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Zusammenfassung
Diese Arbeit befasst sich mit I/O-optimaler Suffix Array- (SA) und Longest Com-

mon Prefix (LCP ) Array-Konstruktion im externen Speicher. Dazu wird der I/O-
optimale DC3 -Algorithmus um die LCP -Konstruktion erweitert und anschließend
entsprechend angepasst, um in das externe Speichermodell übertragen werden zu
können. In diesem Zusammenhang stellen wir eine Methode vor, um die dafür benötig-
ten Range Minimum Queries (RMQs) effizient im externen Speicher zu berechnen.
Kern dieser Arbeit stellt die Beschreibung und Implementierung des hieraus resul-
tierenden externen DC3 -LCP-Algorithmus mithilfe der Stxxl - der C++ Standard
Template Library for Extra Large Data Sets - dar. Experimentelle Ergebnisse auf
Basis realistischer Eingabeinstanzen runden diese Arbeit ab.

Abstract
This work deals with I/O-optimal suffix array (SA) and longest common prefix

(LCP ) array construction in external memory. For this purpose, the I/O-optimale
DC3 algorithm is enhanced by LCP construction and adapted accordingly to the
external memory model. In this context we present a method to construct the
required range minimum queries (RMQs) efficiently in external memory. The core
of this work is a description and implementation of the resulting external DC3 -LCP
algorithm using the Stxxl - the C++ Standard Template Library for Extra Large
Data Sets. Experimental results based on realistic, real-world instances rounds off
this work.
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1 Introduction

1 Introduction

1.1 Motivation and Previous Related Work

The suffix array (SA) is defined as the lexicographically sorted array of the suffixes of a string T ,
as first described in [24,25]. Suffix arrays in general are one of the most used full text indexing
structures and have multiple applications such as string matching [19,24,25], text compression [7]
and genome analysis [20].
The first results on suffix array construction date back to the early 1990s. Let T be an arbitrary
string of size n, a pattern M of size m, and occ the number of occurences. A binary search
algorithm using the suffix array helps to locates all occurence positions of M in T inO(m log(n)+
occ) time in the internal memory model. This boundery can be lowered toO(m+log(n)+occ) [24]
by means of the array of the lowest common prefixes (LCP s) of adjacent suffixes in the suffix
array. Later results such as [23] or [26] for example allow O(n) time LCP array construction
using the already preprocessed SA. None of them were designed for external memory (EM)
usage.
Until 2003, a direct, I/O-optimal, linear time suffix array construction algorithm was unknown
and mentioned as an important open problem by A. Crauser and P. Ferragina [8]. Direct suffix
array construction algorithms needed O(n log(n)) time even on constant alphabets (i. e. the
size of the alphabet is bounded). The doubling [2] and doubling combined with discarding [8]
algorithms are two representations of this idea. In 2003, three independent approaches of a direct,
linear time suffix array construction algorithm were published. The so-called DC3 (abbreviation
for difference cover modulo 3) algorithm by J. Kärkkäinen and P. Sanders [6,22] was one of them
and will be the focus of this work. The alphabet model used for DC3 is an integer alphabet (i.
e. the elements of the alphabet are integers in a range of nO(1) size). J. Mehnert’s work [27]
compares DC3 with optimized versions of doubling and doubling combined with discarding.
According to their tests, DC3 proved to be “the fastest one with the smallest I/O volume for
most of the input instances” also in practice. Other external memory DC3 implementations [13]
confirmed a distinct superiority over other external memory suffix array constructors at that
time.
Apart from the introductional description of DC3 in [22] the authors also describe in short words
how their algorithm could be extended to compute both suffix and the LCP array in internal
memory. They show that the new algorithm can be implemented to run in linear time like DC3 .
This so-called DC3 -LCP (LCP -enhanced external memory DC3 ) algorithm is at the same time
the only external memory LCP array construction algorithm known till January 2013.
While this work was being written, T. Bingmann, J. Fischer and D. Osipov [5] presented an
implementation of an algorithm for external memory called eSAIS which is based on J. Fischer’s
“Inducing the LCP -array” [15]. They “implement[ed] the first external memory LCP array
construction algorithm that is faster than a DC3 -based approach”. In addition, they state that
“eSAIS is about two times faster than the external memory implementation of DC3 , the I/O
volume is reduced by a similar factor” and eSAIS is “3-4 times faster” than the LCP construction
made by the extended DC3 . Additionally, they observe that the “increase in both time and I/O
volume of eSAIS with LCP array construction compared to pure suffix array construction is
only around two”.

1.2 Our Contribution

Further details on DC3 -LCP, with which their eSAIS algorithm [5] is compared, are missing.
As a result, this work can be considered as an add-on concerning this matter. Chapter 2
will contain some basic definitions. After explaining fundamental techniques and design of
external memory algorithms in chapter 3, we will introduce RMQ computation in general and
in the parallel disk model (PDM), the external memory model. The latter are needed in the
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1.2 Our Contribution

LCP -enhanced DC3 -LCP algorithm. Then the external memory DC3 -LCP algorithm will
be explained by using a pseudocode representation as well as a flow graph. In chapter 5, a
detailed example will be given. In order to narrow the gap between theory and practice, we
have tested our implementation on a huge range of possible inputs. The results thereof will be
shown in chapter 6. At the same time we will pay close attention to realistic, real-world inputs.
Chapter 7 is the conclusive part of this work, where we interpret our measures and compare our
results with those presented in [5] (for eSAIS). A parallel and distributed of algorithm [5] (the
eSAIS) is probably not applicable. The DC3 algorithm, however, has been parallelized in EM.
Consequently, DC3 -LCP is the today’s most promising approach for parallel and distributed
construction of large text indexes.
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2 Basics

2 Basics

This chapter introduces several fundamental notations and definitions of data structures which
occur several times in this work. In each section we first give a formal definition and if reasonable
a short example. The following chapter 3 extends this section by introducing basics concerning
external memory. Note that construction details on data structures were omitted because they
are considered in subsequent sections in detail.

2.1 Alphabets and Strings

An alphabet Σ in general is defined as a set of totally ordered elements (characters). Following
the alphabet definitions in [22], we distinguish three different types, namely constant alphabets
with |Σ| = O(1), integer alphabets (where the characters are integers in the range n) with
|Σ| = nO(1) and general alphabets which only assume that characters can be compared in
constant time. Consequently, the sorting complexityO(Sort(n)) is determined by the underlying
alphabet (and the sorting algorithm).
Let Σ be a totally ordered alphabet with $ as its smallest character. A string T := [0, n − 1]
(or a substring Ti := [i, n − 1]) is defined as an element T := S ◦ $ with (Σ \ $)N, whereas ◦
is the concatenation operator. Given two strings A and B, we call A lexicographically smaller
than B, i. e. A < B ⇐⇒ ∃i ∈ [0, . . . , n− 1] : (A[0, i− 1] = B[0, i− 1]) ∧ A[i] < B[i]. A and B
are lexicographically equal, i. e. A = B ⇐⇒ ∀i ∈ [0, . . . , n − 1] : A[i] = B[i]. In this context
we introduce the term lexicographical names as defined in [22]. The lexicographical names n1
and n2 for two strings T1 and T2 are numbers with the property that they hold n1 ≤ n2 iff
T1 ≤ T2. Furthermore, the term overlap between two strings A[0, n] and B[0, n] is defined by
the value of lcp(A, B) (see chapter 2.3 below). Consider an arbitrary string T of length k, then
T(k) := [0, k − 1] (index k in enclosed parentheses) denotes the whole string.

