Karlsruhe Institute of Technology

Time-Dependent Route Planning with Generalized Objective Functions

ESA 2012 - Gernot Veit Batz and Peter Sanders - \{batz,sanders\}@kit.edu

[^0]
Time-Dependent Route Planning

Motivation

From Karlsruhe Main Station
to Karlsruhe Computer Science Building

At 3:00 at night:

- Empty streets
- Through the city center.

Map (c) www.openstreetmap.org and contributors, licence CC-BY-SA (www.creativecommons.org)

Time-Dependent Route Planning

Motivation

From Karlsruhe Main Station
to Karlsruhe Computer Science Building

At 8:00 in the morning:

- Rush hour
- Avoid crowded junctions.

Map (c) www.openstreetmap.org and contributors, licence CC-BY-SA (www.creativecommons.org)

Time-Dependent Route Planning

State of the Art: Only Travel Times

Edge weights are travel time functions

- f: point in time $\mapsto \Delta$ travel time
- piecewise linear
- FIFO-property - waiting not beneficial

Earliest arrival query:

- minimum travel time route...
- ...for given departure time τ_{0}
is minimal amongst all routes

Time-Dependent Route Planning

State of the Art: Only Travel Times

Edge weights are travel time functions

- f: point in time $\mapsto \Delta$ travel time
- piecewise linear
- FIFO-property - waiting not beneficial

Earliest arrival query:

- minimum travel time route...
- ...for given departure time τ_{0}
is minimal amongst all routes

Time-Dependent Route Planning

State of the Art: Only Travel Times

Edge weights are travel time functions

- f: point in time $\mapsto \Delta$ travel time
- piecewise linear
- FIFO-property - waiting not beneficial

Earliest arrival query:

- minimum travel time route...
- ...for given departure time τ_{0}
is minimal amongst all routes

Time-Dependent Route Planning

State of the Art: Only Travel Times

Edge weights are travel time functions

- f: point in time $\mapsto \Delta$ travel time
- piecewise linear
- FIFO-property - waiting not beneficial

Earliest arrival query:

- minimum travel time route...
- ...for given departure time τ_{0}
- $\left(f_{4}+i d\right) \circ \cdots \circ\left(f_{1}+i d\right)\left(\tau_{0}\right)+$ is minimal amongst all routes

Time-Dependent Route Planning

State of the Art: Only Travel Times

Selected Results:

Earliest Arrival Queries

Algorithm	Space Ovh. $[\mathrm{B} / \mathrm{n}]$	Speedup of Dijkstra	Maximum Error [\%]	Citation
TCH	899	1428	-	[Batz et al. 2009]
ATCH	144	857	-	[Batz et al. 2010]
ATCH	23	685	-	[Batz et al. 2010]
SHARC	155	60	-	[Delling et al. 2008]
SHARC	68	1177	0.61	[Brunel et al. 2010]
SHARC	14	491	0.61	[Brunel et al. 2010]

Optimizing Only Travel Time...

...is not Enough

Highly practical aspects stay unconsidered:

- energy efficient routes
- tolls
- avoid large detours (related to energy efficient)
- avoid inconvenient routes

Optimizing Only Travel Time...

 ...is not EnoughHighly practical aspects stay unconsidered:

- energy efficient routes
- tolls
- avoid large detours (related to energy efficient)
- avoid inconvenient routes

Optimizing Only Travel Time...

 ...is not EnoughHighly practical aspects stay unconsidered:

- energy efficient routes
- tolls
- avoid large detours (related to energy efficient)
- avoid inconvenient routes

TOLL

Optimizing Only Travel Time...

 ...is not EnoughHighly practical aspects stay unconsidered:

- energy efficient routes
- tolls
- avoid large detours (related to energy efficient)
- avoid inconvenient routes

- ...

Optimizing Only Travel Time... ...is not Enough

Highly practical aspects stay unconsidered:

- energy efficient routes
- tolls
- avoid large detours (related to energy efficient)
- avoid inconvenient routes

- ...

