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Abstract
We present a priority queue implementation with support for external mem-

ory. The focus of our work has been to derive a benefit from parallel shared-
memory machines. It’s the first parallel optimization of an external-memory pri-
ority queue. An additional bulk insertion interface accelerates longer sequences of
homogeneous operations, as they are more likely to occur in applications that pro-
cess large amounts of data. The algorithm will be available as an extension to the
Stxxl [6], a popular C++ template library for extra large data sets. Experiments
have shown great improvements over the current external-memory priority queue
of the Stxxl for homogeneous bulk operations. However, the high overhead for
spawning threads, as well as the need for cache synchronization in the global
ExtractMin operation, show the inherent limitations of the parallelizability of
priority queues.

Zusammenfassung
Wir präsentieren eine Priority Queue mit Unterstützung für externen Spei-

cher. Besonderes Augenmerk wurde darauf gelegt, Vorteile aus parallelen Rech-
nerarchitekturen mit gemeinsamem Speicher zu ziehen. Es ist die erste parallele
Optimierung einer Priority Queue für externen Speicher. Eine zusätzliche Schnitt-
stelle zum blockweisen Einfügen beschleunigt längere Sequenzen von gleichartigen
Operationen, wie sie besonders bei Anwendungen auftreten, die große Datenmen-
gen verarbeiten. Der Algorithmus wird als Erweiterung zur Stxxl [6] verfüg-
bar sein, einer bekannten C++-Templatebibliothek für sehr große Datenmengen.
Für homogene, blockweise Operationen ergibt sich eine deutliche Verbesserung
gegenüber der aktuellen Stxxl Priority Queue für externen Speicher. Die ho-
hen Fixkosten bei der Threaderzeugung, sowie der hohe Aufwand für Cache-
Synchronisierung bei der globalen ExtractMin-Operation, zeigen jedoch die
inhärenten Grenzen der Parallelisierbarkeit von Priority Queues auf.
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1 Introduction

1. Introduction
Priority queues (PQ) are important data structures which have numerous applications like
job scheduling, graph algorithms (e.g. Dijkstra’s shortest path algorithm [7]), discrete event
simulation, time forward processing [23], or online sorting.
Since the performance of these algorithms often heavily depend on the one of the priority
queue, researchers have payed much attention to improving the performance by making
use of parallel machines [9, 16, 15, 21]. There are different approaches to this topic. Some
studies dealt with priority queues that can handle concurrent calls from different threads [21],
especially without the use of inefficient locking mechanisms. This can be useful for scheduling
algorithms that distribute jobs among multiple independent threads. Others distribute not
the accesses, but the data among different memory areas or even different machines with
NUMA [14, 16].
Furthermore, some modern applications, like very large instances of graph problems or large-
scale simulations, might process data that doesn’t fit into internal memory entirely. If these
applications use regular internal-memory PQs, great performance losses due to paging activity
is to be expected. There has been much work on efficient use of external memory in PQs,
too [4, 3, 18, 8]. Their memory access pattern is tuned for the use in a two-level memory
architecture with a large, but slow, high-latency external storage.
In this work we combine both concepts into an algorithm which makes heavy use of parallelism
and has efficient support for external memory. Main ideas for the external memory part
come from [18]. For parallel usage, we first discuss problems which occur in the context of
uncoordinated, concurrent PQ accesses. Then we introduce additional bulk interfaces which
accelerate longer sequences of homogeneous operations, as they are more likely to occur
in applications that process large amounts of data. The algorithm will be available as an
extension to the Stxxl, a popular C++ template library for extra large data sets [6].

1.1. Overview

Chapter 2 introduces basic definitions and machine models. Chapter 3 first gives an overview
over other parallel priority queues and deduces different definitions of a parallel priority queue
from them. It discusses synchronization issues with uncoordinated concurrent accesses and
possible solutions to them, as well as further options to make wider use of parallelism with
a more relaxed definition of an ExtractMin operation. Following this, chapter 4 presents
some state of the art external-memory priority queues and points out main objectives and
concepts for an external-memory PQ. Chapter 5 presents the bulk-parallel priority queue
in external memory that has originated from this work. Implementation notes are given in
chapter 6, and experimental results in chapter 7. Main conclusions and an outlook for future
work can be found in chapter 8. Furthermore, the appendix contains an extra chapter on
tournament trees which have a key role in our algorithm.
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2 Preliminaries

2. Preliminaries
This chapter gives a definition of a regular priority queue, together with some common vari-
ants. Furthermore, models for the memory hierarchy and parallel execution are introduced.

2.1. Priority Queues

A priority queue (PQ) is a container which maintains a set of elements, each one consisting of
a priority value (also called key), and additionally some satellite information. It supports at
least two operations: The ExtractMin operation returns the element with the smallest key
(also called the minimum element) and removes it from the queue afterwards. An Insert
operation inserts a new item into the set. Some priority queues also have a GetMin operation
which returns the minimum without removing it from the queue. However, this can easily
be simulated using an one element buffer of extracted elements. Some applications, like
Dijkstra’s shortest path algorithm [7], require the ability to change the priority value of
particular elements. A PQ can meet this requirement with a DecreaseKey operation,
which sets the element’s key to a new (and usually lower) value.
There are various priority queues for internal memory. They differ in their time complexities,
their practical performance in different situations, or in the set of supported operations.
Nearly all of them allow GetMin in constant time and ExtractMin, Insert, and De-
creaseKey in logarithmic time. Probably the most popular one is the binary heap. Ready-
to-use implementations are available in a wide range of libraries, like the Standard Template
Library (STL) in C++. The d-ary heap is similar to the binary heap, but the nodes have
d instead of two children. It has been observed, that they perform better on systems with
cached memory [12]. Fibonnaci heaps have the advantage of an amortized constant time
complexity for Insert and ExtractMin.
For use cases complying with the following restrictions, a radix heap might be the best
solution: The keys have to be bounded, non-negative integer values, and the sequence of
extracted values must be non-decreasing. Priority queues with the latter property are called
monotone. A radix heap stores its elements in buckets according to the bit-representation of
their keys. Insert is possible in constant time (O(number of buckets)), but ExtractMin
is very sensitive to the key distribution (i.e. the bucket sizes).

2.2. External Memory

Modern computer systems contain different memory types in a hierarchical order of increasing
size, decreasing speed and decreasing cost per capacity from top to bottom. On ordinary
x86-64 systems, there are some registers and a small core-local cache for each processing unit
(PU), a shared cache for all cores, and the main memory (also called internal memory (IM)).
They are complemented by one or more hard disk drives (HDD) as an external-memory
system (EM) with large capacity, but also high latency and lower bandwidth. An illustration
for this typical architecture is given in figure 1.

3



2 Preliminaries

Registers

Caches

Internal Memory / RAM

External Memory / Hard Disks

small size
high bandwidth
low latency

large size
low bandwidth
high latency

Figure 1: A typical memory hierarchy

Since the internal-memory access time is about 105 to 106 times faster than the hard disk
access time [3], some modern systems replace hard disks by faster solid-state drives (SSD).
Unfortunately, HDDs are not completely substitutable since their capacity of currently up to
6 TiB, as well as their low price per capacity, is unrivaled (under 3€ per GiB in some cases
(Germany, 2014)). Moreover, regardless of the price, SSDs still don’t obviate the need for
external-memory algorithms since SSDs are slower than internal memory, too, and they often
use the same block-oriented interface like HDDs (SATA, SAS). Table 1 shows some average
data rates of different levels in the memory hierarchy.
The CPU-local caches will be of great importance when having concurrent memory accesses.
More on this can be found in chapter 2.3. When analyzing external memory algorithms
theoretically, a two-level memory model without the caches is mostly sufficient. We use the
Parallel Disk Model (PDM) introduced in [10]. It assumes one fast and relatively small
internal memory, supplemented by one or more hard disks which only support block-wise
transfers. In particular, the model is described by the following parameters:
(i) N is the input size
(ii) M is the size of internal memory
(iii) B is the block transfer size
(iv) D is the number of independent hard disks
(v) P is the number of processor cores.

