

Time-Dependent Route Planning with Generalized Objective Functions

ESA 2012 - Gernot Veit Batz and Peter Sanders - {batz,sanders}@kit.edu

Institute of Theoretical Informatics, Algorithmics II

Time-Dependent Route Planning Motivation

From Karlsruhe Main Station to Karlsruhe Computer Science Building

At 3:00 at night:

- Empty streets
- Through the city center.

Map (c) www.openstreetmap.org and contributors, licence CC-BY-SA (www.creativecommons.org)

Time-Dependent Route Planning Motivation

From Karlsruhe Main Station to Karlsruhe Computer Science Building

At 8:00 in the morning:

- Rush hour
- Avoid crowded junctions.

Map (c) www.openstreetmap.org and contributors, licence CC-BY-SA (www.creativecommons.org)

State of the Art: Only Travel Times

Edge weights are travel time functions

- *f*: point in time $\mapsto \Delta$ travel time
- piecewise linear
- FIFO-property waiting not beneficial

Earliest arrival query:

- minimum travel time route...
- ...for given departure time au_0
- $(f_4 + id) \circ \cdots \circ (f_1 + id)(\tau_0) +$ is minimal amongst all routes

State of the Art: Only Travel Times

Edge weights are travel time functions

- *f*: point in time $\mapsto \Delta$ travel time
- piecewise linear
- FIFO-property waiting not beneficial

Earliest arrival query:

- minimum travel time route...
- ...for given departure time au_0
- $(f_4 + id) \circ \cdots \circ (f_1 + id)(\tau_0) +$ is minimal amongst all routes

State of the Art: Only Travel Times

Edge weights are travel time functions

- *f*: point in time $\mapsto \Delta$ travel time
- piecewise linear
- FIFO-property waiting not beneficial

Earliest arrival query:

- minimum travel time route...
- ...for given departure time au_0
- $(f_4 + id) \circ \cdots \circ (f_1 + id)(\tau_0) +$ is minimal amongst all routes

State of the Art: Only Travel Times

Edge weights are travel time functions

- *f*: point in time $\mapsto \Delta$ travel time
- piecewise linear
- FIFO-property waiting not beneficial

Earliest arrival query:

- minimum travel time route...
- ...for given departure time au_0
- (f₄ + id) ∘ · · · ∘ (f₁ + id)(τ₀) + is minimal amongst all routes

State of the Art: Only Travel Times

Selected Results:

Earliest Arrival Queries

Algorithm	Space Ovh. [B/n]	Speedup of Dijkstra	Maximum Error [%]	Citation
тсн	899	1428	_	[Batz et al. 2009]
ATCH	144	857	_	[Batz et al. 2010]
ATCH	23	685	_	[Batz et al. 2010]
SHARC	155	60	_	[Delling et al. 2008]
SHARC	68	1177	0.61	[Brunel et al. 2010]
SHARC	14	491	0.61	[Brunel et al. 2010]

4 G.V. Batz and P. Sanders: Time-Dependent Route Planning with Generalized Objective Functions

Optimizing Only Travel Time...

Highly practical aspects stay unconsidered:

- energy efficient routes
- tolls

. . .

- avoid large detours (related to energy efficient)
- avoid inconvenient routes

Optimizing Only Travel Time...

Highly practical aspects stay unconsidered:

- energy efficient routes
- tolls
- avoid large detours (related to energy efficient)
- avoid inconvenient routes

Department of Informatics

Highly practical aspects stay unconsidered:

- energy efficient routes
- tolls
- avoid large detours (related to energy efficient)
- avoid inconvenient routes

Department of Informatics Institute of Theoretical Informatics, Algorithmics II

Optimizing Only Travel Time...

Highly practical aspects stay unconsidered:

- energy efficient routes
- tolls
- avoid large detours (related to energy efficient)
- avoid inconvenient routes

Optimizing Only Travel Time...

Optimizing Only Travel Time...