2.2 Suffix Array

The suffix array (SA) as described by their introducers U. Manber and G. Myers in [24, 25] is
the lexicographically sorted array of string suffixes. For a given string T , the suffix array SA
of T is the permutation of integers in the range of [0, n) holding i < j ⇐⇒ TSA[i] < TSA[j]
for 0 ≤ i < j < n. The inverse permutation of SA is defined as ISA[i] := j :⇔ SA[j] = i
in general. The DC3 -LCP algorithm explained later will use ISA[i] := j + 1 :⇔ SA[j] = i
instead. As an example, assume T := papaya$. Then SAT := 5 1 3 0 2 4 satisfies the property
TSA[i] < TSA[i+1] ∀i ∈ [0, 4] since a$ < apaya$ < aya$ < papaya$ < paya$ < ya$. While
the suffix array position SA[i] represents the position of the i-th smallest suffix TSA[i] of T , the
inverse suffix array ISAT := 3 1 4 2 5 0 stores the position where a given suffix Ti appears in SA.
Note that we always exclude the suffix $ from SA.

2.3 Longest Common Prefix Array

The array of the longest common prefixes (= LCP array) was introduced together with the
improvement of pattern matching with suffix arrays in [24]. It contains the lengths (called
the lcp-values) of the longest common prefix of suffixes that are adjacent (which means lexi-
cographically successive) in the suffix array SA - formally: LCP [i + 1] := lcp(TSA[i], TSA[i+1])
for i ∈ [0, n), whereas LCP [0] := ⊥ and LCP [i] := ⊥ for i < 0 ∧ i ≥ n stays undefined
by definition. As an example, assume T := papaya$ with SAT := 5 1 3 0 2 4 as before. Thus,
LCPT := ⊥ 1 1 0 2 0 since LCP [0] := ⊥ by definition, LCP [1] := lcp(a$, apaya$) = 1, LCP [2] :=
lcp(apaya$, aya$) = 1, LCP [3] := lcp(aya$, papaya$) = 0, LCP [4] := lcp(papaya$, paya$) = 2,
LCP [5] := lcp(paya$, ya$) = 0.
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2.4 Range Minimum Queries in General

2.4 Range Minimum Queries in General

In accordance with the definition given in [16], the range minimum query (RMQ) problem can
be formulated as follows: Given a static array A := [1, n] of n objects from a totally ordered
set and two integers i ∈ N and j ∈ N with 1 ≤ i ≤ j ≤ n, RMQA(i, j) returns the position of
the minimum object of the sub-array T [i, j]; in short RMQA(i, j) := arg mini≤k≤j{A[k]}. As
an example, consider the array A := [2, 4, 3, 9, 1, 5, 4]. Here, the result of the range minimum
query RMQA[3, 6] would be position 6 with A[6] = 1. In most cases it is necessary to answer
many arbitrary queries (i, j) on A. This can be very costly without any precomputation of A.
Additionally, subsets of queries may be batched which means they are not answered immediately
but as a whole. Investing time in preprocessing A to answer future queries will also be our
approach [17]. Consequently, we need a fast precomputeable and space-preserving data structure
that allows to compute subsequent RMQs on a static array A := [1, n] of n totally ordered objects
in O(1) time.

2.5 Pseudocode Conventions

Our pseudocode syntax is fairly similar to the Pascal Programming Language. We use if then
else-if, else condition expressions, the “C” ternary operator ?: as abbreviation for if then, else,
while do and for do loops. Elements in round brackets such as (e1, e2, . . . , ek) represent k-tuples.
Sets of elements are accurately specified in curly brackets {} and assigned to their codomain
by := as the assignment operator. For example, let T be an arbitrary string, then the set
M := {T [i] : i ∈ P} stores every element of T where the index position is a prime number. The
’.’ operator executes an operation on a set of elements. M.Sort(in lexicographical order) e. g.
executes the Sort method (which itself sorts elements in lexicographical order) on the set M .
The ⊕ operator is only used once and works as follows: Let S1, . . . , Sn be sets of elements of equal
cardinality m, i. e. ∀i ∈ [1, . . . , n] : |Si| = m, then S1⊕, . . . ,⊕Sn := {(S1[i] + . . . + Sn[i]) ∀i ∈
[1, . . . , m]}. To put it simple, the ⊕ operator unites multiple sets into a new set by adding them
component-wise.
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3 Operations and Techniques in External Memory

3 Operations and Techniques in External Memory

This chapter can be seen as a continuation of chapter 2. Before we go into detail, we first classify
external memory with respect to memory hierarchies. The following paragraph is based on [9]
and [28].
Computer architectures nowadays contain memory hierarchies of increasing size, decreasing
speed and decreasing costs from top to bottom. Beginning at the top we have registers in-
tegrated in the CPU, then a number of caches, after that the main memory and finally disks
at the bottom. The bottom is often referred to as external memory (secondary memory) as
in contrast to the internal memory (primary memory). Regarding the situation that very big
data sets occur in many applications and the internal memory can only keep a small fraction of
them, processing needs external memory access from time to time. One such access can be 106

times slower than a main memory access. Therefore the external memory accesses become the
main bottleneck in such cases. Minimizing the number of I/Os will lower the time complexity
of the algorithm as well. A single I/O denotes the transfer of one block between the disk(s) and
internal memory.
Hence chapter 3.3 outlines a technique which can lower the number of I/Os. Chapter 3.1 presents
the most common external memory model which is used to design I/O efficient algorithms.
Chapter 3.2 introduces two elementary operations used in external memory.

3.1 A Theoretical External Memory Model

In case of problem instances which do not fit into internal memory completely, the instances are
typically stored in external memory (EM) on one or more hard disks with the consequence that
the latency for accessing data on hard disks generally amounts to several milliseconds which
is slow compared to CPU registers or cache memory access in less than one nanosecond [29].
Thus, the (internal memory) RAM model cannot be suitable in such cases so that the parallel
disk model (PDM) presented by J. S. Vitter and E. A. M. Shriver [30] can be used instead. The
PDM, explained in [29], has the following parameters:

(i) N := problem size,
(ii) M := size of fast internal memory,
(iii) B := block transfer size,
(iv) D := number of independent hard disks,
(v) P := number of CPUs, (whereby it applies that M < N and 1 ≤ D ·B ≤M/2).

We have D disks and each of them can simultaneously transfer a block of size B of contiguous
data items in a single I/O (i. e. D disks can move D · B elements in one I/O access). We
assume that the data for the problem is initially “striped” across the D disks in units of blocks.
The performance measures in PDM are:

(i) the number of I/O operations,
(ii) the disk space used,
(iii) the internal computation time (in the RAM model).

Here, in our external memory model PDM we merely take the number of I/O operations into
account. A serious problem of the PDM is explained in [27]. The authors mention that the PDM
does not distinguish between random disk accesses and bulk accesses. Bulk access means in this
case reading consecutive blocks, which is much faster than seeking the position of every block.
Therefore, the PDM model is only practical iff there is no or a very little number of random
accesses. As we will see later during discussion of how to implement our algorithm in the EM
model, we will use fundamental (see chapter 3.2), non-random-access operations exclusively.
Hence the PDM model is appropriate here.
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3.2 Fundamental I/O Operations

3.2 Fundamental I/O Operations

Apart from explaining the PDM, J. S. Vitter’s work [29] also gives an overview of I/O bounds
for fundamental operations. Following that work, we will take a closer look at two of them,
namely Sort and Scan (=Stream), of which we make heavy use in our algorithms. The I/O

bounds of these fundamental operations are Sort(N) := O
(

N
D·B logM/B

N
M

)
I/Os and accord-

ingly Scan(N) := O
(

N
D·B

)
I/Os. [28] names two so-called “golden rules” in the context of these

bounds and describes the reason for their need. Random access on external memory is often
very expensive because it comes with one I/O per operation whereas we want 1/B I/Os per
operation for an efficient algorithm. The first rule would be to scan the external memory instead
by always loading the next due block of size B in one step and processing it in internal memory.
This costs Scan(N) I/Os. If the data is not scannable, the second rule implies the use of sorting
(which costs Sort(N) I/Os) to reorder and then use scanning.