Using this model we are able to make statements about the I/O complexity of our algorithm
by counting the block transfers in relation to the other parameters.
There is a drawback of this model: It does not distinguish between random block accesses
and consecutive block accesses, although common hard disks are significantly slower when
accessing a random block, as their read/write heads have to move to the corresponding
position first. However, we make sure that all hard disk accesses are in a consecutive order.

4



2.3 Parallelism

Dimension Access time / Bandwidth
Registers some Bytes one CPU-cycle
L1-Cache 128 KiB 600 GiB/s
L2-Cache 1 MiB 200 GiB/s
L3-Cache 6 MiB 100 GiB/s
Main memory Gigabytes 20 GiB/s
Solid-state drives Gigabytes 600 MiB/s
Disk storage Terabytes 100 MiB/s

Table 1: Sizes and data rates for different levels in an exemplary memory hierarchy [20, 22]

2.3. Parallelism

We assume a parallel machine with P independent processing units (also: PU, core, CPU).
Of course, our algorithms also work with single-core machines (P = 1). The CPUs all have
access to a shared memory area, called internal memory or RAM in this work. Furthermore
we assume a separate cache for each core. This model is illustrated in figure 2.
If the processing units read or write memory locations, which no other cores access at the
same time, the access is similar to one on a single-core machine model. If there is, however,
synchronized access to a memory location from at least two cores, great performance losses
are to be expected, since the cache coherence protocol must negotiate for write accesses.
This characteristic has great influence on the design of parallel algorithms: Synchronized
accesses are very expensive in a parallel program and might decrease the possible parallel
speedup Sp of an algorithm. It’s often better to avoid synchronization and, instead, distribute
independent work on separate memory areas among the PUs where possible.
In the case there are still concurrent write accesses to the same memory location, the use of
atomic primitives might be indicated in order to avoid race conditions. Atomic primitives
are sets of operations that change the state of the system and are executed isolated from con-
current processes. The success is not affected by other threads that access the same memory
location. Three common atomic operations which are available as a machine instruction on
x86-64 CPUs are listed below.

Shared Memory

Cache 0 Cache 1 Cache 2 Cache 3

CPU 0 CPU 1 CPU 2 CPU 3

Figure 2: Parallel machine model with cached shared memory
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2 Preliminaries

• CompareAndSwap(&a, b, c)
Compares the value at memory location &a1 with b. If they are the same, the value at
memory location &a will be set to c. CompareAndSwap allows for simple, thread-
safe, but lock-free appending of a value to an array:
Algorithm 1: Thread-safe Append
Input: Array A, head index h, value v
// Note: A must be large enough.

1 hold ← FetchAndAdd(&h,1)
2 A[hold] = v

• FetchAndAdd(&a,b)
Executes a← a + b atomically and returns the former value of a. Without FetchAn-
dAdd, at least three machine instructions would be used: Fetch a, add b, store result
into &a1. Similar instructions exist for other arithmetic and binary operators.

• TestAndSet(&a,b)
Temporarily saves the value from &a1, stores b in &a and returns the saved value. This
atomic instruction can be used for locking:
Algorithm 2: Lock
Input: Locking variable L (initialized to L = 0)

1 while TestAndSet(&L,1)=1 do nothing

1The &-sign represents “address of ...”

6



3 Parallelization of a Priority Queue

3. Parallelization of a Priority Queue
Parallelizing a priority queue is a many-faceted task. Other than the implementation of a
thread-safe and ideally non-blocking PQ, one also has to consider problems like starvation of
operations and logical issues with concurrently extracted elements.
Most other parallel PQs focus on the first part, allowing different threads to operate on the
same PQ. Some of them are introduced shortly in the first section of this chapter. Subse-
quently, we discuss possibilities for synchronizing Insert and ExtractMin operations in a
concurrent environment. Lastly, we give some thoughts on bulk extraction.
Internal use of parallelism is not dealt with here but in connection with our algorithm in
chapter 5.

3.1. Related Work

Much work has already been done on incorporating parallelism into priority queues and very
different approaches have emerged from it. Some of them are presented here.
In 1998, Sanders [16] developed a randomized parallel priority queue for distributed memory
machines. Each processing unit (PU) contains its own elements instead of having them in
shared memory, which makes the algorithm suitable for a wider range of computer systems.
The semantics of his PQ is slightly adapted: The ExtractMin operation retrieves the P
globally smallest elements and each PU receives one of them (with P being the number of
PUs). Insertions are distributed randomly among the PUs. The algorithm has shown good
performance on machines with P > 40.
Sundell and Tsigas [21] introduced a lock-free concurrent priority queue based on skip lists
[17]. They use atomic operations and auxiliary bits on the elements for indicating ongoing
modifications in order to allow concurrent access to the data structure without any locks.
The performance of common lock-based concurrent PQs decline significantly when a rising
number of threads performs operations on it, while the performance of Sundell’s approach
stays nearly the same. However, their algorithm is not expected to be faster than one, that
is used in a sequential manner.
A lock-free priority queue has also been developed by Liu and Spear [13], but it’s based on
a tree of sorted lists, a so-called mound.
Brodal et. al. [9] developed a parallel priority queue with constant time operations, includ-
ing ExtractMin and DecreaseKey. They also have a MultiInsertk and a MultiEx-
tractMink operation with O(log(k)) time complexity. However, the algorithm is mainly of
theoretical value, since the number of required processors depends on the input and is not
bounded.
Pinotti [15] introduced a parallel priority queue based on a k-bandwidth-heap. This type of
heap contains P elements in each node, where the largest one is smaller or equal to all the
ones contained in its descendants. This allows concurrently deleting up to P elements. For
restoring the data structure afterwards, though, the PQ has to be locked.

7



3 Parallelization of a Priority Queue

3.2. Synchronization between Insert and ExtractMin

Common applications relying on a PQ follow a consistent scheme:
(i) Create an empty PQ.
(ii) Insert some initial elements.
(iii) Extract the element with the highest priority. Do some computation on it, which may

cause further insertions. If PQ is not empty, repeat this step.
(iv) Algorithm has finished, when PQ is empty.
If there are multiple threads operating on the same PQ, the expression “element with the
highest priority” may be ambiguous, as the following example shows. Figure 3 depicts a
sequence of insertions and extractions, executed by two independent processes P0 and P1.
Square nodes stand for an extracted value. A diamond node d, connected to a square node s
by an arrow, means that the extraction of s caused the insertion of d. t0 to t3 are time slices,
and a thread can insert only one element per time slice.
The situation is as follows: P0 extracts the starting element with priority 2. As it causes
insertions of elements with priority 3, 1, and 0 (highest priority), the next element in row
should be the one with priority 0. However, since there is no synchronization between the
threads, P1 extracts a value before the element with priority 0 is inserted by P0, and this is
the one with priority 1 > 0.
Of course, there are applications where this type of incident is not crucial. For scheduling
algorithms, for example, it may be sufficient to receive one of the smallest values. In this

2
1

3
0

1

P0

P1

t0 t1 t2 t3

x Extract element
with priority x y Insert element

with priority y

“causes” “depends on”

Figure 3: A possible execution order of six PQ operations, which results in the extraction of
a wrong value
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3.3 Bulk Operations

case, it’s sufficient to provide a thread-safe interface. Yet, we want to derive a benefit from
parallel machines for a wider range of applications. For this purpose, the remainder of this
section will present two strategies to avoid such ambiguities.