We Generalize the Objective Function

 ...Using Additional Time-Invariant CostsEdge weights are pairs $f \mid c$

- travel time function f
- time-invariant cost $c \in \mathbb{R}_{\geq 0}$

\Rightarrow time-dependent total cost $C:=f+c$

Minimum Cost query:

- minimum total cost route...
- ...for given departure time τ_{0}
$c_{4}+\cdots+c_{4}$ is minimal
amonast all routes

We Generalize the Objective Function

...Using Additional Time-Invariant Costs
Edge weights are pairs $f \mid c$

- travel time function f
- time-invariant cost $c \in \mathbb{R}_{\geq 0}$

\Rightarrow time-dependent total cost $C:=f+c$

Minimum Cost query:

- minimum total cost route...
- ...for given departure time τ_{0}
- $\left(f_{4}+i d\right) \circ \cdots \circ\left(f_{1}+i d\right)\left(\tau_{0}\right)+$ $c_{4}+\cdots+c_{4}$ is minimal amongst all routes

Practical Applications

...of Time-Dependent Minimum Cost Route Planning

$$
C=f+c
$$

- Energy efficient routes:
$c \propto$ distance (only approximation of energy)
- Modeling tolls:
$c \propto$ toll charge
- Avoiding inconvenient routes:
$c=$ penalty when narrow, steep, bumpy,...

And combinations: $c=c_{1}+c_{2}+c_{3}+\ldots$

Complexity

...of Time-Dependent Minimum Cost Route Planning

Surprisingly, minimum cost queries are...

- ...very hard to answer
- ...much harder than earliest arrival queries
- ...even NP-hard

Complexity

...of Time-Dependent Minimum Cost Route Planning

Surprisingly, minimum cost queries are...

- ...very hard to answer
- ...much harder than earliest arrival queries
- ...even NP-hard

Complexity

...of Time-Dependent Minimum Cost Route Planning

Surprisingly, minimum cost queries are...

- ...very hard to answer
- ...much harder than earliest arrival queries
- ...even NP-hard

Complexity

...of Time-Dependent Minimum Cost Route Planning

Surprisingly, minimum cost queries are...

- ...very hard to answer
- ...much harder than earliest arrival queries
- ...even NP-hard

45

Complexity

...of Time-Dependent Minimum Cost Route Planning

Surprisingly, minimum cost queries are...

- ...very hard to answer
- ...much harder than earliest arrival queries
- ...even NP-hard

Complexity

...of Time-Dependent Minimum Cost Route Planning

Surprisingly, minimum cost queries are...

- ...very hard to answer
- ...much harder than earliest arrival queries
- ...even NP-hard

Complexity

...of Time-Dependent Minimum Cost Route Planning

Surprisingly, minimum cost queries are...

- ...very hard to answer
- ...much harder than earliest arrival queries
- ...even NP-hard

Complexity

...of Time-Dependent Minimum Cost Route Planning

Surprisingly, minimum cost queries are...

- ...very hard to answer
- ...much harder than earliest arrival queries
- ...even NP-hard

Complexity

...of Time-Dependent Minimum Cost Route Planning

Surprisingly, minimum cost queries are...

- ...very hard to answer
- ...much harder than earliest arrival queries
- ...even NP-hard
2|12

$$
2 \mid 7
$$

$$
5 \mid 14 \rightsquigarrow 19
$$

$15 \mid 17 \rightsquigarrow 32$

Complexity

...of Time-Dependent Minimum Cost Route Planning

Surprisingly, minimum cost queries are...

- ...very hard to answer
- ...much harder than earliest arrival queries
- ...even NP-hard

$15 \mid 17 \rightsquigarrow 32$

Complexity

...of Time-Dependent Minimum Cost Route Planning

Surprisingly, minimum cost queries are...

- ...very hard to answer
- ...much harder than earliest arrival queries
- ...even NP-hard

Complexity

...of Time-Dependent Minimum Cost Route Planning

Surprisingly, minimum cost queries are...