3.3 Pipelining

As mentioned in the introduction chapter 1, we want to lower the number of I/Os as far as
possible, because it dominates the time complexity of our external memory algorithm. According
to the description of pipelining in [12], the idea is to equip the external memory algorithms with
a new interface that allows them to feed the output as a data stream directly to the algorithm
that consumes the output, rather than writing it to external memory. Consequently, the input
of an external memory algorithm does not have to reside on hard disks, it could rather be a
data stream produced by another external memory algorithm.
We describe the characteristic elements of external memory algorithms according to [12] and [27].
These elements can be modelled as a data flow through a directed acyclic graph G := (V, E)
with V := (F ∪ S ∪ R). As a result, edges E in G denote the directions of data flow between
nodes. We distinguish between file nodes F , streaming nodes S and sorting nodes R as the most
generic nodes.

file
node

scanning / streaming
node

sorting
node

recursion
node

RMQ
node

Figure 1: Pipelining objects displayed as symbols

Figure 1 shows a summary of the different nodes which are used in this work. The representation
and definition is taken from [27]. The sorter run formation node and sorter merge node are united
in the sorting node, the streaming or scanning node is used synonymously. A recursion node
represents the result computed by the streaming in the recursion call. A new addition is the
RMQ node which will be discussed in detail in chapter 4.
A file node F represents physical data sources and data sinks which are stored on hard disks.
The streaming node S expects none, one or more input streams and outputs none, one ore more
new ones. Note that streaming nodes usually do not perform any I/O, unless access to external
memory data structures is needed. Sorting nodes R read a stream and output it in a sorted
order. Analogous to the pipelining structure, representation and definition introduced in [27],
the sorting nodes in this work represent the pipelined external merge sort [1] which itself consists
of a sorter run formation node and a sorter merge node. Suppose we want to sort a sequence of
N elements. At the beginning, the sorter run formation node first sorts

⌈
N
M

⌉
partial sequences

of size M internally and writes them to the disk(s). In the second step, the sorter merge node
reads the sorted subsequences from the disk(s) and merges them to the final sorted sequence.
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3 Operations and Techniques in External Memory

The graph representation of the sorter run formation node would be a streaming node s1 ∈ S as
input node and a file node f1 ∈ F as output node (connected with an edge e1 ∈ E) recursively
if more than M

B streams. The graph representation of the sorter merge node would be just the
other way round, having a file node f2 ∈ F as input node and a streaming node s2 ∈ S as output
node (connected with an edge e2 ∈ E). If we apply this to the example above, the runs will be
sorted in s1 internally and the sorted sequence will be stored in f1. The merger reads the sorted
subsequences from the new file node f2 and merges them to the final sorted sequence inside of
s2.

12
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4 Range Minimum Queries in External Memory

4.1 Overview

There have been many new results in research on RMQ construction in the RAM model in the
past few years as the introduction of [17] indicates. Those new data structures have a con-
struction time complexity of O(n) and allow answering RMQ in O(1) time each. The challenge
in internal memory is to minimize the additional space consumption. Provided that the input
array is available at construction time, J. Fischer and V. Heun [14,17] present a data structure
of size 2n + o(n) bits allowing answering RMQs in O(1) time which is asymptotically optimal
under the mentioned condition.
In contrast to RMQ in internal memory, the situation in our PDM is a different one. Note that
we only take the number of I/O operations into account (the additional space consumption
or the internal computation time remain unconsidered). As the time complexity of the latter
introduced DC3 -LCP algorithm is dominated by external sorting, we may assume that RMQ
construction in O(n log(n)) time complexity (which allows O(1)-time RMQ-retrieval) does not
change the asymptotical complexity of our algorithm. Since we make use of internal RMQs as
described in chapter 4.3, we only need external sorting and scanning.

4.2 The Sparse Table Approach

In order to answer RMQ queries, the so-called sparse table approach was introduced by M.
A. Bender and M. Farach-Colton [4]. It provides O(n log(n)) construction time and space
consumption to improve the naive idea of storing a quadratic table which stores every possible
query combination (resulting in both construction time and space consumption of O(n2)).
We refer to the remarks of [21] and [16] where the algorithm is presented as follows: Given a
static array A := [1, . . . , n], we answer RMQA(i, j) by a simple look-up data structure. The idea
is to store the answers of all possible index-pairs i and j whose differences j − i + 1 are a power
of two. This results in a 2-dimensional table Q[i, k] for i ∈ [1, . . . , n] and k ∈ [0, . . . , blog(n)c]
with Q[i, k] := arg min`{A[`] : ` ∈ [i, i + 2k − 1]}. The sparse table has a width of log(n)
and a depth of n as resulting from above. Accordingly, it needs O(n log(n)) space to store the
elements. Algorithm 1 outlines the procedure of the construction of the sparse table by dynamic
programming in O(n log(n)) time.
The first column of Q is notably easy to compute since the position of the minimum of every
element is the position of the element itself (line 2). The outer for-loop (line 3) iterates over
the columns k, the inner for-loop (line 5) uses k as an exponent to generate the power of two
in ascending order. In order to construct a column in Q, get the position of minimums with a
power of two difference from the previous column and compare them by looking up their values
in A (line 6). To prevent accessing values in Q which do not exist, the inner for-loop breaks in
time (line 8).
But how does O(1)-time RMQ retrieval work on Q? This is shown in algorithm 2. Compute
k := blog(j − i + 1)c to define two overlapping blocks of length 2k (line 2). 2k is the maximum
block-length which fits in the subarray between i and j entirely without moving out of range, i.
e. 2k ≤ j− i + 1 ≤ 2k+1. Then determine the indices of the minima of A[i, i + 2k−1] (represents
the maximum block-length starting from at i-th position) and of A[j − 2k + 1, j] (represents
the maximum block-length starting at the j-th position) respectively, using r := Q[i, k] and
s := Q[j − 2k + 1, k] (line 3 and 4) respectively. Now, r as well as s represent the indices of the
minima in A in the two ranges of length 2k. If A[r] ≤ A[s] then position r in A will contain the
minimum we are looking for, else position s in A will show the minimum.
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4 Range Minimum Queries in External Memory

Algorithm 1: Construction of the sparse table data structure
1 constructSparseTable(A) begin
2 limit := 0, Q[i, 0] := i ∀i ∈ [1, n]
3 for (k := 0; k < blog(n)c); k++) do
4 limit := limit + 2k

5 for (i := 1; (i + 2k) ≤ n; i++) do
6 if (A[Q[i, k]] ≤ A[Q[i + 2k, k]]) then Q[i, k + 1] := Q[i, k]
7 else Q[i, k + 1] := Q[i + 2k; k]
8 if (equals(i, (n− limit))) then break
9 return Q

Algorithm 2: Answering RMQs by sparse table usage
1 answerRMQs(Q, i, j) begin
2 k := blog(j − i + 1)c
3 r := Q[i, k]
4 s := Q[j − 2k + 1, k]
5 if (A[r] ≤ A[s]) then return r
6 else return s

In consistency with the definition of RMQs on A as given in chapter 2.4, we return the position
of the minimum. A slight improvement can be achieved by storing the current minima itself in
Q instead of storing their positions. As a result, we have to scan A only once.
Figure 2 depicts an illustrative example of how the sparse table of the given array A is processed
and how it can be used to answer RMQ queries. At the beginning, the first column considers
ranges of 0 in A. Consequently, the position of the minimum between a single value is the position
itself and we have increasing values in the first column. The second column can be computed by
using the first column and consider ranges of 20 = 1. The values encircled by rounded rectangles
indicate a comparison between all A[value]’s. The comparison of the elements A[1] = 4 and
A[2] = 3 (first red rounded rectangle in first column) e. g. gives us the information that if we
consider the range beginning at i = 1 of length 20 = 1, then the minimum is at position 2.
As one can see, this information is stored in the row k = 1. The third column again can be
computed by using the second one, considering ranges of 21 = 2 and so on.
Determining RMQA(1, 7) by using Q works as follows: First, compute k := blog(7− 1 + 1)c = 2
to define two overlapping blocks of length 2k = 4 (see gray shaded rounded rectangles below).
The minimum in the two block sections can be computed by two simple look-ups in Q, namely:
r := Q[i, k] = Q[1, 2] = 3 and s := Q[j − 2k + 1, k] = Q[4, 2] = 5, respectively. A single
comparison of A[r] and A[s] identifies A[s] = 0 as the smallest element in the given range.
Therefore, RMQA(1, 7) = 5 is returned. This implies the minimum in the range between index
position 1 and 7 is located at position 5.
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4 3 1 7 0 2 2 5
[ ]

A :=

1 2 3 4 5 6 7 8

RMQA(1, 7) = ?