3.3. Bulk Operations

Bulk Insertion

An obvious approach to synchronize accesses to the PQ is to have one main thread which
distributes work among the others. In many applications, one extracted element can cause
the insertion of multiple other ones. If these elements are inserted together, the insertion
work can be distributed among all available threads. Figure 4 illustrates this operation,
which will be called bulk insertion from now on.

bulk insertP0

P1

process on P0

process on P1

Figure 4: Bulk insertion using two threads P0 and P1

Bulk Extraction

The main thread can also initiate a bulk extraction, that is, obtain a bunch of elements and
distribute the processing of these elements among the available threads (see figure 5). Note
that any insertions occurring during the execution must use a thread-safe interface.
The case of extracting a bulk of elements and processing them in parallel needs a closer look:
In a classical priority queue, ExtractMin means returning the element with the currently
smallest key among all keys and removing it from the queue afterwards. This definition con-
sorts well with concurrently extracting all elements which have the same smallest key. To give
an example: Dijkstra’s algorithm could extract all nodes with the same distance in parallel.
The application can take care of this form of parallel execution itself by simply calling Ex-
tractMin multiple times. It’s tough to derive a benefit from an extra DeleteAllEqual
interface as it’s not known how many elements with the same key there are.
Yet the case that there are so many elements with the same priority that parallel execution is
worthwhile might be rare depending on the application. Let’s talk about some further forms
of parallel deletion:

9



3 Parallelization of a Priority Queue

bulk extract bulk extract...P0

P1

A B C A

Figure 5: Bulk Extraction. Step A: Main thread extracts all relevant elements. Step B:
Processing of the extracted values is distributed among all threads. Step C:
Further insertions must use a thread-safe interface. Return to step A after an

implicit barrier.

Extracting a fixed number of elements Extracting k > 1 elements (possibly having differ-
ent keys) in parallel means that their order of execution doesn’t matter for the correctness of
the algorithm. Of course, the number of extracted elements must be limited since one could
otherwise use an unordered array of elements instead. As an example of an application where
the correct order can be violated on a small scale is priority scheduling, where k enqueued
work units can be distributed simultaneously among k free CPUs.
Having k given, the priority queue can go for different strategies when the application wants
to extract elements. While it would simply call the regular ExtractMin interface for small
k, it could bring forward some work for larger k, or derive a benefit from filling a k-extract
buffer in parallel.

Extracting until a specific key An application could relax the definition of ExtractMin
like follows: ExtractMin returns an element with key < K and removes it from the queue.
K must be passed for each ExtractMin and could for example be computed using the
previously extracted element.
Like for extraction of equally prioritized elements, here it holds too that an extra interface
for this type is not expected to yield a great benefit due to not knowing the number nextract
of affected elements. Instead, we introduce a PrepareManyExtracts operation which
can be used if nextract is expected to be large: It brings forward upcoming work like in the
Extracting a fixed number of elements case.

10
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3.4. Aggregated Insertion / Lower Limit for Insertion

The bulk insertion interface requires that the application has one main thread which handles
all insertions. Aggregated insertion, as it is described below, is an alternative that allows mul-
tiple application threads to insert elements independently and still obtain a bulk of elements
that can be inserted efficiently in parallel.
Appending a value to a buffer is an operation that can easily be made thread-safe using a
FetchAndAdd instruction (see chapter 2.3). The idea is now to buffer any insertion until
the next ExtractMin operation occurs, or even longer if it can be assured that the values in
the buffer, at least for a while, don’t need to be considered for the ExtractMin operation.
The applications manually tells the PQ when to process the buffered elements so they are
considered for upcoming deletions. We call this FlushAggregatedInserts. The insertion
method may depend on the number b of buffered elements. If b is large, the bulk insertion
method from chapter 3.3 can be used.
Aggregated insertion can also be used if the application expects that there will be very
many insertions in a row, but doesn’t know it for sure. For small sequences one then saves
the parallel overhead of bulk insertion, while large sequences are still inserted efficiently in
parallel.
A further and more interesting use case is the following: There is a large sequence S of in-
termixed insertions and deletions. However, it’s known that none of the values inserted in S
is already extracted again while S is processed: ∀ deleted values d ∈ S,∀ inserted values i ∈
S : key(d) < key(i). This means that there is a lower limit for any insertion in S and in-
serted values in S don’t need to be considered for ExtractMin operations until FlushAg-
gregatedInserts is executed. Figure 6 illustrates this situation. In [2] you can find an
algorithm, where this constraint is valid for some key loops.

lo
w
er

li
m
it

fo
r
in
se
rt
io
ns

future
extractions

larger key

Extract Insert causes ...

Figure 6: Aggregated insertion. The key of all inserted elements is higher than any of the
upcoming extracts before the barrier. An arrow represents that the insertion is

caused by the extraction.
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4. Priority Queues for External Memory
If the elements in a PQ don’t fit into the main memory anymore, classical PQs certainly
become very slow, as the paging mechanisms of the operating system might begin juggling
around memory pages between internal and external memory (EM). External memory algo-
rithms try to avoid this and reduce the number of I/Os per operation [10]. For this purpose,
a priority queue for external memory takes into account the specific properties of disk drive
systems or other slow secondary memory types.
This chapter gives an overview over some possibilities for designing a priority queue with
support for external memory.

4.1. Related Work

Scientists have already payed much attention to designing external-memory priority queues.
Gradually, the I/O-efficiency has been improved more and more (e.g. [8], [4]). Newer studies
also took practical objectives into account.
Brengel et al. [3] carried out an experimental study of priority queues in external memory
that resulted in two novel external-memory heaps. First, they adapted a radix heap [1] for
external memory. This is a monotone PQ, that is, extracted values must occur in a non-
decreasing order. The radix buckets reside in EM except for their first disk page. As for all
radix based data structures, the input should be evenly distributed among the value universe.
Their second approach is called an external array-heap. It consists of an internal memory
heap and a set of sorted arrays in external memory. The arrays have a fixed size and are
arranged in slots, assigned to a level. The heap can be viewed as the lowest level. Insert
operations go to the lowest level and overflows in one level cause a transfer into the next
higher level after sorting and merging if necessary.
Sanders [18] followed a similar approach and improved it among other thing by paying much
more attention to cache efficiency. The data structure is called a sequence heap. Here, the
external arrays are organized in groups of size k, with k being chosen small enough, that
merging all members of a group will be cache-efficient using k-way-merge [11]. Similar to
Brengel’s approach, an overflow in one group (respective level) causes the creation of a larger
array in the subsequent group. All groups are connected by an R-way-merger, where R is
the number of groups. In common environments, R is small enough in the context of cache
efficiency, too.

4.2. Main Ideas

As we have seen in the related work section, most external memory PQs only store sorted
sequences of values in the EM. This stands to reason since accesses occur in an increasing
order and values from EM can therefore be fetched consecutively (see chapter 2.2 for the
advantages of a consecutive EM access). Only the radix heap solution by Brengel et al.
derogates from this principle. In their algorithm, the ExtractMin operation scans a whole
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bucket for the smallest element. If the bucket is large, this results in extra I/O. Because
of that and other limitations of a radix based approach (see chapter 2.1), we will hereafter
narrow down to the use of sorted sequences in EM.
There are several tasks and possibilities when designing such a PQ. Some important ones are
listed in the following.
(i) Internal priority queue

The Insert operations of established EM priority queues first go into the internal
memory (IM). The data is transferred into EM not until either an adequate amount of
data has been accumulated, or there is no more space left in IM. Instead of having an
unordered buffer of linear complexity for ExtractMin, typically a regular PQ, like
one of those introduced in chapter 2.1, is used for IM.

(ii) Multiple sources of the global minimum
Because the PQ consists of at least two relatively independent parts (IM and EM part),
there are at least two sources for the globally smallest element. If there are multiple
sorted arrays there may be even more sources. In order to avoid performing linear
search for determining the global minimum, an EM PQ can maintain the sources for
example in a sorted list or in a tournament tree (see appendix A.1), or keep them
heap-ordered.

(iii) Extract buffer
An extract buffer can reduce the number of minimum sources to exactly two and fur-
thermore improve the performance by using efficient parallel multiway merging. The
extract buffer is usually built by merging all sorted lists in EM and possibly some more
data from IM.