Highly practical aspects stay unconsidered:

- energy efficient routes
- tolls
- avoid large detours (related to energy efficient)
- avoid inconvenient routes

Time-Dependent Route Planning with Generalized Objective Functions

u

We Generalize the Objective Function

...Using Additional Time-Invariant Costs

Edge weights are pairs f|c

- travel time function f
- time-invariant cost $c \in \mathbb{R}_{\geq 0}$
- \Rightarrow time-dependent total cost C := f + c

G.V. Batz and P. Sanders: 6 Time-Dependent Route Planning with Generalized Objective Functions

minimum total cost route... ...for given departure time τ₀

• $(f_4 + id) \circ \cdots \circ (f_1 + id)(\tau_0) + c_4 + \cdots + c_4$ is minimal amongst all routes

6 G.V. Batz and P. Sanders: Time-Dependent Route Planning with Generalized Objective Functions

Department of Informatics Institute of Theoretical Informatics, Algorithmics II

We Generalize the Objective Function

u

... Using Additional Time-Invariant Costs

Edge weights are pairs f|c

- travel time function f
- time-invariant cost $c \in \mathbb{R}_{\geq 0}$
- \Rightarrow time-dependent total cost C := f + c

Minimum Cost guery:

 $Cost(s, t, \tau_0)$

Practical Applications

... of Time-Dependent Minimum Cost Route Planning

Energy efficient routes:

 $c \propto$ distance (only approximation of energy)

C = f + c

Modeling tolls:

 $c \propto toll charge$

Avoiding inconvenient routes:

c = penalty when narrow, steep, bumpy,...

And combinations: $c = c_1 + c_2 + c_3 + \dots$

7 G.V. Batz and P. Sanders: Time-Dependent Route Planning with Generalized Objective Functions

Complexity

... of Time-Dependent Minimum Cost Route Planning

- ...very hard to answer
- ...much harder than earliest arrival queries
- …even NP-hard

…even NP-hard

8 G.V. Batz and P. Sanders: Time-Dependent Route Planning with Generalized Objective Functions

Department of Informatics Institute of Theoretical Informatics, Algorithmics II

10

Complexity

... of Time-Dependent Minimum Cost Route Planning

- ...very hard to answer
- ...much harder than earliest arrival queries

...even NP-hard

3|7

2|12

8 G.V. Batz and P. Sanders: Time-Dependent Route Planning with Generalized Objective Functions

Department of Informatics Institute of Theoretical Informatics, Algorithmics II

Complexity

... of Time-Dependent Minimum Cost Route Planning

Surprisingly, minimum cost queries are...

...very hard to answer

а

...much harder than earliest arrival queries

...even NP-hard

Complexity

... of Time-Dependent Minimum Cost Route Planning

Surprisingly, minimum cost queries are...

- ...very hard to answer
- ...much harder than earliest arrival queries

G.V. Batz and P. Sanders: 8 Time-Dependent Route Planning with Generalized Objective Functions

Department of Informatics Institute of Theoretical Informatics, Algorithmics II

3|7 ~> 10 b 3|7 2|7 0|0 ~> 0

С

...very hard to answer

а

2|12

- ...much harder than earliest arrival queries
- ...even NP-hard

G.V. Batz and P. Sanders: 8 Time-Dependent Route Planning with Generalized Objective Functions

Department of Informatics Institute of Theoretical Informatics, Algorithmics II

Complexity

... of Time-Dependent Minimum Cost Route Planning

d

2|8

2|12 **2**|8 С

G.V. Batz and P. Sanders: 8 Time-Dependent Route Planning with Generalized Objective Functions

Department of Informatics Institute of Theoretical Informatics, Algorithmics II

Complexity

... of Time-Dependent Minimum Cost Route Planning

Department of Informatics Institute of Theoretical Informatics, Algorithmics II

Complexity

... of Time-Dependent Minimum Cost Route Planning

Department of Informatics Institute of Theoretical Informatics, Algorithmics II

Complexity ...of Time-Dependent Minimum Cost Route Planning

Department of Informatics Institute of Theoretical Informatics, Algorithmics II

Complexity

... of Time-Dependent Minimum Cost Route Planning

- Surprisingly, minimum cost queries are...
- ... of Time-Dependent Minimum Cost Route Planning

Complexity

8

G.V. Batz and P. Sanders: Time-Dependent Route Planning with Generalized Objective Functions

- ...much harder than earliest arrival queries

...very hard to answer

...even NP-hard

Complexity

... of Time-Dependent Minimum Cost Route Planning Surprisingly, minimum cost queries are...