Q :=

1 2 3 4

2 3 5 ·

3 3 5 ·

4 5 5 ·

5 5 5 ·

6 6 · ·

7 7 · ·

8 · · ·





i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

k = 0 k = 1 k = 2 k = 3

4 3 1 7 0 2 2 5
[ ]

A :=

1 2 3 4 5 6 7 8

⇒ RMQA(1, 7) = 5

Figure 2: Example of sparse table construction and usage

4.3 The Sparse Table Approach Applied in External Memory

This section describes how we compute RMQs in external memory by using the sparse table
approach. The procedure is formulated as pseudocode in algorithm 3 and as a graphical rep-
resentation in figure 3. The static array A and a sequence of (RMQ) triples represented as
RMQ(id, i, j) are both stored in external memory. The id parameter is needed to identify a
specific RMQ at a later point in time if query results don’t arrive in order. We now want to
answer all RMQA(id, i, j) (on A).
Consider we have an internal memory of size M whereas A does not fit into M completely. We
split A into longest possible parts v (called pages) of equal size under the constraint of having
enough space for the sparse table which consumes |v| · |v| log(|v|) space. Moreover we need
the additional minBorderArray of size n

|v| and 3 · const space for the sorters we use later. The
inequation in line 2 describes this constraint. First, stream through the sequence containing the
RMQs from the beginning on. While streaming through, distinguish two possible cases (line
3-4):
the trivial RMQs (referred to as RMQT1 in figure 3) are inside a page and notably easy to handle:
i and j are computed relative to the page borders as i′ and j′ (for smaller storage datatype) of
vk. The resulting RMQleft(id, i′, j′, k) is pushed into the left sorter L. The non-trivial RMQs
(referred to as RMQT2 in figure 3) are processed differently: split them into two sub-RMQs with
respect to the page borders. The left part RMQleft is equal to the trivial case and is pushed
into the left sorter L, RMQright(id, i′, j′, k, k∗) has the additional information k∗ := k · |v| which
stores a distance factor between the right and the left part in pages and is pushed into the
right sorter R. The upper part of figure 3 illustrates this procedure. Now L and R are sorted
externally in ascending order by tuple component k, where k represents the page concerned
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4 Range Minimum Queries in External Memory

A : v0 v1 v2 v3

. . .

. . .
vn−2 vn−1

i j
RMQT1

RMQT2

a1 b1

RMQleft

k∗ := k · |v| a2 b2

RMQright

minBorderArray: min{v0} min{v1} min{v2}
. . .

. . .
min{vn−1}

n
|v|

Figure 3: Processing of RMQs in external memory

(line 7 and 8). Then loop through A, load every page vi and save it to internal memory. While
doing this, construct the so-called minBorderArray (see lower part of figure 3), which holds the
minimum of every page vi (line 10). Then build up the sparse table of vi (line 11). Answering
all RMQs of current page separated in L and R is possible by a simple sparse table look up
and minBorderArray scanning (if we compute an RMQright out of R) (line 13). All answered
sub-RMQs are pushed into a final sorter C which holds reduced tuples (id, min) (line 14). The
finishing step sorts the tuples in C by their id to restore their original order (line 15).
There is a simple idea with which the internal work of repeated scans on minBorderArray can be
reduced. The technique described in [18] uses a stack-like succinct data structure which holds
youngest positions of all valid minima. Nevertheless, the naive approach is sufficient enough
because the minBorderArray is small and we ignore internal work.

Algorithm 3: External RMQs
1 externalRMQ(A, L : List of (id, i, j)) begin
2 calculate v so that M ≥ |vi|+ |vi| · |vi| log(|vi|) + n

|vi| + 3 · const ∀i ∈ [0, . . . , n− 1].
3 split up items of L into RMQleft(id, i′, j′, k) and RMQright(id, i′, j′, k, k∗)
4 and push them into L (left sorter) and R (right sorter)
5 // split and push while scanning - i. e. L.Scan()
6 // k defines the page in A
7 L.Sort(by component k)
8 R.Sort(by component k)
9 while ∃ vi ∈ A do

10 minBorderArray[i] := min{A[vi]}
11 Qi := constructSparseTable(A[vi])
12 // answer RMQs, push results (id, min) into C (collective sorter)
13 answerRMQs(Qi, L, R)
14 C.Sort(by id)
15 return (id, min) tuples of C
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4.4 Range Minimum Queries in the Pipelining Model

Finally, we can complete the Pipelining Model introduced in chapter 3.3. The numbers inside
the pipeline elements refer to the line numbers in algorithm 3. The RMQs are splitted by
scanning, distributed to the sorters L and R which are then sorted. Scanning A as well as L
and R answers the sub-RMQs which are pushed into sorter C. After sorting C, the results are
returned by scanning.

RMQs 5

7

L

8

R 9-13 14

C

15

Figure 4: RMQs in the pipelining model

17



5 External Memory Suffix Array and LCP Array Construction

5 External Memory Suffix Array and LCP Array Construction

5.1 Introduction

As already stated in the introductory chapter 1, the also called DC3 or skew algorithm published
by J. Kärkkäinen and P. Sanders in 2003 [6, 22], was one of three independent approaches of a
direct, linear time suffix array construction algorithm over integer alphabets in internal memory.
In general, DC3 constructs the suffix array in sorting complexity O(Sort(n)). Along with the
description of DC3 in [22] the authors also describe how their algorithm can be extended to
compute both the suffix and the LCP array simultaneously in O(Sort(n)) as well. In 2005, R.
Dementiev, J. Kärkkäinen, J. Mehnert and P. Sanders [10] presented the first external memory
suffix array construction algorithm, a pipelined version of the DC3 algorithm, that is at the
same time asymptotically optimal and the best practical algorithm until then. In the following
section we will see in detail how DC3 -LCP, a direct, pipelined, I/O-optimal external suffix and
LCP array construction algorithm based on DC3 can be designed. In the following, the term
DC3 -LCP refers to the algorithm in external memory. In chapter 5.2 we explain the pseudocode
representation and the pipelined model of DC3 -LCP as presented in chapter 5.4. An illustrative
example is given in chapter 5.3.

5.2 The DC3-LCP Algorithm

The following explanations of the different steps are based on the descriptions from [10] and [22].
They explain the single steps of the pseudocode algorithm 4 and the corresponding flow graph
of chapter 5.4. Let T be a string over the alphabet Σ := [$, 1, . . . , n]. Obviously, any other
imaginable alphabet Σ is possible here since it is can be transformed into the previously stated
structure. We want to construct both SAT and LCPT simultaneously with the properties
mentioned in chapter 5.1 above.
1. Step: At first, we pick all suffix triples T [i, i + 2] of the input string T at index positions

i mod 3 6≡ 0 and store them together with the position i (line 3). Then the triples are
sorted in ascending order (line 4). Note again that the sorting complexity depends on the
underlying alphabet (and on the sorting algorithm). Thus we have O(Sort(n)) I/Os in
external memory.
After that, we assign lexicographical names ni ∈ [0,

⌊
2·n
3

⌋
) to the sorted triples so that the

k-th different triple T [i, i + 2] in the sorted sequence has the lexicographical name ni = k
(line 7). Additionally, the overlap between two lexicographical adjacent triples is saved in
LCP N (line 7).
In case of unique lexicographical names ni, we skip the if-section and are done with the first
step. Otherwise, we compute a string R which corresponds exactly to the lexicographical
names of the i mod 3 ≡ 1 triples concatenated with the lexicographical names of the i
mod 3 ≡ 2 triples (line 10). Then we make a recursive call using R as input parameter
(line 11) and repeat until all lexicographical names are unique.