- ...very hard to answer
- ...much harder than earliest arrival queries
- ...even NP-hard

$15 \mid 17 \rightsquigarrow 32$ 32

Complexity

...of Time-Dependent Minimum Cost Route Planning

Surprisingly, minimum cost queries are...

- ...very hard to answer
- ...much harder than earliest arrival queries
- ...even NP-hard

\Rightarrow The only optimal route has a non-optimal prefix!

Time-Dependent Route Planning with Generalized Objective Functions

Department of Informatics Institute of Theoretical Informatics, Algorithmics II

Complexity

...of Time-Dependent Minimum Cost Route Planning

Surprisingly, minimum cost queries are...

- ...very hard to answer
- ...much harder than earliest arrival queries
- ...even NP-hard

\Rightarrow The only optimal route has a non-optimal prefix!
\Rightarrow Sometimes all optimal routes have non-optimal subroutes.

NP-hardness

...of Time-Dependent Minimum Cost Queries

Proof:

Reducing Number partitioning:
Given: $a_{1}, \ldots, a_{k}, b \in \mathbb{N}_{>0}$
Question: Do $x_{1}, \ldots, x_{k} \in\{0,1\}$ exist s.t. $b=x_{1} a_{1}+\cdots+x_{2} a_{k}$?

(proof inspired by [Ahuja et al. 2003])

NP-hardness

...of Time-Dependent Minimum Cost Route Planning

Proof:

Reducing Number partitioning:
Given: $a_{1}, \ldots, a_{k}, b \in \mathbb{N}_{>0}$
Question: Do $x_{1}, \ldots, x_{k} \in\{0,1\}$ exist s.t. $b=x_{1} a_{1}+\cdots+x_{2} a_{k}$?
...to minimum cost query from v_{1} to v_{k+2} departure time 0 :

NP-hardness

...of Time-Dependent Minimum Cost Route Planning

- 2^{k} paths from v_{1} to v_{k+1}
a all with same total cost $c_{\text {all }}:=a_{1}+\cdots+a_{k}$
- but different travel time: $\sum_{i \in X} a_{i}$ where

NP-hardness

...of Time-Dependent Minimum Cost Route Planning

- 2^{k} paths from v_{1} to v_{k+1}
- all with same total cost $c_{\text {all }}:=a_{1}+\cdots+a_{k}$
- but different travel time:
where

NP-hardness

...of Time-Dependent Minimum Cost Route Planning

- 2^{k} paths from v_{1} to v_{k+1}
- all with same total cost $c_{\text {all }}:=a_{1}+\cdots+a_{k}$
- but different travel time: $\sum_{i \in X} a_{i}$ where $X \subseteq\{1, \ldots, k\}$

NP-hardness

...of Time-Dependent Minimum Cost Route Planning

- 2^{k} paths from v_{1} to v_{k+1}
- all with same total cost $c_{\text {all }}:=a_{1}+\cdots+a_{k}$
- but different travel time: $\sum_{i \in X} a_{i}$ where $X \subseteq\{1, \ldots, k\}$
partition problem answers yes
$\Leftrightarrow \exists x_{1}, \ldots, x_{k} \in\{0,1\}$ s.t. $b=x_{1} a_{1}+\cdots+x_{k} a_{k}$

NP-hardness

...of Time-Dependent Minimum Cost Route Planning

- 2^{k} paths from v_{1} to v_{k+1}
- all with same total cost $c_{\text {all }}:=a_{1}+\cdots+a_{k}$
- but different travel time: $\sum_{i \in X} a_{i}$ where $X \subseteq\{1, \ldots, k\}$
partition problem answers yes

$$
\begin{aligned}
& \Leftrightarrow \exists x_{1}, \ldots, x_{k} \in\{0,1\} \text { s.t. } b=x_{1} a_{1}+\cdots+x_{k} a_{k} \\
& \Leftrightarrow \exists x_{1}, \ldots, x_{k} \in\{0,1\} \text { s.t. } b=\sum_{i \in x} a_{i}, X=\left\{i \mid x_{i}=1\right\} \subseteq\{1, \ldots, k\}
\end{aligned}
$$

