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From Karlsruhe Main Station
to Karlsruhe Computer Science Building

Map (c) www.openstreetmap.org and contributors,
licence CC-BY-SA (www.creativecommons.org)

At 3:00 at night:
Empty streets
Through the city center.
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From Karlsruhe Main Station
to Karlsruhe Computer Science Building

Map (c) www.openstreetmap.org and contributors,
licence CC-BY-SA (www.creativecommons.org)

At 8:00 in the morning:
Rush hour
Avoid crowded junctions.
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Edge weights are travel time functions
f : point in time 7→ ∆ travel time
piecewise linear
FIFO-property – waiting not beneficial

Earliest arrival query:
minimum travel time route...
...for given departure time τ0

(f4 + id) ◦ · · · ◦ (f1 + id)(τ0)+
is minimal amongst all routes
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Selected Results:

s t
τ0 EA(s, t , τ0)

Earliest Arrival Queries

Algorithm Space Ovh. Speedup Maximum Citation
[B/n] of Dijkstra Error [%]

TCH 899 1428 – [Batz et al. 2009]
ATCH 144 857 – [Batz et al. 2010]
ATCH 23 685 – [Batz et al. 2010]
SHARC 155 60 – [Delling et al. 2008]
SHARC 68 1 177 0.61 [Brunel et al. 2010]
SHARC 14 491 0.61 [Brunel et al. 2010]



Optimizing Only Travel Time...
...is not Enough
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Highly practical aspects stay unconsidered:

energy efficient routes
tolls
avoid large detours (related to energy efficient)
avoid inconvenient routes
...
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Edge weights are pairs f |c
travel time function f
time-invariant cost c ∈ R≥0 u

v

f |c
C := f + c

fc

⇒ time-dependent total cost C := f + c

Minimum Cost query:
minimum total cost route...
...for given departure time τ0

(f4 + id) ◦ · · · ◦ (f1 + id)(τ0)+
c4 + · · ·+ c4 is minimal
amongst all routes

s t
f1|c1

f2|c2

f3|c3

f4|c4 f5|c5

τ0 Cost(s, t , τ0)
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C = f + c

u

v

f |c

Energy efficient routes:
c ∝ distance (only approximation of energy)

Modeling tolls:
c ∝ toll charge

Avoiding inconvenient routes:
c = penalty when narrow, steep, bumpy,...

And combinations: c = c1 + c2 + c3 + . . .
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Surprisingly, minimum cost queries are...

...very hard to answer

...much harder than earliest arrival queries

...even NP-hard
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⇒ The only optimal route has a non-optimal prefix!
⇒ Sometimes all optimal routes have non-optimal subroutes.
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Proof:
Reducing Number partitioning:

Given: a1, . . . ,ak ,b ∈N>0
Question: Do x1, . . . , xk ∈ {0,1} exist

Question:

s.t. b = x1a1 + · · ·+ x2ak ?

...to a minimum cost query

b

· · ·

a1 a2 a3 a4 · · · ak

?

(proof inspired by [Ahuja et al. 2003])
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Proof:
Reducing Number partitioning:

Given: a1, . . . ,ak ,b ∈N>0
Question: Do x1, . . . , xk ∈ {0,1} exist

Question:

s.t. b = x1a1 + · · ·+ x2ak ?

...to minimum cost query from v1 to vk+2 departure time 0:
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2k paths from v1 to vk+1

all with same total cost call := a1 + · · ·+ ak

but different travel time: ∑i∈X ai where X ⊆ {1, . . . , k}

⇔ partition problem answers yes
⇔ ∃ x1, . . . , xk ∈ {0,1} s.t. b = x1a1 + · · ·+ xk ak
⇔ ∃ x1, . . . , xk ∈ {0,1} s.t. b = ∑i∈X ai , X = {i | xi = 1} ⊆ {1, . . . , k}
⇔ ∃ a path from v1 to vk+1 has travel time b
⇔ minimum cost from v1 to vk+2 for departure time 0 is call + 1
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Construct a hierarchy in a preprocessing step:
Order nodes by importance
Obtain next level by contracting next node
Preserve optimal routes by inserting shortcuts

x →
x

level i

level i + 1
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Construct a hierarchy in a preprocessing step:
Order nodes by importance
Obtain next level by contracting next node
Preserve optimal routes by inserting shortcuts

G = (V ,E) →

s

t

...