2. Step: The precondition of this step is that the lexicographical names are unique. The
consequence is that we now have the SA12 array as the lexicographical names (second
component) in P with the desired order of suffixes Ti with i mod 3 6≡ 0. To obtain the
position where a given suffix Ti appears in SA12, we compute ISA12 by sorting P (line
16). Every suffix Ti with i mod 3 6≡ 0 represents exactly the suffix Sϕ(i), whereas ϕ(i) is
defined as expression 1.

Expression 1.

ϕ(i) =

3 · i + 1 if 0 ≤ i <
⌊
|P |+1

2

⌋
3 · (i−

⌊
|P |+1

2

⌋
) + 2 if

⌊
|P |+1

2

⌋
≤ i < |P |
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As a consequence, we apply ϕ(i) on the index component (line 14-15). Note that the
lexicographical names ni are unique and called ranks ri from that point in time to indicate
that they never change again. We will see that the ranks are used to annotate each suffix
position i with sufficient information to determine its global rank. Consequently, storing
at most two ranks and one or two characters will be enough to completely determine the
rank of every suffix (line 18-20). The reason for this will become clearer in Step 3. The
suffix positions i mod 3 ≡ 0 can be processed by sorting on T [i] and ri+1 (line 21). This
works because the order of the suffixes Ti+1 are already implicit in SA12. Line 22 and 23
reconstruct the order of the i mod 3 ≡ 1 triples and of the i mod 3 ≡ 2 triples respectively.

3. Step: Finally, we have to merge the sorted sets. Line 24 implements simple comparison
based merging with LCP computation added. The comparison function distinguishes
three different cases:

1. Merge an i mod 3 ≡ 0 suffix Ti with a j mod 3 ≡ 1 suffix Tj by comparing their first
characters T [i] and T [j] and the rank of suffixes Ti+1 (∈ i mod 3 ≡ 1) and Tj+1 (∈ i
mod 3 ≡ 2) which we already know from Step 1.

2. Merging an i mod 3 ≡ 0 suffix Ti with a j mod 3 ≡ 2 suffix Tj works differently:
Since we do not know rj+1 we can compare the first two characters T [i], T [i + 1] and
T [j], T [j + 1] respectively, and the ranks of the suffixes Ti+2 (∈ i mod 3 ≡ 2) and
Tj+2 (∈ i mod 3 ≡ 1).

3. Merging an i mod 3 ≡ 1 suffix Ti with a j mod 3 ≡ 2 suffix Tj is our easiest case
because the relative order of those suffixes can be determined from their position
in SA12 which we already know from Step 1. Therefore, it is sufficient to simply
compare rank ri with rank rj .

At this point in time we can already obtain the suffix array SAT as it is represented by
the order of the index component i of the elements in S. To construct the LCP array
in addition, we compute (and later unite) three arrays `1, `2 and `3 in this precise order.
This order is important since `2 depends on `1 and `3 depends on both `1 and `2 as we will
see in the next part. `1 saves the overlap in suffix characters T [i] and T [j] (T [i + 1] and
T [j +1]) we can obtain by the tuple representation, `2 stores the lcp value delivered by the
last recursive LCP 12 array and `3 stores possible further partial overlapping as memorized
in LCP N .
Construction of `1. We can easily extract the information about the partial overlap
between triples from the S0, S1, S2 representation. This information is stored in the `1
array (line 28) which holds values out of {0, 1, 2}, depending on the combination of the
suffixes Ti and Tj we are merging. In case of suffix pairs Ti with i mod 3 ≡ 0 and Tj with
j mod 3 6≡ 0 we can compare the first (first two) character(s) of each suffix and store the
corresponding value in `1; otherwise the position in `1 is set to zero since this information
can be found in the LCP 12 array (see construct`1() at line 1′).
Construction of `2. Now we are able to compute `2 (line 29) with the construct`2()
method (line 13′): Again, in case of suffix pairs Ti with i mod 3 ≡ 0 and Tj with j mod 3 6≡
0 we check for the maximum possible overlap by means of `1. If the overlap is not the
maximum, then the starting position(s) of the respective suffixes represent triples with
different beginnings and possible subsequent overlappings will be of no further relevance.
As a consequence, the respective position in `2 becomes 0. However, if the overlap is the
maximum, we will have to look up the minimal lcp value between the positions ri+1 and
rj+1 − 1 (ri+2 and rj+2 − 1) in LCP 12 which is the LCP array provided by the recursion.
Due to the fact that the suffix pairs Ti with i mod 3 ≡ 0 and Tj with j mod 3 6≡ 0
(more precisely the resulting comparative ranks) do neccessarily not represent neighbouring
suffixes in the SA12 array (and consequently not in LCP 12), we need the RMQ procedure
(see chapter 4.3) for the first time.
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In case of merging suffix pairs Ti with i mod 3 6≡ 0 and Tj with j mod 3 6≡ 0 (i. e. the
suffixes out of S1 and S2), the situation is different: We can assign the value for `2 by
reading out the position rj in LCP 12 due to the fact that these suffixes are neighboured
in the calculated SA12 array. As two identical triples are represented by the same lexico-
graphical name, we have to multiply the corresponding values in `2 by 3. However, this
will be done later since the values are needed to calculate `3. Finally, the generated RMQ
queries are answered and the corresponding results are written to the `2 array.
Construction of `3. Consider more generally, two suffixes Ti and Tj having identical
elements e. g. at the first k positions. It is essential to understand that every element
represents a triple component (from the first recursion level) which itself possibly represents
single triple components. Although those components are identical for the first e. g. k
positions, they differ at position k + 1 in any case. Thus, a situation may occur where
triples with different lexicographical names partially overlap. The size of a possible overlap
can be obtained by the already calculated LCP N array. The computation of `3 is a bit
more complicated especially as a pseudocode representation and under our precondition
that random access is not permitted (see line 30-42).
For easier exposition, we will proceed on the basis that random access is possible and will
show later how to avoid that. As we did before, we now consider the case of suffix pairs
with Ti with i mod 3 ≡ 0 and Tj with j mod 3 ≡ 1 (the other cases are very similar and
differ only in the indices). ∆2 denotes the respective value of `2. As a consequence we can
obtain the value for `3 by expression 2:

Expression 2.{
RMQLCP N

[
ISA12[SA12[ri+1 − 1] + ∆2], ISA12[SA12[rj+1 − 1] + ∆2]− 1

]
if ∆2 6= 0

0 otherwise

This is possible because the values in `3 can only be different from zero, iff the values in
`2 are different from zero as well. That is the case if the values in `1 indicate a maximum
overlap. Otherwise can set the respective value in `3 to zero from the outset. The reason
why expression 2 provides the desired value will be explained in the following:
One can take advantage of the fact that the ranks ri in general (which were used to
calculate SAT in the previous merge step) are referenced to the LCP N array (and the
SA12 / ISA12 array) of the last recursive call. The rank ri+1 describes the position of
the ri+1-smallest suffix in SA12. To skip the number of elements ∆2, of which we already
know that they overlap, we add ∆2. Let h := SA12[ri+1−1] + ∆2 (substract one (−1) due
to the ISA values are ∈ [1, . . . , n] instead of ∈ [0, . . . , n− 1]). Then ISA12[h] provides the
position where the suffix Th can be found in SA12. We can now use this information to
look up the overlap of a triple represented by a single element in LCP 12. As the suffixes
Th are not necessarily adjacent in SA12, we need RMQs on LCP N again. Unfortunately,
accessing SA12[ri+1−1] would cost one I/O each time since the ranks usually do not arrive
in ascending order. Furthermore, the same problem arises for ISA12[h]. Nevertheless, in
order to scan SA12 and ISA12 (and avoid any random access) we proceed as follows:
Depending on the currently merged elements out of the S0, S1, S2 representation, the ranks
actually needed are determined by the prepare`3() function (line 31 / 27′). In order to
compute the inner SA12 part, split it up in triples storing the id, the particular rank r and
the value of `2 (= ∆2) for left and right side of the above-mentioned expression and store
them in Z (line 32). Then we sort the elements in Z by their rank component (line 33).
Now we can scan through SA12 and store the answers in new tuples (id, SA12[r] + ∆2)
(line 34) in Z ′ where r describes an arbitrary rank and then we sort again (line 35). As a
result, this allows us to scan through ISA12 and generate new tuples (line 37). To restore
the original order, we sort Z ′′ by the id (line 38) and can now feed the RMQ node which
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returns the values for the `3 array in the correct order (line 40). Finally, we can compose
LCPT by combining `1, `2 and `3 with the component-wise add operator ⊕ (line 41). Here,
one should not forget to multiply each value in `2 by 3 as already mentioned above.