Time-Dependent Route Planning with Generalized Objective Functions

NP-hardness

...of Time-Dependent Minimum Cost Route Planning

- 2^{k} paths from v_{1} to v_{k+1}
- all with same total cost $c_{\text {all }}:=a_{1}+\cdots+a_{k}$
- but different travel time: $\sum_{i \in X} a_{i}$ where $X \subseteq\{1, \ldots, k\}$
partition problem answers yes
$\Leftrightarrow \exists x_{1}, \ldots, x_{k} \in\{0,1\}$ s.t. $b=x_{1} a_{1}+\cdots+x_{k} a_{k}$
$\Leftrightarrow \exists x_{1}, \ldots, x_{k} \in\{0,1\}$ s.t. $b=\sum_{i \in X} a_{i}, X=\left\{i \mid x_{i}=1\right\} \subseteq\{1, \ldots, k\}$
$\Leftrightarrow \exists$ a path from v_{1} to v_{k+1} has travel time b

NP-hardness

...of Time-Dependent Minimum Cost Route Planning

- 2^{k} paths from v_{1} to v_{k+1}
- all with same total cost $c_{\text {all }}:=a_{1}+\cdots+a_{k}$
- but different travel time: $\sum_{i \in X} a_{i}$ where $X \subseteq\{1, \ldots, k\}$
partition problem answers yes
$\Leftrightarrow \exists x_{1}, \ldots, x_{k} \in\{0,1\}$ s.t. $b=x_{1} a_{1}+\cdots+x_{k} a_{k}$
$\Leftrightarrow \exists x_{1}, \ldots, x_{k} \in\{0,1\}$ s.t. $b=\sum_{i \in X} a_{i}, X=\left\{i \mid x_{i}=1\right\} \subseteq\{1, \ldots, k\}$
$\Leftrightarrow \exists$ a path from v_{1} to v_{k+1} has travel time b
\Leftrightarrow minimum cost from v_{1} to v_{k+2} for departure time 0 is $c_{\text {all }}+1$

NP-hardness

...of Time-Dependent Minimum Cost Route Planning

- 2^{k} paths from v_{1} to v_{k+1}
- all with same total cost $c_{\text {all }}:=a_{1}+\cdots+a_{k}$
- but different travel time: $\sum_{i \in X} a_{i}$ where $X \subseteq\{1, \ldots, k\}$
partition problem answers yes
$\Leftrightarrow \exists x_{1}, \ldots, x_{k} \in\{0,1\}$ s.t. $b=x_{1} a_{1}+\cdots+x_{k} a_{k}$
$\Leftrightarrow \exists x_{1}, \ldots, x_{k} \in\{0,1\}$ s.t. $b=\sum_{i \in X} a_{i}, X=\left\{i \mid x_{i}=1\right\} \subseteq\{1, \ldots, k\}$
$\Leftrightarrow \exists$ a path from v_{1} to v_{k+1} has travel time b
\Leftrightarrow minimum cost from v_{1} to v_{k+2} for departure time 0 is $c_{\text {all }}+1$

Time-Dependent Route Planning with Generalized Objective Functions

Department of Informatics Institute of Theoretical Informatics, Algorithmics II

Contraction Hierarchies (CH) - Idea

[Geisberger et al. 2008]

Construct a hierarchy in a preprocessing step:

- Order nodes by importance
- Obtain next level by contracting next node
- Preserve optimal routes by inserting shortcuts

Contraction Hierarchies (CH) - Idea

[Geisberger et al. 2008]

Construct a hierarchy in a preprocessing step:

- Order nodes by importance
- Obtain next level by contracting next node
- Preserve optimal routes by inserting shortcuts