⇒ There is always an optimal up-down-route.
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Phase 1: Bidirectional upward search:
Forward: multi-label search
Backward: interval search

 meet in candidate nodes

Phase 2: Downward search
Forward: muti-label search
Uses only edges touched by backward/upward search
Cost(s, t , τ0) = τt + γt first “settled” label of t

s t

u

s t

L
e
v
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Computes all Pareto optimal paths from node s
Multiple labels per node
Node labels are pairs τu |γu

Labels in priority queue instead of nodes

Edge relaxation: τnew|γnew := τu + fuv (τu) | γu + cuv

s

v

u

f
u,v cu,v

uτ γu , ’ uτuτ γu ,’ γ’’u’’

vτ γ , ’’vτvτ γv , vγv ’ ’ ’’
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Dijkstra-like search
Computes upper and lower bounds of total cost
Node labels are intervals mmu := [au ,bu ]

Edge relaxation:
mmnew := min(mmold,mmu + [cuv + min fuv , cuv + max fuv ])

umm

mmold

s

v

u

f
u,v u,vc ) =min( ,



Why is Minimum Cost Query with CH
Heuristic?
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x

u
v

s

t

〈u → x → v〉 no optimal route
 shortcut u → v not inserted

Travel time only:
There is always an optimal route with only optimal subroutes
⇒ Insert shortcut iff 〈u, x , v〉 is optimal route
⇒ Decide locally
⇒ EA query always finds existing optimal up-down-route



Why is Minimum Cost Query with CH
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x

u
v

s

t

〈u → x → v〉 no optimal route
 shortcut u → v not inserted

With additional time-invariant costs:
Sometimes all optimal s-t-routes have non-optimal subroutes
⇒ Decide globally or check Pareto optimality

Both very expensive, so decide locally!
⇒ Present up-down-routes not necessary optimal
⇒ Heuristic!



Experiments
Running Time and Error
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u

v

f |c

German road network:
Nodes: 4.7 million
Edges: 10.8 million, 7.2 % time-dependent

1. Experiment: Energy consumption
c ∝ distance (estimates energy consumption)
1 km costs 0.1D
1 hour costs 5D , 10D , or 20D ( three instances)

⇒ c := λ · distance where λ ∈ {0.72,0.36,0.18}

2. Experiment: Energy consumption and tolls
Same as above
But: motorway edges cost 0.2D instead 0.1D



Experiment 1: Energy Consumption
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hourly Space Preprocessing Query Error [ %]

rate [D ] [B/n] (8 cores) [h:m] [ms] max. avg.

5 1 481 0:28 4.92 0.09 0.00
10 1 316 0:26 4.22 0.03 0.00
20 1 212 0:25 3.51 0.01 0.00

Error compared to multi label A*
Heuristics obtained from preceding backward interval search

Very fast query
Nearly no error
But: Needs much space



Experiment 1: Energy Consumption
Hourly Rate = 5D
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minimum distance earliest arrival travel time TCH heuristic TCH

Much smaller error than
Minimum distance routes
Earliest arrival routes
Routes from minimum cost query in travel time TCH

Note: Even some outliers can result in bad publicity!
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hourly Space Preprocessing Query Error [ %]

rate [D ] [B/n] (8 cores) [h:m] [ms] max. avg.

5 1 863 1:06 14.96
10 2 004 1:16 40.96
20 1 659 0:46 27.90

Harder instances:
Multi label A* no longer feasible error unknown
Slower query (though still not bad)
Needs even more space
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minimum distance earliest arrival travel time TCH heuristic TCH

Multi-label A* terminated up to rank 220

Very small error
Again: Minimum distance, earliest arrival, and TCH routes worse
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λ = 0.72 (no toll) λ = 0.32 (no toll) λ = 0.18 (no toll) λ = 0.72 (with toll) λ = 0.32 (with toll) λ = 0.18 (with toll)

Error not significantly away from 0
Outliers not serious
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Minimum cost queries NP-hard in theory
Heuristic TCHs are very fast: 5 ms and 41 ms
Errors negligible
But: space consuming

Multi-label A* needs 2.3 s (no tolls)



Future Work

26 G.V. Batz and P. Sanders:
Time-Dependent Route Planning with Generalized Objective Functions

Department of Informatics
Institute of Theoretical Informatics, Algorithmics II

Reduce space (techniques from ATCH [Batz et al. 2010])
Fast heuristic cost profile search
Exact Hierarchy
More general objective functions

Questions?
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