(iv) Having first blocks in IM
External memory in our context is a storage system with block-wise data transfers (cf.
chapter 2.2). Therefore it makes sense to store the whole block when accessing a value
from EM. These blocks can then be used for data-parallel merging, since such a merging
algorithm can determine splitting points if the data is randomly accessible.

(v) Overlaying computation and I/O
The latency of hard disk accesses is quite high (about 15 ms on a 7200 rpm drive [22]).
This can delay PQ operations and waste valuable CPU-time. Thanks to the direct
memory access (DMA) feature of modern computer system, it’s possible to fetch data
from external memory devices without occupying the processor. This can be used to
prefetch data blocks that will probably be accessed soon, more precisely, further blocks
of the sorted external sequences in ascending order.
Prefetching is also important on multi disk systems. In a multi disk system with D
disks, the external memory bandwidth is theoretically D times higher, than it is for
one disk, provided that the bus bandwidth is high enough. If we access a single sorted
sequence in EM and want to utilize this higher bandwidth, there needs to be a prefetch
buffer with a size of at least D blocks. Of course this improvement requires having
spread the blocks of the sequence evenly among the disks.
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4.2 Main Ideas

Note that the amount of data to prefetch should carefully be limited in order to avoid
wasting internal memory. If D = 8, B = 2 MiB, and the PQ is configured to prefetch
a constant number of 8 blocks for each external sequence, in addition to at least one
regular block in IM as mentioned above, an external array already occupies 10 MiB of
internal memory.
Another possibility to overlay computation and I/O is to buffer EM write operations.
Just like for prefetching, the size of the buffer should be oriented towards the number of
hard disk drives. Internal memory considerations are less crucial here, since the buffer
is only needed during the creation of the sequence.

(vi) Reduce the number of I/Os per element
A priority queue for EM should try to avoid writing the same element multiple times into
EM, as EM has a very limited bandwidth and the algorithm loses it’s I/O-optimality
otherwise. However, when regarding practical considerations, it may be beneficial to
do so, e.g. for merging small sequences into one.
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5. Bulk-Parallel Priority Queue in External Memory
This chapter presents the bulk-parallel priority queue that has originated from this work. The
preceding chapters have revealed that there are different kinds of priority queues. Concerning
their properties, we’ve made the following design decisions:
non-monotone Our PQ supports any order of elements to insert at any time. This excludes

the implementation as a radix heap.
arbitrary keys Any kind of ordering is allowed, the keys do not have to be integer or bounded.

The application just needs to provide a less-comparator for the elements. Neither an
equality-comparator, nor minimum, maximum or any sentinel elements are needed.

external memory In case the contained data doesn’t fit into main memory, there is native
support for external memory.

non-accessible The elements in the PQ are not accessible, and consequently there is no De-
creaseKey operation. The reason behind this is that random access conflicts with
efficient external memory support.

non-relaxed The PQ conforms to a strict definition of ExtractMin: “Return the element
with the smallest key of all elements currently in the queue”. An element is considered
to be part of the queue, from the time push() was called. This is in contrast to relaxed
and probabilistic PQs, which return the smallest element only with a given probability.

bulk-parallelism Because our PQ is non-relaxed, we’ve decided to use a bulk interface for
external parallelism. Bulks are sequences of homogeneous operations. This assures
a synchronization between inserts and deletes, and therefore guarantees the global
minimality of the extracted element. Furthermore we provide thread-safe interfaces for
aggregating an insertion bulk, as well as for single insertions.

realistic The purpose of this work has been to develop a priority queue that performs well
on real-world systems. We attempt to achieve I/O and computational optimality only
for realistic parameters.

The remainder of this chapter describes the architecture and the operations of our priority
queue (also called newPQ). Alternative variants and implementations, that have been tried
out during development are outlined where reasonable as well.

5.1. Architecture

Our priority queue consists of various data structures. First, the insertion heaps are re-
sponsible for taking up newly inserted elements (see chapter 5.5). They are complemented
by sorted arrays in the internal memory (chapter 5.2). The external storage is organized
in sorted external arrays, where, however, the first block (according to an ascending order)
resides solely in internal memory (chapter 5.3). The external memory write buffer, as well
as prefetch buffers for all external arrays may reside both in IM and EM. Furthermore, there
is an extract buffer for accelerating ExtractMin operations (chapter 5.7) and an aggrega-
tion buffer for the AggregatedInsert interface (chapter 5.5). A minima tree manages the
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smallest elements from all relevant data structures (chapter 5.4). Figure 7 illustrates these
parts. A detailed description of them can be found in the remainder of this chapter.

5.2. Internal Arrays

An internal array (hereafter IA) is a sorted sequence of values stored in the main memory.
There are three sources where an IA can arise from (see figure 8):
(i) When the insertion heaps are full, respectively they cannot carry the current bulk, they

are sorted in parallel and then merged into a merging buffer. The merging buffer’s values
are then transferred into an internal array. It’s important to avoid memory copying
here, like described in the implementation notes (chapter 6). As a variant, merging can
also be omitted (see chapter 5.9). The operation is called FlushInsertionHeaps.

(ii) The aggregated insert interface (FlushAggregatedInserts) can cause the creation
of an internal array if the number of aggregated elements exceeds some constant value,
like described in chapter 5.5. In this case, the aggregation buffer is sorted in place, and
its elements are transferred into an internal array (again without moving the actual
values).

(iii) In an analogous manner, the algorithm handles bulk insertions which exceed this thresh-
old size.

5.3. External Arrays

An external array is a sorted sequence of elements in external memory. The sequence is
divided into blocks of size B by the external memory system. A block is always fetched as a
whole, we never discard parts of it.
For the purpose of fast and parallel merging, the first block, i.e. the one containing the
smallest element, is located in IM instead of in EM. Furthermore, the p following blocks are
prefetched in order to better utilize the I/O-bandwidth and to allow parallel data fetching
from multiple hard disk drives.

External
Arrays

...

Internal
Arrays

...

Insertion
Heaps

Minima
Tree

Write Buffer

Extract Buffer

Aggregation Buffer

External Memory Internal Memory

Figure 7: Architecture of the priority queue. Note that one block of each EA is solely in IM
and some blocks may reside both in IM and EM due to prefetching.
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Figure 8: Internal array creation

There are two ways how an EA can be created:
(i) When there is no space left in IM, the easiest way to make space is getting rid of the

internal arrays. They are first merged and then transferred into an external array. The
operation is called FlushInternalArrays.

(ii) Each external array stores at least one block of elements in IM, plus the ones potentially
in the prefetch buffer. Together, this is a considerable amount of IM consumption. If
they take too much space, multiple EAs have to be merged into one, which reduces the
memory consumption to MEAs = (1 + p) ∗ B. We call this operation MergeExter-
nalArrays.
The implementation is very similar to the one used for refilling the extract buffer (see
chapter 5.7). The difference is first, that by default, internal arrays are not taken into
account. Secondly, the merging happens piecewise because random access, needed for
parallel multiway merge, is only possible in the first block of each EA.
The MergeExternalArrays operation is quite expensive, therefore it should not
be executed too frequently. Luckily, this is the case for realistic use cases. More on this
topic can be found in the chapter on memory management (5.8).

5.4. Keeping Track of the Global Minimum

Our algorithm keeps different sorted or heapified sets of data, all of them providing O(1)
access to their local minima. They are called candidates for the global minimum. Namely
these candidates come from
(i) one of the insertion heaps
(ii) the extract buffer
(iii) an internal array, that was created while the extract buffer had been full
(iv) an external array, that was created while the extract buffer had been full
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Global Minimum

0 ... P-1 P P+1 ...