G.V. Batz and P. Sanders: 8 Time-Dependent Route Planning with Generalized Objective Functions

Department of Informatics Institute of Theoretical Informatics, Algorithmics II

...even NP-hard

8

- ...very hard to answer
- ...much harder than earliest arrival queries
- Surprisingly, minimum cost queries are...

... of Time-Dependent Minimum Cost Route Planning

G.V. Batz and P. Sanders: Time-Dependent Route Planning with Generalized Objective Functions

Department of Informatics Institute of Theoretical Informatics, Algorithmics II

10

2|7

5 14 ~> 19

d

...much harder than earliest arrival queries

3|7 ~> 10 b

...even NP-hard

0|0 ~> 0

8

а

...very hard to answer

3|7

- Surprisingly, minimum cost queries are...

... of Time-Dependent Minimum Cost Route Planning

Complexity

G.V. Batz and P. Sanders: Time-Dependent Route Planning with Generalized Objective Functions

Department of Informatics Institute of Theoretical Informatics, Algorithmics II

4 5

15 17 ~> 32

10

 \Rightarrow The only optimal route has a non-optimal prefix! \Rightarrow Sometimes all optimal routes have non-optimal subroutes.

8 G.V. Batz and P. Sanders:

Time-Dependent Route Planning with Generalized Objective Functions

Department of Informatics

Institute of Theoretical Informatics, Algorithmics II

Complexity

... of Time-Dependent Minimum Cost Route Planning

... of Time-Dependent Minimum Cost Queries

Proof: Reducing **Number partitioning:** Given: $a_1, \ldots, a_k, b \in \mathbb{N}_{>0}$

Question: Do $x_1, \ldots, x_k \in \{0, 1\}$ exist s.t. $b = x_1a_1 + \cdots + x_2a_k$?

(proof inspired by [Ahuja et al. 2003])

9 G.V. Batz and P. Sanders:

Time-Dependent Route Planning with Generalized Objective Functions

Department of Informatics

Institute of Theoretical Informatics, Algorithmics II

... of Time-Dependent Minimum Cost Route Planning

Proof: Reducing **Number partitioning:** Given: $a_1, \ldots, a_k, b \in \mathbb{N}_{>0}$ Question: Do $x_1, \ldots, x_k \in \{0, 1\}$ exist s.t. $b = x_1a_1 + \cdots + x_2a_k$?

...to **minimum cost query** from v_1 to v_{k+2} departure time 0:

10 G.V. Batz and P. Sanders: Time-Dependent Route Planning with Generalized Objective Functions

... of Time-Dependent Minimum Cost Route Planning

• 2^k paths from v_1 to v_{k+1}

- all with same total cost $c_{all} := a_1 + \cdots + a_k$
- but different travel time: $\sum_{i \in X} a_i$ where $X \subseteq \{1, \dots, k\}$

... of Time-Dependent Minimum Cost Route Planning

- 2^k paths from v_1 to v_{k+1}
- all with same total cost $c_{all} := a_1 + \cdots + a_k$
- but different travel time: $\sum_{i \in X} a_i$ where $X \subseteq \{1, \dots, k\}$

... of Time-Dependent Minimum Cost Route Planning

• 2^k paths from v_1 to v_{k+1}

- all with same total cost $c_{all} := a_1 + \cdots + a_k$
- but different travel time: $\sum_{i \in X} a_i$ where $X \subseteq \{1, \dots, k\}$

... of Time-Dependent Minimum Cost Route Planning

- 2^k paths from v_1 to v_{k+1}
- all with same total cost $c_{all} := a_1 + \cdots + a_k$
- but different travel time: $\sum_{i \in X} a_i$ where $X \subseteq \{1, \dots, k\}$

partition problem answers yes

 $\Leftrightarrow \exists x_1, \ldots, x_k \in \{0, 1\} \text{ s.t. } b = x_1 a_1 + \cdots + x_k a_k$

 $\Leftrightarrow \exists x_1, \dots, x_k \in \{0, 1\}$ s.t. $b = \sum_{i \in X} a_i, X = \{i \mid x_i = 1\} \subseteq \{1, \dots, k\}$

 $\Rightarrow \exists$ a path from v_1 to v_{k+1} has travel time b

 \Leftrightarrow minimum cost from v_1 to v_{k+2} for departure time 0 is $c_{all} + 1$