5.3 DC3-LCP in a Small Example

The following detailed example shall make the complex procedure of DC3 -LCP more com-
prehensible. Technical details were omitted to give a better overview. Figure 5 presents the
algorithm on the input string T := baaanaaanaaa.

b a a a n a a a n a a a
[ ]

T :=

0 1 2 3 4 5 6 7 8 9 10 11

S (aaa,1) (aan,2) (naa,4) (aaa,5) (ana,7) (naa,8) (aa$,10) (a$$,11)

sort S (a$$,11) (aa$,10) (aaa,1) (aaa,5) (aan,2) (ana,7) (naa,4) (naa,8)
lex. 1 2 3 3 4 5 6 6

LCP N ⊥ 1 2 3 2 1 0 3

Smod1 ◦ Smod2 (aaa,1) (naa,4) (ana,7) (aa$,10) (aan,2) (aaa,5) (naa,8) (a$$,11)
R 3 6 5 2 4 3 6 1

T b a a a n a a a n a a a

⇐
=

Recursion on R

LCP 12 0 0 0 2 0 0 0 1
(SA12, i) (7,1) (3,2) (5,3) (0,4) (4,5) (2,6) (6,7) (1,8)

(ϕ(i), ISA12) (1,4) (4,8) (7,6) (10,2) (2,5) (5,3) (8,7) (11,1)

i 0 1 2 3 4 5 6 7 8 9 10 11
T [i] b a a a n a a a n a a a

ri - 4 5 - 8 3 - 6 7 - 2 1
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Modulo {0} set S0

comparison
5-tuples 2-tuples 3-tuples suffix Ti

(a,a,2,1,9) (a,2) (a,a,1) T9 = [aaa]
(a,a,6,7,6) (a,6) (a,a,7) T6 = [aanaaa]
(a,n,8,3,3) (a,8) (a,n,3) T3 = [anaaanaaa]
(b,a,4,5,0) (b,4) (b,a,5) T0 = [baaanaaanaaa]

Modulo {1, 2} set S12 := S1 ∪ S2

comparison
5-tuples 2-tuples 3-tuples suffix Ti

(1,a,$,⊥,11) (a,$,⊥) T11 = [a]
(2,a,1,10) (a,1) T10 = [aa]
(3,a,a,6,5) (a,a,6) T5 = [aaanaaa]
(4,a,5,1) (a,5) T1 = [aaanaaanaaa]
(5,a,a,8,2) (a,a,8) T2 = [aanaaanaaa]
(6,a,7,7) (a,7) T7 = [anaaa]
(7,n,a,2,8) (n,a,2) T8 = [naaa]
(8,n,3,4) (n,3) T4 = [naaanaaa]

Merge S0 with S12

ri ri+1 ri+2 suffix Ti `1 `2 `3 SAT LCPT

1 ⊥ ⊥ T11 = [a] ⊥ ⊥ ⊥ 11 ⊥
2 1 - T10 = [aa] 0 0 1 10 1
- 2 1 T9 = [aaa] 1 0 1 9 2
3 - 6 T5 = [aaanaaa] 2 0 1 5 3
4 5 - T1 = [aaanaaanaaa] 0 2 1 1 7
- 6 7 T6 = [aanaaa] 1 0 1 6 2
5 - 8 T2 = [aanaaanaaa] 2 1 1 2 6
6 7 - T7 = [anaaa] 0 0 1 7 1
- 8 3 T3 = [anaaanaaa] 1 1 1 3 5
- 4 5 T0 = [baaanaaanaaa] 0 0 0 0 0
7 - 2 T8 = [naaa] 0 0 0 8 0
8 3 - T4 = [naaanaaa] 0 1 1 4 4

Figure 5: DC3 -LCP on input string T = baaanaaanaaa
.
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5.4 DC3-LCP in Pseudocode and as a Flow Graph

Description of the example. Pick modulo 1 and modulo 2 triples, sort them lexicographically,
give lexicographical names and note their overlap in LCP N . The lexicographical names are not
unique and we make a recursive call with string R arising from concatenating the modulo 1
and modulo 2 triples and their corresponding lexicographical names by their original order in
T . The recursion provides LCP 12 (= LCPR) and SA12 (= SAR). Then sort (SA12, i) by the
first component to generate the ranks ISA12 (where a given suffix appears in SAR). Each suffix
in R represents a suffix Tϕ(i) (as already indicated by the red and blue arrows before). Sorting
all modulo 0 triples is simple since we already know the rank ri+1 of every following (modulo
1) triple, see set S0. The modulo {1, 2} triples in set S12 are already sorted. The merging step
distinguishes between several cases. We give an example of each case:

1. Merge(S0, S1): pick e. g. (T10, T9)
a) are the first characters of T10 and T9 equal?

Compare (a, 1) with (a, 2)⇒ `1 is 1
b) `1 = 1, RMQLCP 12 [1, 2− 1] = 0⇒ `2 is 0
c) `1 = 1, perform RMQLCP N [1, 2− 1] = 1⇒ `3 is 1

2. Merge(S0, S2): pick e. g. (T6, T2)
a) are the first and second character of T6 and T2 equal?

Compare (a, a, 7) with (a, a, 8)⇒ `1 is 2
b) `1 = 2, RMQLCP 12 [7, 8− 1] = 1⇒ `2 is 1
c) `1 = 2, perform RMQLCP N [1, 6− 1] = 1⇒ `3 is 1

3. Merge(S1, S2): pick e. g. (T5, T1)
a) set `1 to zero
b) LCP 12[4− 1] = 2⇒ `2 is 2
c) perform RMQLCP N [1, 6− 1] = 1⇒ `3 is 1

4. Merge(S0, S0) ⇒ equivalent to 1.
5. Merge(S1, S1) or Merge(S2, S2) ⇒ equivalent to 3.

The result of the merging step are lexicographically sorted suffixes which represent SAT . In
order to obtain LCPT we add `1, `2 and `3 row-wise after multiplying every element in `2 by 3.

5.4 DC3-LCP in Pseudocode and as a Flow Graph

The following pseudocode in algorithm 4 is an LCP -enhanced and slightly changed version of
the external memory DC3 pseudocode as it can be found in [10] and [27]. The resulting flow
graph as a representation of the DC3 -LCP algorithm is based on the DC3 flow graph in [10]
and is extended by the LCP part, see figure 6.
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Algorithm 4: DC3 -LCP
1 DC3 -LCP(T ) begin
2 n := |T |
3 S := {((T [i, i + 2]), i) : i ∈ [0, n) ∧ i mod 3 6≡ 0}
4 S.Sort(by first component T [i, i + 2])
5 // Scan S and assign lexicographical names ni to triples of S
6 // P contains tuples (i, ni) and LCP N ∈ {0, 1, 2, 3} their overlap
7 P, LCP N := S.Lexnaming()
8 // check lexicographical names ni in P for uniqueness
9 if ∃((i, ni) ∈ P ∧ (j, nj) ∈ P ) : i 6= j ∧ ni = nj then