Insertion
Heaps

Extract
Buffer

Other
minimum
sources

Figure 9: Minima winner tree with index mapping.
P is the number of insertion heaps respectively the number of CPU cores

The ExtractMin procedure needs to find the smallest one of the candidates. Linear search
isn’t really practicable here, as the number of candidates is theoretically unbounded. Even
if there were no internal or external arrays, linear search would require P + 1 comparisons
on a machine with P cores, which is inefficient if P is large.
During development three approaches were tried out to reduce the work for a ExtractMin
from O(k) for k candidates to O(dlog(k)e):

Using a heap A heap contains tuples (v, id) of a candidate value v and an identifier id for
its source. The tuples are compared according to the value: (v0, id0) < (v1, id1) ⇔ v0 < v1.
The ExtractMin operation simply pops the smallest tuple (vmin, idmin) from the heap, has
immediate access to the minimum value, and can push the proximate candidate according to
the source identifier.
Inserting a new candidate for the former winner is quite simple and fast with a binary heap,
but if an arbitrary candidate becomes invalid or is replaced, decease-key and delete-key
operations are required. This happens for example after inserting a value into a non-empty
insertion heap or after FlushInternalArrays. While all this is doable with addressable
heaps, the constant factors are higher than with the following approaches.

Winner tree with index mapping The second approach makes use of a winner tree (WT).
A detailed introduction to winner trees can be fount in appendix A.1. Like described there,
a WT consists of 2x so called players, which compete against each other for the globally
smallest element. The first P players represent the insertion heaps, followed by one player
for the minimum of the extract buffer. Arrays, that were created while the extract buffer had
not been empty (new arrays) and are therefore not represented in the extract buffer, occupy
further player positions.
Unfortunately, it’s not clear if a player with an index > P belongs to an internal or an

20



5.4 Keeping Track of the Global Minimum

external array. One solution is using even numbers for internal and odd numbers for external
arrays, but this leads to a superfluously large tree if the number of IAs is very different to
the number of EAs. This case occurs quite often, e.g. after FlushInternalArrays.
Instead, index mapping is used. A player’s corresponding array is determined with a single
mapping TreeIndexToArrayIndex : N→ Z, so that

Array(ArrayIndex) =
ExternalArrays[ArrayIndex] if ArrayIndex >= 0
InternalArrays[−(ArrayIndex + 1)] if ArrayIndex < 0

We also need two mappings InternalArrayIndexToTreeIndex : N→ N and
ExternalArrayIndexToTreeIndex : N → N for deactivating a player when it’s corresponding
array becomes invalid.

Composed winner tree The index mapping implies many indirections, because the tree
index cannot always be mapped directly to a source. Especially the comparator used by the
index winner tree can have noticeable performance losses. For that reason, we’ve replaced
the index mapping by multiple index winner trees for the different types of candidate sources.
Figure 10 depicts the following structure: First, there is a head winner tree (A) which
compares the smallest insertion heap minimum with the extract buffer minimum, the smallest
internal array minimum and the smallest external array minimum. The insertion heaps (B),
the internal (C) and the external arrays (D) are managed in three separate winner trees.

A

B C D

... ......

Insertion
Heaps

Extract
Buffer

Internal
Arrays

External
Arrays

Figure 10: Composed minima winner tree.
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5.5. Insertion of Elements

Chapter 3.2 has already discussed different kinds of parallel insertion. This discussion re-
sulted in four different interfaces for insertion of elements into the priority queue. Besides
simple, sequential, single insertion there is a bulk insertion and an aggregation interface. Fur-
thermore, a technique formerly used for bulk insertion allows thread-safe, and to a certain
degree also parallel, single insertion.

Singe Insertion

Single inserts are used if there will be only a few inserts before the next ExtractMin
occurs. They are possible in two flavors: The non-thread-safe and in the majority of cases
faster variant choses a random insertion heap, inserts the value and updates the minima tree
afterwards. It would also be possible to chose the least filled one in order to distribute the
data evenly, but this would cause great overhead. A thread-safe variant is described further
below as bulk insertion with individually locked heaps.

Bulk Insertion

Bulk insertion can be used if there is a sequence of Insert operations which will definitively
not be interrupted by an ExtractMin operation. The insertion consists of three parts:
begin, step and end. The begin part chooses the proceeding depending on the bulk size b.
Note, that either the bulk size or at least the maximum bulk size must be known from the
beginning, while the latter may result in inefficient processing.
If b < K < H for a constant K and the size of the heaps H, each element in the bulk will

be inserted using sequential SingleInsert, because spawning threads for parallel in-
sertion would cause too much overhead compared to the benefit.

If b > a ·H, for a factor a ≤ 1 and a ·H > K, it’s meaningless to push the elements onto the
heaps, because they would be sorted closely afterwards. Instead, the elements are sorted
in parallel and transferred directly into an internal array.

Otherwise, if K ≤ b ≤ a ·H, the elements are inserted in parallel into different heaps. begin
makes sure, that there is enough space left in the insertion heaps. If not, a FlushInser-
tionHeaps operation is performed. This avoids any interruption during the parallel
execution.

For handling the parallel insertion without race conditions and data losses, three different
approaches have been tried out:
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Individually locked heaps One way is to use mutual exclusion locks on the heap during a
PushHeap operation. When inserting a value, a free insertion heap is chosen. Algorithm 3
describes the strategy for doing so.

Algorithm 3: Thread-safe Insert
Input: Element e, Insertion Heaps H

1 repeat
2 id ← random number ∈ {0, 1, .., |H| − 1}
3 do atomically
4 if H[id] is not locked then
5 Lock H[id]
6 break

7 Insert e into H[id]
8 Unlock H[id]

The do atomically section can be implemented using a CompareAndSwap instruction if
the locking state is stored as a boolean value for each insertion heap.
In the context of bulk insertion, this has turned out to be the slowest implementation. The
problem is that the locking state has to be synchronized between the threads, and therefore,
they invalidate each others caches.
However, algorithm 3 provides a thread-safe insertion interface with support for concurrent
PushHeap execution. If there are few concurrent inserts in relation to the number of in-
sertion heaps, the probability of immediately obtaining an unlocked heap in the first loop
iteration is quite high:

P [Insertion Heap i is not locked] = nIHs

nConcurrent Inserts

Atomic heaps It’s possible to build a heap whose push operation is thread-safe and lock-
free as follows: There is an array A, a head pointer h, and a heap head pointer p. The push
operation increases the head pointer using an atomic FetchAndAdd operation, which is
available on all common, modern architectures. Afterwards, the value is written at the old
head position (usually the return value of the FetchAndAdd operation), and a heapify
request is placed. The heapify requests are processed by a single thread, which is running
PushHeap and increasing the p repeatedly until it’s equal to h. This doesn’t affect ongoing
push operations. Pseudocode for this procedure can be found in algorithm 4.
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Algorithm 4: Atomic Insertion Heap
Input: Array A (begin pointer), Head pointer h, Heap head pointer p

1 Push(Element e) begin
2 hold ← AtomicFetchAndAdd(&h,1)
3 ∗hold ← e
4 heapifyRequest ← true
5 Heapify()

6 Heapify() begin
7 if heapifyRequest = false then
8 return

9 if AtomicCompareAndSwap(&heapifyInProgress, false, true) then
10 heapifyRequest ← false
11 while |p− h| > 0 do
12 p← p + 1
13 PushHeap(A, p)

14 heapifyRequest ← false
15 Heapify()

One heap per thread The third approach is to bind each thread to exactly one insertion
heap. This approach is much more cache-efficient than the other ones. If a thread performs
it’s heap operations always on the same heap, it is very likely that appreciable parts of it still
are in the CPU-local cache. It turned out to be the fastest implementation for bulk insertion.

Aggregated Insertion

Possible use cases for aggregated insertion have already been stated in chapter 3.2. We’ve
implemented it as follows: AggregateInsert(e) atomically pushes the element e to a
buffer using the atomic FetchAndAdd instruction, similar to lines 2 and 3 of algorithm 4.
ExtractMin operations are not affected by this. FlushAggregatedInserts() eventually
inserts the aggregated values as a bulk using the bulk insert interface described further above.