Contraction Hierarchies (CH) - Idea

[Geisberger et al. 2008]

Construct a hierarchy in a preprocessing step:

- Order nodes by importance
- Obtain next level by contracting next node
- Preserve optimal routes by inserting shortcuts

Contraction Hierarchies (CH) - Idea

[Geisberger et al. 2008]

Construct a hierarchy in a preprocessing step:

- Order nodes by importance
- Obtain next level by contracting next node
- Preserve optimal routes by inserting shortcuts

Contraction Hierarchies (CH) - Idea

[Geisberger et al. 2008]

Construct a hierarchy in a preprocessing step:

- Order nodes by importance
- Obtain next level by contracting next node
- Preserve optimal routes by inserting shortcuts

Contraction Hierarchies (CH) - Idea

[Geisberger et al. 2008]

Construct a hierarchy in a preprocessing step:

- Order nodes by importance
- Obtain next level by contracting next node
- Preserve optimal routes by inserting shortcuts

\Rightarrow There is always an optimal up-down-route.

Heuristic Minimum Cost Queries...

...With Time-Dependent Contraction Hierarchies (TCH)
Phase 1: Bidirectional upward search:

- Forward: multi-label search
- Backward: interval search
\rightsquigarrow meet in candidate nodes

Phase 2: Downward search

- Forward: muti-label search
- Uses only edges touched by backward/upward search
- $\operatorname{Cost}\left(s, t, \tau_{0}\right)=\tau_{t}+\gamma_{t}$ first "settled" label of t

Heuristic Minimum Cost Queries...

...With Time-Dependent Contraction Hierarchies (TCH)

Phase 1: Bidirectional upward search:

- Forward: multi-label search
- Backward: interval search
\rightsquigarrow meet in candidate nodes

Phase 2: Downward search

- Forward: muti-label search
- Uses only edges touched by backward/upward search
- $\operatorname{Cost}\left(s, t, \tau_{0}\right)=\tau_{t}+\gamma_{t}$ first "settled" label of t

Time-Dependent Route Planning with Generalized Objective Functions

Department of Informatics Institute of Theoretical Informatics, Algorithmics II

Heuristic Minimum Cost Queries...

...With Time-Dependent Contraction Hierarchies (TCH)

Phase 1: Bidirectional upward search:

- Forward: multi-label search
- Backward: interval search
\rightsquigarrow meet in candidate nodes

Phase 2: Downward search

- Forward: muti-label search
- Uses only edges touched by backward/upward search
- $\operatorname{Cost}\left(s, t, \tau_{0}\right)=\tau_{t}+\gamma_{t}$ first "settled" label of t

Department of Informatics Institute of Theoretical Informatics, Algorithmics II

Multi-Label search

- Computes all Pareto optimal paths from node s
- Multiple labels per node
- Node labels are pairs $\tau_{u} \mid \gamma_{u}$
- Labels in priority queue instead of nodes

Edge relaxation: $\tau_{\text {new }}\left|\gamma_{\text {new }}:=\tau_{u}+f_{u v}\left(\tau_{u}\right)\right| \gamma_{u}+c_{u v}$

Department of Informatics Institute of Theoretical Informatics, Algorithmics II

Multi-Label search

- Computes all Pareto optimal paths from node s
- Multiple labels per node
- Node labels are pairs $\tau_{u} \mid \gamma_{u}$
- Labels in priority queue instead of nodes

Edge relaxation: $\tau_{\text {new }}\left|\gamma_{\text {new }}:=\tau_{u}+f_{u v}\left(\tau_{u}\right)\right| \gamma_{u}+c_{u v}$

Interval Search

- Dijkstra-like search
- Computes upper and lower bounds of total cost
- Node labels are intervals $m m_{u}:=\left[a_{u}, b_{u}\right]$

Edge relaxation:

$m m_{\text {new }}:=\min \left(m m_{\text {old }}, m m_{u}+\left[c_{u v}+\min f_{u v}, c_{u v}+\max f_{u v}\right]\right)$

$\min (T, I)=I$

Why is Minimum Cost Query with CH Heuristic?