11 G.V. Batz and P. Sanders:

Time-Dependent Route Planning with Generalized Objective Functions

... of Time-Dependent Minimum Cost Route Planning

- 2^k paths from v_1 to v_{k+1}
- all with same total cost $c_{all} := a_1 + \cdots + a_k$
- but different travel time: $\sum_{i \in X} a_i$ where $X \subseteq \{1, \dots, k\}$

partition problem answers yes

 $\Leftrightarrow \exists x_1,\ldots,x_k \in \{0,1\} \text{ s.t. } b = x_1a_1 + \cdots + x_ka_k$

 $\Leftrightarrow \exists x_1, ..., x_k \in \{0, 1\} \text{ s.t. } b = \sum_{i \in X} a_i, X = \{i \mid x_i = 1\} \subseteq \{1, ..., k\}$

 $\Rightarrow \exists$ a path from v_1 to v_{k+1} has travel time b

 \Leftrightarrow minimum cost from v_1 to v_{k+2} for departure time 0 is $c_{all} + 1$

11 G.V. Batz and P. Sanders:

Time-Dependent Route Planning with Generalized Objective Functions

Department of Informatics

... of Time-Dependent Minimum Cost Route Planning

- 2^k paths from v_1 to v_{k+1}
- all with same total cost $c_{all} := a_1 + \cdots + a_k$
- but different travel time: $\sum_{i \in X} a_i$ where $X \subseteq \{1, \dots, k\}$

partition problem answers yes

 $\Leftrightarrow \exists x_1, \ldots, x_k \in \{0, 1\} \text{ s.t. } b = x_1 a_1 + \cdots + x_k a_k$

 $\Leftrightarrow \exists x_1, \ldots, x_k \in \{0, 1\} \text{ s.t. } b = \sum_{i \in X} a_i, X = \{i \mid x_i = 1\} \subseteq \{1, \ldots, k\}$

 $\Leftrightarrow \exists$ a path from v_1 to v_{k+1} has travel time b

 \Leftrightarrow minimum cost from v_1 to v_{k+2} for departure time 0 is $c_{all} + 1$

11 G.V. Batz and P. Sanders:

Time-Dependent Route Planning with Generalized Objective Functions

Department of Informatics

... of Time-Dependent Minimum Cost Route Planning

- 2^k paths from v_1 to v_{k+1}
- all with same total cost $c_{all} := a_1 + \cdots + a_k$
- but different travel time: $\sum_{i \in X} a_i$ where $X \subseteq \{1, \dots, k\}$

partition problem answers yes

- $\Leftrightarrow \exists x_1, \ldots, x_k \in \{0, 1\} \text{ s.t. } b = x_1 a_1 + \cdots + x_k a_k$
- $\Leftrightarrow \exists x_1, \ldots, x_k \in \{0, 1\} \text{ s.t. } b = \sum_{i \in X} a_i, X = \{i \mid x_i = 1\} \subseteq \{1, \ldots, k\}$
- $\Leftrightarrow \exists$ a path from v_1 to v_{k+1} has travel time b

 \Leftrightarrow minimum cost from v_1 to v_{k+2} for departure time 0 is $c_{all} + 1$

11 G.V. Batz and P. Sanders:

Time-Dependent Route Planning with Generalized Objective Functions

Department of Informatics

... of Time-Dependent Minimum Cost Route Planning

- 2^k paths from v_1 to v_{k+1}
- all with same total cost $c_{all} := a_1 + \cdots + a_k$
- but different travel time: $\sum_{i \in X} a_i$ where $X \subseteq \{1, \dots, k\}$

partition problem answers yes

 $\Leftrightarrow \exists x_1, \ldots, x_k \in \{0, 1\} \text{ s.t. } b = x_1 a_1 + \cdots + x_k a_k$

 $\Leftrightarrow \exists x_1, \ldots, x_k \in \{0, 1\} \text{ s.t. } b = \sum_{i \in X} a_i, X = \{i \mid x_i = 1\} \subseteq \{1, \ldots, k\}$

- $\Leftrightarrow \exists$ a path from v_1 to v_{k+1} has travel time b
- \Leftrightarrow minimum cost from v_1 to v_{k+2} for departure time 0 is $c_{all} + 1$

11 G.V. Batz and P. Sanders:

Time-Dependent Route Planning with Generalized Objective Functions

Department of Informatics

[Geisberger et al. 2008]