5.6. Extracting Elements

The ExtractMin operation fetches the current minimum source src from the minima tree
described in chapter 5.4. The value of src is saved for return and then removed. Afterwards,
a message is sent to the minima tree for either a change in src’s player psrc, or the deactivation
of psrc if src has run empty.
There is also a BulkExtractMin (k) interface. It returns exactly k elements, given that
|PQ| ≥ k. If k is very large or the insertion heaps are nearly full, the insertion heaps are
flushed and the extract buffer is refilled to a size of at least k. These smallest k elements

24



5.7 The Extract Buffer

are then returned. The amortized execution time for large k is expected to be smaller, as
k minima tree updates can be omitted. If k is small, the BulkExtractMin (k) method
simply runs ExtractMin k times.

5.7. The Extract Buffer

The extract buffer (EB) is there to accelerate ExtractMin operations. It’s built from the
sorted sequences in internal and external memory by merging them into the buffer (the (re-)
creation is called RefillExtractBuffer from now on). Immediately after the creation
we know that ∀ a ∈ EB, b ∈ EAs ∪ IAs : key(a) ≤ key(b) (i). This means, that an
ExtractMin operation doesn’t have to consider the sorted sequences, but only the extract
buffer and the insertion heaps. Note that this holds only for arrays that have already existed
before running RefillExtractBuffer. For newly created arrays an extra entry in the
minima tree is necessary (cf. chapter 5.4) because equation (i) is not valid for them.
The array merger can only access array parts that reside in internal memory. Because there
may be values in the EM which are smaller than a value in in the IM, upper bounds have to be
found for which it holds that ∀ a ∈ EA ∪ IA : ∀ e1 ∈ a[0...upper bounda], ∀e2 ∈ EM : e1 ≤ e2.
This is true for all values that are smaller or equal to the smallest internal maximum value
of all external arrays with further data in EM.
Figure 11 shows an example situation where 20, 35, and 40 are the internal maximum values
of the EAs. 20 can be ignored since the corresponding array has no further data in EM. 35 is
the smaller one of the remaining two and therefore it’s the upper bound value. The merger
will only consider values smaller or equal to 35.

External Arrays Internal Arrays

EM

10 11 12 15 20
20

35 40

70 2536 60

Figure 11: The dashed line depicts the upper bound for merging. 35 is the limiting value.
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Furthermore, the size of the extract buffer is limited by the memory management (cf. chap-
ter 5.8). The merger will break when the limit is reached. It’s important that it saves the
index until which each array has been merged. This index is used for removing the affected
values from the arrays after they have been transferred into the EB.
Algorithm 5 shows the refill procedure in detail.
Algorithm 5: Refill Extract Buffer
Input: Extract Buffer E, Extract Index iE, Array of EAs E, Array of IAs I, Minima-tree

M , Extract buffer limit l
1 E ← []
2 iE ← 0
3 M.removeAllArrayP layers()
// As the index of the arrays doesn’t matter anymore, we can finally remove empty arrays.

4 foreach Array a ∈ E ∩ I do
5 if |a| = 0 then
6 E ← E \ a
7 I ← I \ a

8 if |E|+ |I| = 0 then
9 return

10 minmax← undef // Let min(undef, x) = x.
11 foreach External Array a ∈ E do
12 Wait for the first block. Memory transfer may be in progress.

// Only consider EAs with further data in EM.
13 if Number of blocks in a > 1 then
14 minmax ← min(minmax,a.max_of_block())

15 Merge sequences S ← []
16 foreach Array a ∈ E ∪ I do in parallel
17 Determine the maximum fraction afrac of a (resp. the first block of a if a ∈ E), for which

it holds that ∀e ∈ afrac : e < minmax.
18 S ← S ∪ {afrac}
19 size← min(

∑
s∈S |s|,l).

20 Allocate memory of size size for E.
21 Parallel multiway merge size elements of S into E.
22 Remove merged elements.
23 Notify extract buffer change to M .
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5.8. Memory Management

Memory management is an important part of the implementation. Internal memory is a
limited resource for fast memory and can be used in various ways. A trade-off has been made
between the needs of different IM consumers in the PQ implementation. The allocation
strategies for them are listed below.

• MIHs: The insertion heaps can have either a fixed size, or a size relative to the available
memory. In combination with internal arrays, the fixed variant has turned out to be
the better one. Choosing MIHs is a crucial decision. It influences the performance in
the following ways:
– PushHeap and PopHeap operations are slower for large insertion heaps. The

performance loss is quite large if a heap doesn’t fit in the cache anymore.
– Parallel sort and parallel multiway merge are the better, the bigger the insertion

heaps are, since the constant overhead for the thread creation must be compen-
sated for.

– Smaller insertion heaps implicate more and smaller internal arrays. If the internal
arrays are created when the extract buffer is full, an extra entry in the minima
tree is necessary for them. A large minima tree can significantly deteriorate the
performance. On the other hand, though, a large number of internal arrays makes
merging them in parallel more efficient.

• MIAs: The internal arrays fill all internal space currently available, before they are
merged into an external array (cf. chapter 5.2).

• MEAs: External arrays occupy internal memory MEA of at least one external block size
B. In addition, up to p blocks may be prefetched from EM. Depending on p, which
should be higher on multi-disk systems, MEAs can be a considerable part of the main
memory. If there is no space left, MergeExternalArrays is executed (cf. chap-
ter 5.3). Since this operation is quite expensive, it should not be executed frequently.
Let’s find out how much data can be filled into the PQ before a MergeExternalAr-
rays operation is necessary.
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Figure 12: Internal memory allocation
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The amount of data in a single EA decreases with a rising number of EAs, since there
is less space for IAs, the more EAs exist. When an empty newPQ instance is consec-
utively filled, the amount of data after the l-th FlushInsertionHeaps operation is
given by

voll ≈
l∑

k=0
M −Mmiscellaneous − k ∗MEA

Note, that the equation assumes that the IAs fill all space available. Actually, the
wasted space cannot be larger or equal to MIHs. Since it usually holds that M >> MIHs,
our assumption is appropriate.
The maximum number of EAs before a MergeExternalArrays operation is neces-
sary is given by

lmax =
⌈

M −Mmiscellaneous −MIHs

MEA

⌉

If we assume M = 16 GiB, Mmiscellaneous = 100 MiB, MIHs = 16 MiB, B = 2 MiB, and
p = 4 (4-disk system), the maximum volume is given by

volmax ≈ vollmax + MIHs = 12.652 TiB

The maximum volume is in this case over 800 times larger than the internal memory.
Together with experiences from experiments this allows the assumption, that Merge-
ExternalArrays is executed rarely and will not affect the performance in most
cases.

• MWB: Write operations are buffered in order to overlay I/O and computation, as well
as to write simultaneously to multiple disks. The size of the buffer should be at least
D ∗ B. One global buffer is sufficient, since only one external array can be created at
a time. Therefore, MWB is constant.

• MEB: The extract buffer described in chapter 5.7 is of variable size, depending on
the amount of mergeable data. However, there is an upper bound because the buffer
could occupy all internal memory and it’s size cannot be decreased from inside (i.e.
without the occurance of ExtractMin operations) without causing extra I/O. The
algorithm takes care, that there is always some internal memory left for an adequately
sized extract buffer.

• MAB: The algorithm reserves some space for the AggregatedInsert functionality.
This aggregation buffer is allowed to grow beyond this reservation if there is free space,
since the very next operation (FlushAggregatedInserts) will empty the buffer.

• Mmiscellaneous: There is a constant memory overhead for state variables and the minima
tree.
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5.9. Variants

There are some variants of our algorithm that have advantages as well as disadvantages de-
pending on the situation. The user can individually decide whether to use these modifications
or not.

