δ↑) then // prune using lower bounds

11 δ(u) := min (δ(u), fv ∗ δ(v)); // update travel time profile

We pass three times through the incoming downward edges v →fv u ∈ E↓.

1. In Line 1 we compute an upper bound δ based on the maxima of fv and
δ(v). Also, in Line 2 we compute the edge with minimum sum of the
minima of fv and δ(v). This edge is usually very important and a good
starting point to obtain an tight lower bound.

2. In Lines 3–7 we compute an upper bound δ↑ based on the upper ε-bounds.
This bound is tighter than the one based on the maxima.

3. In Lines 8–11 we compute the travel time profile and use the upper bound
δ↑ for pruning. So we only execute the very expensive link and minimum
operations on fv and δ(v) at Line 11.

In comparison, a Profile Dijkstra would update δ(u) gradually when he
processes node v, and thus cannot pass through all the downward edges several
times to compute the intermediate upper bounds δ and δ↑.

4 Improvements

Some of the improvements from [5] can be applied, especially the reordering of
nodes, and the parallel processing. However, we did not adopt SIMD instructions
or GPU, as we now operate on complex TTFs.

5 Core-based Computation

An interesting observation is that [5] cannot be used like Dijkstra’s algorithm to
compute the distances to close-by nodes, as the nodes are no longer processed in
order of increasing distance. However, we can compute the distances only for a
core of the contraction hierarchy, that is a number of k most important nodes.

4

algorithm threads prune ε [%] query time [s]
Dijkstra - - 116

TCH 1 - 105
TCH 1 10 108
TCH 1 1 48.2
TCH 1 0.1 32.6
TCH 1 0.01 35.6
TCH 2 0.1 16.0
TCH 4 0.1 8.8
TCH 6 0.1 6.5
TCH 8 0.1 5.7

Table 1: Performance.

Computing only the distances to all core nodes is faster, especially in the
time-dependent scenario. Also, it takes much less space, as the TTFs usually
contain thousands of points.

An application of the core-based computation is the computation of arc flags
[5, §7.2], but now only for a core. In [3] it is observed that this brings significant
speed-ups for the static scenario. However, in the time-dependent scenario,
upper/lower bounds used to compute exact arc flags, as using exact TTFs is
too time-consuming [4]. These arc flags are very weak, and simple heuristic
computation of the arc flags using time-sampling significantly accelerate the
query, but provide no approximation guarantee [4]. So we expect that when we
are able to compute exact arc flags with exact TTFs, this provides both a fast
and exact query.

6 Experiments

Input. We use a real-world time-dependent road network of Germany with 4.7
million nodes and 10.8 million edges, provided by PTV AG for scientific use.
It reflects the midweek (Tuesday till Thursday) traffic collected from historical
data, i.e., a high traffic scenario with about 8 % time dependent edges.

Hardware/Software. The experiments were done on a machine3 with two
Intel Xeon E5345 processors (Quad-Core) clocked at 2.33 GHz with 16 GiB of
RAM and 2x8 MiB of Cache running SUSE Linux 11.1. We used the GCC 4.3.2
compiler with optimization level 3.

Basic setup. We use a preprocessed TCH as input file [1]. We use a core-size
of 10 000, and select 100 core nodes uniformly at random as source of our query.

The experimental results are presented in Table 1. The number of threads
corresponds to the number used to answer a single query.

3The machine used in [2, 7] is currently repaired, we plan to publish results for this machine
later.

5

7 Conclusion

We presented an efficient algorithm for time-dependent one-to-all computation.
By applying it to a core, it can be used to accelerate precomputation of speed-up
techniques.

References

[1] Gernot Veit Batz, Daniel Delling, Peter Sanders, and Christian Vetter. Time-
Dependent Contraction Hierarchies. In Proceedings of the 11th Workshop
on Algorithm Engineering and Experiments (ALENEX’09), pages 97–105.
SIAM, April 2009.

[2] Gernot Veit Batz, Robert Geisberger, Sabine Neubauer, and Peter Sanders.
Time-Dependent Contraction Hierarchies and Approximation. In Paola
Festa, editor, Proceedings of the 9th International Symposium on Experi-
mental Algorithms (SEA’10), volume 6049 of Lecture Notes in Computer
Science, pages 166–177. Springer, May 2010.

[3] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker,
Dominik Schultes, and Dorothea Wagner. Combining Hierarchical and
Goal-Directed Speed-Up Techniques for Dijkstra’s Algorithm. ACM Journal
of Experimental Algorithmics, 15(2.3):1–31, January 2010. Special Section
devoted to WEA’08.

[4] Daniel Delling. Time-Dependent SHARC-Routing. Algorithmica, July 2009.
Special Issue: European Symposium on Algorithms 2008.

[5] Daniel Delling, Andrew V. Goldberg, Andreas Nowatzyk, and Renato F.
Werneck. PHAST: Hardware-Accelerated Shortest Path Trees. Technical
Report MSR-TR-2010-125, Microsoft Research, 2010.

[6] Daniel Delling and Dorothea Wagner. Time-Dependent Route Planning.
In Ravindra K. Ahuja, Rolf H. Möhring, and Christos Zaroliagis, editors,
Robust and Online Large-Scale Optimization, volume 5868 of Lecture Notes
in Computer Science, pages 207–230. Springer, 2009.

[7] Robert Geisberger and Peter Sanders. Engineering Time-Dependent Many-
to-Many Shortest Paths Computation. In Proceedings of the 10th Workshop
on Algorithmic Approaches for Transportation Modeling, Optimization, and
Systems (ATMOS’10), OpenAccess Series in Informatics (OASIcs), 2010.

[8] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling.
Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road
Networks. In Catherine C. McGeoch, editor, Proceedings of the 7th Workshop
on Experimental Algorithms (WEA’08), volume 5038 of Lecture Notes in
Computer Science, pages 319–333. Springer, June 2008.

[9] H. Imai and Masao Iri. An optimal algorithm for approximating a piecewise
linear function. Journal of Information Processing, 9(3):159–162, 1987.

6

[10] Ariel Orda and Raphael Rom. Shortest-Path and Minimum Delay Algo-
rithms in Networks with Time-Dependent Edge-Length. Journal of the
ACM, 37(3):607–625, 1990.

7

	1 Introduction
	1.1 Related Work

	2 Preliminaries
	2.1 Time-Dependent Road Networks
	2.2 Time-Dependent Profile Dijkstra
	2.3 Time-Dependent Contraction Hierarchies

	3 Our Algorithm
	4 Improvements
	5 Core-based Computation
	6 Experiments
	7 Conclusion