10 P.Sort((i, ni) by (i mod 3, i div 3))
11 SA12, LCP 12 := DC3 -LCP(R) // R := sequence of all ni of P

12 P := {(SA12[j], j + 1) : j ∈ [0,
⌈

2·n
3

⌉
)} // j holds 0 ≤ j <

∣∣SA12∣∣
13 P.Sort(by first component SA12[j]) // lexrank ri := lexname ni

14 while ∃(i, ri) ∈ P : 0 ≤ i <
⌊
|P |+1

2

⌋
do (i, ri) := (3 · i + 1, ri)

15 while ∃(i, ri) ∈ P :
⌊
|P |+1

2

⌋
≤ i < |P | do (i, ri) := (3 · (i−

⌊
|P |+1

2

⌋
+ 2, ri)

16 else P.Sort(by first component i) // lexrank ri := lexname ni

17 // ISA12 := ISA12
mod1 ◦ ISA12

mod2
:= sequence of second component ni of P

18 S0 := {(T [i], T [i + 1], ri+1, ri+2, i) : i mod 3 ≡ 0, (i + 1, ri+1) ∧ (i + 2, ri+2) ∈ P}
19 S1 := {(ri, T [i], ri+1, i) : i mod 3 ≡ 1, (i, ri) ∧ (i + 1, ri+1) ∈ P}
20 S2 := {(ri, T [i], T [i + 1], ri+2, i) : i mod 3 ≡ 2, (i, ri) ∧ (i + 2, ri+2) ∈ P}
21 S0.Sort(by first component T [i] and third component ri+1)
22 S1.Sort(by first component ri)
23 S2.Sort(by first component ri)
24 S := Merge(S0, S1, S2) with the comparison function:
25 (T [i], T [i + 1], ri+1, ri+2, i) ∈ S0 ≤ (rj , T [j], rj+1, j) ∈ S1

:⇔ (T [i], ri+1) ≤ (T [j], rj+1)
26 (T [i], T [i + 1], ri+1, ri+2, i) ∈ S0 ≤ (rj , T [j], T [j + 1], rj+2, j) ∈ S2

:⇔ (T [i], T [i + 1], ri+2) ≤ (T [j], T [j + 1], rj+2)
27 (ri, T [i], ri+1, i) ∈ S1 ≤ (rj , T [j], T [j + 1], rj+2, j) ∈ S2

:⇔ ri ≤ rj

28 `1.PushBack(construct`1())
29 `2.PushBack(construct`2())
30 while `2.NotEmpty() do
31 (ri, rj) := prepare`3(`1.HasNext()), ∆2 := `2.HasNext()
32 Z.PushBack((id, ri, ∆2), ((id + 1), rj , ∆2))
33 Z.Sort(by second component r)
34 while Z.NotEmpty() do Z ′.PushBack((id, SA12[r] + ∆2) : (id, r, ∆2) ∈ Z)
35 Z ′.Sort(by second component SA12[r] + ∆2)
36 while Z ′.NotEmpty() do
37 Z ′′.PushBack((id, ISA12[r′i]) : (id, r′i) ∈ Z ′ or (id, ISA12[r′j − 1]) : (id, r′j) ∈ Z ′)
38 Z ′′.Sort(by first component id)
39 while Z ′′.NotEmpty() do
40 `3.PushBack(RMQLCP N [id, ri, rj ] : (id, ri) ∈ Z ′′ ∧ (id, rj) ∈ Z ′′)
41 LCPT := `1 ⊕ 3 · `2 ⊕ `3
42 return SAT , LCPT // index component of s : s ∈ S represents SAT
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5.4 DC3-LCP in Pseudocode and as a Flow Graph

Algorithm 5: Subroutines as required for DC3 -LCP
1′ construct`1() begin
2′ if i ∈ S0 ∧ j ∈ S0 then
3′ return (T [i] 6= T [j]) ? 0 : (T [i + 1] = T [j + 1]) ? 1 : 2
4′ else if i ∈ S0 ∧ j ∈ S1 then
5′ return (T [i] = T [j])
6′ else if i ∈ S0 ∧ j ∈ S2 then
7′ return (T [i] 6= T [j]) ? 0 : (T [i + 1] = T [j + 1]) ? 1 : 2
8′ else if i ∈ S1 ∧ j ∈ S0 then
9′ return (T [i] = T [j])

10′ else if i ∈ S2 ∧ j ∈ S0 then
11′ return (T [i] 6= T [j]) ? 0 : (T [i + 1] = T [j + 1]) ? 1 : 2
12′ else return 0 // in case of i ∈ {S1, S2} ∧ j ∈ {S1, S2}
13′ construct`2() begin
14′ if i ∈ S0 ∧ j ∈ S0 then
15′ return `1.Last = 2 ? RMQLCP 12 [ri+2, rj+2 − 1] : 0
16′ else if i ∈ S0 ∧ j ∈ S1 then
17′ return `1.Last = 1 ? RMQLCP 12 [ri+1, rj+1 − 1] : 0
18′ else if i ∈ S0 ∧ j ∈ S2 then
19′ return `1.Last = 2 ? RMQLCP 12 [ri+2, rj+2 − 1] : 0
20′ else if i ∈ S1 ∧ j ∈ S0 then
21′ return `1.Last = 1 ? RMQLCP 12 [ri+1, rj+1 − 1] : 0
22′ else if i ∈ S2 ∧ j ∈ S0 then
23′ return `1.Last = 2 ? RMQLCP 12 [ri+2, rj+2 − 1] : 0
24′ else return LCP 12[rj − 1] // in case of i ∈ {S1, S2} ∧ j ∈ {S1, S2}
25′ // ∆1 := element out of `1
26′ prepare`3(∆1) begin
27′ if i ∈ S0 ∧ j ∈ S0 then
28′ return ∆1 = 2 ? (ri+2 − 1, rj+2 − 1) : (0, 0)
29′ else if i ∈ S0 ∧ j ∈ S1 then
30′ return ∆1 = 1 ? (ri+1 − 1, rj+1 − 1) : (0, 0)
31′ else if i ∈ S0 ∧ j ∈ S2 then
32′ return ∆1 = 2 ? (ri+2 − 1, rj+2 − 1) : (0, 0)
33′ else if i ∈ S1 ∧ j ∈ S0 then
34′ return ∆1 = 1 ? (ri+1 − 1, rj+1 − 1) : (0, 0)
35′ else if i ∈ S2 ∧ j ∈ S0 then
36′ return ∆1 = 2 ? (ri+2 − 1, rj+2 − 1) : (0, 0)
37′ else return (ri − 1, rj − 1) // in case of i ∈ {S1, S2} ∧ j ∈ {S1, S2}
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Figure 6: Upper box: pipelining model of the DC3 -LCP algorithm (as described in algorithm 4) shown as a flow graph.
Lower box: meaning of symbols used in the graph. The numbers inside the symbols refer to the line numbers in algorithm 4.
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6 Experimental Evaluation

6 Experimental Evaluation

6.1 Implementation Details

The lion’s share of this work was the implementation of the DC3 and DC3 -LCP algorithm
which has been developed using the C++ programming language together with the Stxxl, an
implementation of the C++ Standard Template Library STL for external memory computation
[12]. The list below gives a very short outline (from the programmer’s perspective) of components
we often needed in the implementation as supplied by the Stxxl API available in the prerelease
version 1.4.0 at http://tbingmann.de/2013/stxxl/.

1. Stxxl stream interface as described in [12] enables scanning similar to STL Input iter-
ators. As an input iterator, an STXXL stream object can be dereferenced to refer to some
object (i. e. *stream_obj) and can be preincremented (i. e. ++stream_obj) to proceed
to the next object in the stream. Iff the end of the stream is reached, the boolean member
function empty() returns true.

2. Stxxl deque2 container is our external file node without random access as described
in the Stxxl API under Modules → STL-user layer → Containers. The deque2 ob-
ject provides the operations push_front() and push_ back() to add new elements and
pop_front() and respectively pop_back() to access elements. Scanning a deque2 object
is possible in both directions by calling get_stream() or get_reverse_stream() which
itself returns an Stxxl stream object. To support overlapping of I/O accesses and com-
putation, a deque2 object uses a write and prefetch block pool. The class definition
stxxl::deque2<ValueType, BlockSize, AllocStrategy, SizeType> allows to specify
the stored type of object (must be a POD), the block size B, an adapted disc allocation
scheme and a size data type.