Internal Arrays disabled Internal arrays have been introduced as a precursor of external
arrays for two reasons:
(i) They allow taking full advantage of the fast internal memory, as data is transferred

into external memory not until the internal memory has exhausted.
(ii) External arrays are larger if they originate not only from merging the insertion heaps but

also from the internal arrays. This means there are fewer external arrays for the same
data volume. Too many EAs can be unfavorable if their first blocks have exhausted the
internal memory and an expensive MergeExternalArrays operation is necessary.

However, if there are IAs, all elements in external arrays have passed through a merger at
least twice. Once for FlushInsertionHeaps and once for FlushInsertionHeaps. This is
extra work that can be avoided. Furthermore, ParallelMultiwayMerge is more efficient
for a larger number of sorted sequences to merge (see chapter 6). As a consequence, disabling
internal arrays can be beneficial if it is assured, that internal memory suffices for holding the
first blocks of all external arrays.

Don’t merge the insertion heaps The FlushInsertionHeaps operation merges the in-
sertion heaps after sorting them in parallel. This reduces the number of internal arrays by a
factor of P , which is important if the extract buffer hasn’t been empty during the operation
because it would otherwise cause P times more entries in the minima tree (cf. chapter 5.4).
If this case is rare (e.g. if the extract buffer is small and the heaps are big), if it doesn’t
occur at all (e.g. in the insert-all-delete-all test case), or there are few insertion heaps (P is
small), it can stand for reason not to merge the insertion heaps.
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6. Implementation Notes
Our PQ has been developed using the C++ programming language in a way that it can
easily be integrated into the Stxxl. The following gives a short overview on libraries and
algorithms use in the implementation.

Read Write Pool The Stxxl provides a useful class for buffered read and write accesses to
the hard disk. When attempting to write to the hard disk the data is first filled into a block
of size B and then delivered to the pool, together with a block id (BID) of your choice. Using
this BID, the block can be easily fetched back later. Because it’s a combined read and write
pool there will be no problems if data is fetched before it has been written out completely.

Multiway Merge Our PQ makes heavy use of parallel multiway merging. The implemen-
tation is provided by the Gnu parallel library, originally developed by Singler, Sanders and
Putze as part of the Multi-Core Standard Template Library MCSTL [19]. The algorithm
can be used both in sequential and in parallel mode. Experiments have shown, that parallel
merging brings great speedup when merging blocks of size 2 MiB. 2 MiB is the size of the
accessible area of an external array for B = 2 MiB and is therefore a rough approximation
for sequence sizes that occur in our application.
Figure 13 depicts data rates for merging a varying number of blocks. You can see there, that
on Intel16, parallel multiway merge brings a speedup of 8.6 for 16 blocks to merge. This case
occurs for example in FlushInsertionHeaps when having heaps of size 2 MiB. Note that
the Stxxl’s priority queue implementation uses this algorithm, too.
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Figure 13: Multiway Merge Performance. block size = 2 MiB.
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OpenMP For parallelizing our algorithm, we use OpenMP (Open Multi-Processing) [5].
OpenMP is a multi-platform set of compiler directives and library routines for multithreading.
It allows parallel execution of code by forking and joining threads.
Take the following code as an example:
#pragma omp parallel for num_threads(8) schedule(static)
for (unsigned int i=0; i<80; ++i) { }

Using the #pragma directive, the compiler generates code that forks 8 threads and lets each
thread execute a sequence of 10 iterations. A barrier is implicitly placed after the for loop.
Note the contrast to solutions based exclusively on libraries, which can distribute the itera-
tions not until runtime.

6.1. Implementation Issues

There were some pitfalls in the implementation, which we don’t want to withhold:

Random number generation We had a very subtle issue with random number generation.
Our benchmark tool fills the priority queue in parallel with random values. Since in C++,
rand() is not thread-safe, we use rand_r(&seed) with one random seed for each thread.
The following code was used:
std::vector<unsigned int> seeds(P);
// omitted here: initializing the seeds...
#pragma omp parallel for num_threads(P) schedule(static)
for (unsigned int i=0; i<n_elements; ++i) {

int val = rand_r(&seeds[omp_get_thread_num()]);
pq.push(val);

}

It turned out that rand_r() was a serious bottleneck, data rates were much higher when using
a constant or a pseudo-random number depending only on i. The reason is that probably
all seeds share the same cache line, what causes losses due to synchronization. The solution
is to use a thread local variable:
#pragma omp parallel
{

unsigned int local_seed = global_seed * omp_get_thread_num();
#pragma omp for schedule(static)

for (unsigned int i=0; i<n_elements; ++i) {
int val = rand_r(&local_seed);
pq.push(val);

}
}
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Avoiding dynamic allocation In the beginning, pointers were used for referring to insertion
heaps, to the extract buffer, and to sorted arrays because this makes it easy to manage
them and keep data in place. However, this has downsides. First, one has to manually
delete objects created with C++’s new operator. This encourages memory leaks. Secondly,
additional indirections can affect the performance negatively. For example the comparators
used for the winner trees access the values behind these pointers very frequently.
We have replaced nearly all pointers and use stack-allocated structures now. To avoid memory
copying, some C++11 features are used. For example, the command internal_arrays.
emplace_back(values) creates an internal_array object in place and passes the values
attribute to it’s constructor. The constructor uses std::swap to swap the contents of the
passed vector into the object’s own value vector. This prevents deep copying.
In multiple cases, the priority queue needs to remove empty arrays. We use the common
erase-remove idiom:
internal_arrays.erase( std::remove_if(

std::begin(internal_arrays), std::end(internal_arrays),
is_array_empty_operator() ), std::end(internal_arrays) );

The remove_if function moves non-empty arrays to the begin and empty arrays to the end.
When using pointers to arrays this is no problem. However, with stack-allocated structures
this can cause great performance losses due to memory copying. The solution is to define a
C++11 move operator. The move operator of a class T moves the contents of another object
of type T into it’s own object.

Avoiding library calls Some performance improvements have been achieved by remov-
ing calls to dynamic libraries like libgomp by OpenMP. Like described in chapter 5.5, the
bulk_insert_step() function inserts an element into the insertion heap that is assigned
to the calling thread. Since the insertion heaps are indexed with the thread ids, a call to
omp_get_thread_num() is necessary. Formerly, this was done in bulk_insert_step(), re-
sulting in |bulk| expensive calls to a dynamic library. A better method is to request the id
only once per thread and to pass it to bulk_insert_step():
#pragma omp parallel
{

unsigned int thread_id = omp_get_thread_num();
#pragma omp for schedule(static)

for (unsigned int i = 0; i < bulk.size(); ++i) {
bulk_insert_step(bulk[i], thread_id);

}
}
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7. Experiments
In this chapter we evaluate the performance of our priority queue implementation in different
situations.

7.1. Testbed
For the experiments, we use an eight-core system with seven hard disk drives and a 16-core
system with four HDDs. Due to hyper-threading there are twice as many virtual cores on
both machines. A detailed description can be found in table 2. Read and write bandwidths
for singe storage drives as well as for parallel accesses have been measured. The external
block size B is 2 MiB on all systems.