- Travel time only:

There is always an optimal route with only optimal subroutes \Rightarrow Insert shortcut iff $\langle u, x, v\rangle$ is optimal route
\Rightarrow Decide locally
\Rightarrow EA query always finds existing optimal up-down-route

Why is Minimum Cost Query with CH Heuristic?

- With additional time-invariant costs:

Sometimes all optimal s-t-routes have non-optimal subroutes \Rightarrow Decide globally or check Pareto optimality

Both very expensive, so decide locally!
\Rightarrow Present up-down-routes not necessary optimal \Rightarrow Heuristic!

Experiments

Running Time and Error

German road network:

- Nodes: 4.7 million
- Edges: 10.8 million, 7.2% time-dependent

1. Experiment: Energy consumption

- $c \propto$ distance (estimates energy consumption)
- 1 km costs $0.1 €$
- 1 hour costs $5 €, 10 €$, or $20 €$ (\rightsquigarrow three instances)
$\Rightarrow c:=\lambda \cdot$ distance where $\lambda \in\{0.72,0.36,0.18\}$

2. Experiment: Energy consumption and tolls

- Same as above
- But: motorway edges cost $0.2 €$ instead $0.1 €$

Experiment 1: Energy Consumption

hourly	Space	Preprocessing		Query	Error [\%]	
2 rate $[€]$	$[\mathrm{B} / \mathrm{n}]$	$(8$ cores $)[\mathrm{h}: \mathrm{m}]$	$[\mathrm{ms}]$	max.	avg.	
5	1481	$0: 28$	4.92	0.09	0.00	
10	1316	$0: 26$	4.22	0.03	0.00	
20	1212	$0: 25$	3.51	0.01	0.00	

- Error compared to multi label A*

Heuristics obtained from preceding backward interval search

- Very fast query
- Nearly no error
- But: Needs much space

Experiment 1: Energy Consumption

Hourly Rate $=5 €$

Much smaller error than

- Minimum distance routes
- Earliest arrival routes
- Routes from minimum cost query in travel time TCH

Note: Even some outliers can result in bad publicity!

2. Experiment: With Motorway Tolls

hourly	Space	Preprocessing	Query	Error [\%]	
rate $[€]$	$[\mathrm{B} / \mathrm{n}]$	$(8$ cores) $[\mathrm{h}: \mathrm{m}]$	$[\mathrm{ms}]$	max. avg.	
5	1863	$1: 06$	14.96		
10	2004	$1: 16$	40.96		
20	1659	$0: 46$	27.90		

Harder instances:

- Multi label A* no longer feasible \rightsquigarrow error unknown
- Slower query (though still not bad)
- Needs even more space

2. Experiment: With Motorway Tolls

Hourly Rate $=10 €$

- Multi-label A^{*} terminated up to rank 2^{20}
- Very small error
- Again: Minimum distance, earliest arrival, and TCH routes worse

Time-Dependent Route Planning with Generalized Objective Functions

Summary of Measured Errors

- Error not significantly away from 0
- Outliers not serious

Time-Dependent Route Planning with Generalized Objective Functions

Department of Informatics Institute of Theoretical Informatics, Algorithmics II

Conclusions

- Minimum cost queries NP-hard in theory
- Heuristic TCHs are very fast: 5 ms and 41 ms
- Errors negligible
- But: space consuming
- Multi-label A^{*} needs 2.3 s (no tolls)

Future Work

- Reduce space (techniques from ATCH [Batz et al. 2010])
- Fast heuristic cost profile search
- Exact Hierarchy
- More general objective functions

Future Work

- Reduce space (techniques from ATCH [Batz et al. 2010])
- Fast heuristic cost profile search
- Exact Hierarchy
- More general objective functions

Questions?

[^0]: Institute of Theoretical Informatics, Algorithmics II