Construct a hierarchy in a preprocessing step:

- Order nodes by importance
- Obtain next level by contracting next node
- Preserve optimal routes by inserting shortcuts

12 G.V. Batz and P. Sanders:

Time-Dependent Route Planning with Generalized Objective Functions

[Geisberger et al. 2008]

Construct a hierarchy in a preprocessing step:

- Order nodes by importance
- Obtain next level by contracting next node
- Preserve optimal routes by inserting shortcuts

12 G.V. Batz and P. Sanders:

Time-Dependent Route Planning with Generalized Objective Functions

[Geisberger et al. 2008]

Construct a hierarchy in a preprocessing step:

- Order nodes by importance
- Obtain next level by contracting next node
- Preserve optimal routes by inserting shortcuts

12 G.V. Batz and P. Sanders:

Time-Dependent Route Planning with Generalized Objective Functions

[Geisberger et al. 2008]

Construct a hierarchy in a preprocessing step:

- Order nodes by importance
- Obtain next level by contracting next node
- Preserve optimal routes by inserting shortcuts

12 G.V. Batz and P. Sanders:

Time-Dependent Route Planning with Generalized Objective Functions

[Geisberger et al. 2008]

Construct a hierarchy in a preprocessing step:

- Order nodes by importance
- Obtain next level by contracting next node
- Preserve optimal routes by inserting shortcuts

13 G.V. Batz and P. Sanders:

Time-Dependent Route Planning with Generalized Objective Functions

[Geisberger et al. 2008]

Construct a hierarchy in a preprocessing step:

- Order nodes by importance
- Obtain next level by contracting next node
- Preserve optimal routes by inserting shortcuts

 \Rightarrow There is always an optimal up-down-route.

13 G.V. Batz and P. Sanders:

Time-Dependent Route Planning with Generalized Objective Functions

Heuristic Minimum Cost Queries...

...With Time-Dependent Contraction Hierarchies (TCH)

Phase 1: Bidirectional upward search:

- Forward: multi-label search
- Backward: interval search
- → meet in candidate nodes
- Phase 2: Downward search
- Forward: muti-label search
- Uses only edges touched by backward/upward search
- $Cost(s, t, \tau_0) = \tau_t + \gamma_t$ first "settled" label of t

14 G.V. Batz and P. Sanders:

Time-Dependent Route Planning with Generalized Objective Functions

Heuristic Minimum Cost Queries...

...With Time-Dependent Contraction Hierarchies (TCH)

Phase 1: Bidirectional upward search:

- Forward: multi-label search
- Backward: interval search
- → meet in candidate nodes
- Phase 2: Downward search
- Forward: muti-label search
- Uses only edges touched by backward/upward search
- $Cost(s, t, \tau_0) = \tau_t + \gamma_t$ first "settled" label of t

14 G.V. Batz and P. Sanders:

Time-Dependent Route Planning with Generalized Objective Functions

Heuristic Minimum Cost Queries...

...With Time-Dependent Contraction Hierarchies (TCH)

Phase 1: Bidirectional upward search:

- Forward: multi-label search
- Backward: interval search
- → meet in candidate nodes
- Phase 2: Downward search
- Forward: muti-label search
- Uses only edges touched by backward/upward search
- $Cost(s, t, \tau_0) = \tau_t + \gamma_t$ first "settled" label of t

14 G.V. Batz and P. Sanders:

Time-Dependent Route Planning with Generalized Objective Functions

Multi-Label search

Computes all Pareto optimal paths from node s

- Multiple labels per node
- Node labels are pairs $\tau_u | \gamma_u$
- Labels in priority queue instead of nodes

Edge relaxation: $\tau_{new} | \gamma_{new} := \tau_u + f_{uv}(\tau_u) | \gamma_u + c_{uv}$

15 G.V. Batz and P. Sanders:

Time-Dependent Route Planning with Generalized Objective Functions

Multi-Label search

- Computes all Pareto optimal paths from node s
- Multiple labels per node
- Node labels are pairs $\tau_u | \gamma_u$
- Labels in priority queue instead of nodes

Edge relaxation: $\tau_{\text{new}} | \gamma_{\text{new}} := \tau_u + f_{uv}(\tau_u) | \gamma_u + c_{uv}$

15 G.V. Batz and P. Sanders:

Time-Dependent Route Planning with Generalized Objective Functions

Interval Search

- Dijkstra-like search
- Computes upper and lower bounds of total cost
- Node labels are intervals $mm_u := [a_u, b_u]$

Edge relaxation:

 $mm_{new} := \min(mm_{old}, mm_u + [c_{uv} + \min f_{uv}, c_{uv} + \max f_{uv}])$

16 G.V. Batz and P. Sanders:

Time-Dependent Route Planning with Generalized Objective Functions

Why is Minimum Cost Query with CH Heuristic?