3. Stxxl sorter container as a stream layer is our external, pipelined sorting node which has
the interface of an Stxxl stream as described in [12]. According to the Stxxl API under
Modules → STL-user layer → Containers, the sorter container combines the two classes
of runs_creator and runs_merger from the stream packages into a two-phase container,
as already described in the pipelining chapter 3.3. Hence, in the first phase, the container
is filled with elements using push(). To start the second phase, call sort. This finishes
the first phase and sorts all elements in the container. Accessing the sorted elements
using *sorter to get the top item, ++sorter to proceed to the next one and empty() to
check for the end of the stream. The class definition class stxxl::sorter<ValueType,
CompareType, BlockSize, AllocStrategy> expects the stored type of object (must be
a POD), a defined comparator (by overloading the function call operator operator()), the
block size B and an adapted disc allocation scheme.

6.2 Experimental Settings

To close the gap between theory and practice, we measured the performance of DC3 and
DC3 -LCP by testing various input instances with different properties. The following list of
instances presents some details.

1. Random Alphabet is a random string T over the lower case letters of the classical latin
alphabet Σ := [$, a, b, c, . . . , z].

2. Wikipedia is a copy of the English Wikimedia Wiki in the form of the Wikitext source
and metadata embedded in XML available at http://dumps.wikimedia.org/backup-
index.html. The XML dump we used is dated enwiki-20130102. We consider this
instance as a very practical one.

3. Gutenberg is a concatenation of all free ebooks (in ASCII code) from
http://www.gutenberg.org/robot/harvest as available in September 2012. Gutenberg
can be described as a realistic real-world instance.
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6 Experimental Evaluation

4. Human Genome is composed of the human genome assembly files “hg19" published on
UCSC Genome Browser website http://genome.ucsc.edu/. All files were converted so
that T consists of characters over the alphabet Σ := [$, A, G, C, T, N] only.

5. Fibonacci Word is a recursively defined string T over Σ := [$, a, b]. Let S(0) := a
and S(1) := b. Then, the recurrence relation of a Fibonacci word is generally defined as
S(n) := S(n−2) ◦ S(n−1). Due to its fixed frequency Fibonacci is a rather artificial instance
and therefore less realistic for real-world data. Interestingly, Fibonacci Word has high
LCP values.

6. Unary Word is referred to as a string T over the alphabet Σ := [$, a], i. e. a string
containing nothing but the letter ’a’. Unary Word has zero entropy and is unrealistic in
real-world applications. The only special thing about Unary Word is that the recursion
depth reaches its maximum of log3(|T |).

All experiments on the input instances mentioned above were executed on the InstitutsCluster
II computer (see http://www.scc.kit.edu/dienste/ic2.php for more detailed information).
We used the nodes with 2 × Octa-Core Intel Xeon E5-2670 CPUs (Sandy Bridge) clocked at 2.6
GHz having 8× 256 KB L2-Cache each and providing 2× 1 TB hard disk space by at least two
disks. Each instance was computed five times due to possibly inhomogeneous disk compositions
within the nodes. We recorded the fastest time each run. In all experiments the available main
memory M was restricted to 1 GiB, the block size B was set to fixed 1 MiB (the best possible
value for B which we have experimentally determined on our specific hardware and with our
implementation). Additionally, we reserved a single node for every test instance run exclusively
to rule out possible side effects. The tested input instances cover sizes between 224 and 232 since
the used internal data types allow input instances up to 232 Bytes. Our implementation was
compiled with the GNU compiler g++ in version 4.7.2 with -O3 optimization and -march=native
to enable all instruction subsets supported by the machine.

6.3 Verification

To ensure that the computed suffix array SA and LCP array are correct, the results of every
instance were verified by other algorithms. We used a simple and fast suffix array checker for
external memory as described in [10]. To prove the LCP array’s accuracy we used Kasai’s semi-
external linear time LCP array construction algorithm [23] which needs the suffix array SA and
the text T as an input. To make absolutely sure that the main memory consumption complies
with the requirement of 1 GiB, we used malloc_count, a runtime memory usage analysis and
profiling tool (available on http://panthema.net/2013/malloc_count/) which measures the
amount of allocated memory of a program at run-time.

6.4 Performance and I/O Volume Measurements

In general, open symbols refer to DC3 , filled symbols refer to DC3 -LCP in this section. In
figure 7 - figure 12 we distinguish between the construction time depending on the input size
(left column) and the I/O volume depending on the input size (right column). A multiplot
(figure 15) on the construction time of every instance of both algorithms follows a multiplot of
every instance but both algorithms separated (figure 13 and figure 14).
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6.4 Performance and I/O Volume Measurements
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Figure 7: Random Alphabet
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Figure 8: Wikipedia
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Figure 9: Gutenberg
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Construction Time I/O Volume

Figure 10: Human Genome
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Figure 11: Fibonacci Word
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Figure 12: Unary Word
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6.4 Performance and I/O Volume Measurements

Figure 13: Plot of computation time of DC3 on the entire set of test instances.
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Figure 14: Plot of computation time of DC3 -LCP on the entire set of test instances.
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6 Experimental Evaluation

Figure 15: Plot of computation time of DC3 and DC3 -LCP on the entire set of test instances.
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7 Discussion

7 Discussion

7.1 Interpretation

In general, for input lengths between 224–229, DC3 -LCP has a construction time and I/O volume
which is about three to four times higher than DC3 (observed construction time ≈ 3-5 s

MiB vs.
≈ 11–18 s

MiB ). The considered input lengths between 230-232 showed a construction time and
I/O volume which is about four to seven times higher than DC3 (observed construction time
≈ 4–5 s

MiB vs. ≈ 15–30 s
MiB ).

As expected, the Random Alphabet instance with a low recursion depth of 2 turned out to be
the easiest instance for DC3 and DC3 -LCP. Unary Word with maximum recursion depth of 20
was asymptotically “easier” than every other input except for the Random Alphabet. For DC3
and DC3 -LCP, Wikipedia (recursion depth of 10), Gutenberg (recursion depth of 15), Human
Genome (recursion depth of 15) and Fibonacci Word (recursion depth of 18) showed roughly
equal asymptotical I/O volume. Surprisingly, Wikipedia needed the highest construction time
over all tested input instances on DC3 -LCP and DC3 . Consequently, the recursion depth is not
mainly responsible for a higher construction time.
One characteristic all the instances have in common is an asymptotically similar behaviour.
While DC3 -LCP scales linear for input sizes between 224–229, larger input sizes show a strong
increase in the I/O volume and thus in their consumed construction time. We can compare the
construction time and I/O volume of DC3 and DC3 -LCP for Wikipedia and Human Genome
with the results presented in [5]. Practically they used the same instances partially as well as
the same memory limitations and block size. Their results for DC3 does not show any notable
differences with the values we have measured. Surprisingly, their results for DC3 -LCP indicate
significant differences. Their I/O volume only amounts to about half of ours (Wikipedia with
232: ≈ 1100B

B vs. ≈ 2150B
B , Human Genome nearly equal to Wikipedia). Therefore, the

measured construction time is about 40% lower (Wikipedia with 232: ≈ 18 s
MiB vs. ≈ 30 s

MiB ,
Human Genome nearly equal to Wikipedia). Their asypmptotical behaviour is indeed the same,
however, the gradient of their curves is not as steep as ours. The technique with which they
achieve this is beyond our knowledge.

7.2 Future Work

The DC3 in EM has been parallelized [3] (in contrast to eSAIS which probably cannot be
parallelized). This approach could be applied on DC3 -LCP as well to provide today’s most
promising approach for parallel and distributed construction of large text indexes. One can
prove that the I/O volume is optimal regarding the difference cover modulo 7 (DC7 ) [11, 27].
Reinforcing this fact by experiments seems promising. These issues still remain open.
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