Travel time only:

There is always an optimal route with only optimal subroutes

- \Rightarrow Insert shortcut iff $\langle u, x, v \rangle$ is optimal route
- \Rightarrow Decide locally

 \Rightarrow EA query always finds existing optimal up-down-route

17 G.V. Batz and P. Sanders:

Time-Dependent Route Planning with Generalized Objective Functions

Why is Minimum Cost Query with CH Heuristic?

With additional time-invariant costs:

Sometimes all optimal *s*-*t*-routes have non-optimal subroutes \Rightarrow Decide globally or check Pareto optimality

Both very expensive, so decide locally!

 \Rightarrow Present up-down-routes not necessary optimal

 \Rightarrow Heuristic!

18 G.V. Batz and P. Sanders: Time-Dependent Route Planning with Generalized Objective Functions

German road network: Nodes: 4.7 million

Experiments Running Time and Error

Edges: 10.8 million, 7.2% time-dependent

1. Experiment: Energy consumption

- *c* ∝ distance (estimates energy consumption)
- 1 km costs 0.1€
- 1 hour costs 5€, 10€, or 20€ (~→ three instances)
- \Rightarrow *c* := $\lambda \cdot$ *distance* where $\lambda \in \{0.72, 0.36, 0.18\}$

2. Experiment: Energy consumption and tolls

- Same as above
- But: motorway edges cost 0.2€ instead 0.1€

19 G.V. Batz and P. Sanders:

Time-Dependent Route Planning with Generalized Objective Functions

Experiment 1: Energy Consumption

hourly	Space	Preprocessing	Query	Error [%]	
rate [€]	[B/n]	(8 cores) [h:m]	[ms]	max.	avg.
5	1 481	0:28	4.92	0.09	0.00
10	1316	0:26	4.22	0.03	0.00
20	1212	0:25	3.51	0.01	0.00

- Error compared to multi label A* Heuristics obtained from preceding backward interval search
- Very fast query
- Nearly no error
- But: Needs much space

Experiment 1: Energy Consumption Hourly Rate = 5 e

Much smaller error than

- Minimum distance routes
- Earliest arrival routes
- Routes from minimum cost query in travel time TCH

Note: Even some outliers can result in bad publicity!

21 G.V. Batz and P. Sanders: Time-Dependent Route Planning with Generalized Objective Functions

2. Experiment: With Motorway Tolls

hourly	Space	Preprocessing	Query	Error [%]	
rate [€]	[B/n]	(8 cores) [h:m]	[ms]	max.	avg.
5	1 863	1:06	14.96		
10	2004	1:16	40.96		
20	1 659	0:46	27.90		

Harder instances:

- Multi label A* no longer feasible ~> error unknown
- Slower query (though still not bad)
- Needs even more space

2. Experiment: With Motorway Tolls Hourly Rate = 10€

Multi-label A* terminated up to rank 2²⁰

Very small error

Again: Minimum distance, earliest arrival, and TCH routes worse

Summary of Measured Errors

Error not significantly away from 0Outliers not serious

24 G.V. Batz and P. Sanders: Time-Dependent Route Planning with Generalized Objective Functions

Conclusions

- Minimum cost queries NP-hard in theory
- Heuristic TCHs are very fast: 5 ms and 41 ms
- Errors negligible
- But: space consuming
- Multi-label A* needs 2.3 s (no tolls)

- Reduce space (techniques from ATCH [Batz et al. 2010])
- Fast heuristic cost profile search
- Exact Hierarchy
- More general objective functions

- Reduce space (techniques from ATCH [Batz et al. 2010])
- Fast heuristic cost profile search
- Exact Hierarchy
- More general objective functions

Questions?