Intel8 2 x Intel Xeon X5550 2.66 GHz (8 physical cores in total)
L1 cache: 4x32 KiB I, 4x32 KiB D
L2 cache: 4x256 KiB
L3 cache: 8 MiB shared
48 GiB RAM
7 x SATA: 112 MiB/s r/w each, 537 MiB/s parallel r/w

Intel16 2 x Intel Xeon E5-2650 v2 2.60GHz (16 physical cores in total)
L1 cache: 8x32 KiB I, 8x32 KiB D
L2 cache: 8x256 KiB
L3 cache: 20 MiB shared
128 GiB RAM
4 x SATA: 122 MiB/s r/w each, 455 MiB/s parallel r/w

Table 2: Testing Systems

7.2. Competing algorithms
In order to have an objective view on the performance of our algorithm, we will run the same
benchmarks on other algorithms. Not all of them are directly comparable, but still provide
comparative values for some parts of the priority queue.
The priority_queue class of the Stxxl is the main competitor in our experiments. It uses
the same external memory back-end, so influences from different parametrization of hard
disk accesses can be excluded. Furthermore, the implementation allows us to easily limit the
main memory usage, just as we will limit it for our algorithm. Thereby the volume of the
test case can be reduced and data is still written out to EM.
Because the interface is compatible to the Stl it makes sense to compete with it’s priority
queue, too. Since there there is neither EM support nor a simple way to limit the memory
usage, we will only compare the internal memory part of our priority queue with it.
An upper bound for the EM performance is given by Stxxl’s sorter class. It’s an EM sorter
consisting of two phases. First, the container is in write mode, during which all elements are
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filled into it. Internally, the elements are buffered in buckets of size Θ(M). When the bucket
overflows, it is sorted and written to EM. After finishing the write phase by calling sort(),
there are k sorted runs in EM. The sorted sequence is built by merging them in parallel. This
scheme is very similar to the one we use in our algorithm, but Sorter conforms to a weaker
problem definition, since ExtractMin operations are disallowed in the write phase.
The first part of this chapter focuses on finding adequate values for two important parameters
of the priority queue: The number of insertion heaps nIHs and the size of the heaps. Fur-
thermore, we determine the smallest bulk size for which parallel insertion is beneficial. The
corresponding benchmarks all run in internal memory, since the choice of these parameters
is less crucial in external-memory test cases, where the EM bandwidth is a limiting factor in
some cases. Using these parameters, the performance of our priority queue is then intensively
compared to the performance of the competing algorithms both in internal and in external
memory.
In the following, b will stand for the bulk size, H for the size of a single insertion heap, p for
the size of each array’s prefetch buffer and w for size of the external array write buffer.
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7.3. Bulk Size

For the usage of our bulk insertion interface, it is important to know from which bulk size on
it outperforms sequential insertion. Note that there are two variants for sequential insertion:
Single insertion (i) and sequential bulk insertion (ii). They differ in the following: (i) inserts
the element into a random insertion heap, and updates the minima tree if and only if the root
of this heap has changed. (ii) inserts all elements of the bulk into random heaps one after
another. We assume that afterwards, the roots of multiple heaps have changed. Therefore,
instead of updating the minima tree for each element (b · dlog2(nIHs)e comparisons), it is
rebuilt as a whole (nIHs − 1 comparisons). In figure 14, we can see that (ii) is faster than
(i) for bulk sizes larger than 8. However, this value may depend on the number of insertion
heaps.
Parallel bulk insertion outperforms sequential bulk insertion as well as StxxlPQ’s bulk
insertion for bulks of size > 128. The slight drop of the sequential bulk insertion data rate
on Intel8 for bulks larger than 212 seems paradoxical at first glance, but can be explained
with suboptimal IM usage: The insertion heaps are emptied if the current bulk doesn’t fit
into them. The larger the bulks are, the more space in the insertion heaps can be wasted.
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Figure 14: Internal-memory insertion data rate depending on the bulk size
V = 10 GiB, H = 1 MiB, M = 48 GiB, nIHs = Pphys
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7.4. Number of Insertion Threads

The number of insertion heaps, which should be equal to the number of threads that insert
elements of a bulk, influences the data rate in at least two ways. On the one hand, multiple
insertion heaps allow parallel sorting and concurrent PushHeap operations. As long as the
number of heaps doesn’t exceed the number of cores, more heaps imply faster bulk insertion.
On the other hand, each insertion heap needs its own entry in the minima tree, and the
larger (i.e. higher) the minima tree is, the more comparisons are needed for any change in
the insertion heaps.
We can observe this circumstance in figure 15. We ran the test on two systems, both with
support for hyper threading. However, (a) shows that the use of hyper threading cores (which
share their cache with a physical core) can be disadvantageous.
The intermixed data rate (see chapter 7.7) decreases slightly with a rising number of heaps
for P > 4 (Intel8) or P > 8 (Intel16), because the advantage of parallel insertion cannot
fully compensate for the slower deletion. In the remaining tests, we use either P = Pphys or
P = Pphys

2 .

1 4 8 12 16 24 32
0

200

400

600

800

Number of Threads

M
iB
/s

Insert 4 GiB
Intermixed 8 GiB

Overall

(a) Intel16, 32 virtual, 16 physical cores
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Figure 15: Varying the number of threads / insertion heaps.
H = 1 MiB, M = 48 GiB, b = 1024.

The gray line corresponds to the number of physical cores.
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7.5. Heap Size
The size of the insertion heaps is a parameter of great concern. Chapter 5.8 has already stated
various influences, the heap size has on the priority queue’s performance. An adequate value
is now to be found by experiments. Figure 16 shows data rates for different heap sizes.
Besides insert-all-delete-all we also use the test case that is introduced in chapter 7.7. The
volume has been chosen so that the insertion heaps overflow three times and are almost
completely filled in the end (1 KiB is left). This choice is important, since it influences
the number of FlushInsertionHeaps operations (which are quite expensive for large heap
sizes) and therefore also the number of sorted arrays. Beginning the delete sequence right after
a FlushInsertionHeaps operation would result in disproportionately good ExtractMin
performance, since in this case all data is stored in sorted sequences. For homogeneous
operations, a heap size of up to 64 MiB has turned out to be a good choice (given that there
is enough IM). For intermixed operations, sizes between 10 KiB and 1 MiB are much better.
In most cases we use 1 MiB as a trade-off.
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Figure 16: Internal-memory bulk insertion data rate for a varying heap size.
Test case: Bulk Insert V + Delete V , Bulk Insert V + Bulk Intermixed 2 · V

Intel16. b = 1024, nIHs = 16, V = 4 · P ·H − 1 KiB
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7.6. Insert-All-Delete-All

A simple and impartial tests case is inserting n elements in a row and deleting n elements
afterwards. We ran this test both in internal memory (M ≥ V + c, c constant overhead) and
with use of external memory (V > M).
Table 3 lists data rates for insertion and deletion of 10 GiB in each case. The internal memory
is sufficiently large so no writes to EM are necessary. Note that Sorter seems to write data
to EM, no matter how much IM is available.

Insert All Delete All Overall
newPQ parallel bulk 901 1037 965
newPQ sequential bulk 271 1053 431
newPQ sequential single 166 1015 286
StxxlPQ sequential bulk 286 1202 462
StxxlPQ sequential single 304 1554 508
StxxlPQ sequential bulk (1 thread) 157 1140 276
StxxlPQ sequential single (1 thread) 166 1151 290
Sorter sequential bulk 198 715 310
StlPQ sequential bulk 337 32 59

Table 3: Homogeneous internal-memory insert/delete data rates on Intel16 (MiB/s).
P = nIHs = 8, V = 10 GiB, H = 64 MiB, b = 1024

As we can see, in internal memory, newPQ outperforms the other priority queues and even
Sorter. Particularly noteworthy is newPQ’s bulk insertion data rate of 901 MiB/s, as well
as the poor ExtractMin performance of StlPQ for large volumes like this. Furthermore,
we recognize the usage of parallel merging in StxxlPQ as it benefits from multiple cores,
too. However, the parallel speedup of insertion is only about 1.8 for StxxlPQ in comparison
to a factor of 3.3 for newPQ.
Table 4 shows data rates for a data volume, that doesn’t fit into IM. V = 4 · M in this
case. Naturally, StlPQ cannot compete here. We observe, that the extraction data rates
for newPQ and StxxlPQ are lower here. This makes sense because in the IM test case, the
data rate is higher than the parallel HDD read bandwidth of the system. The insertion data
rates are limited by the EM bandwidth, too. Sorter, designed to sort large amounts of data,
is hardly surprising the best algorithm in this test case. Nevertheless, newPQ outperforms
the other priority queues in EM-insert-all-delete-all.
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Insert All Delete All Overall
newPQ parallel bulk 318 607 417
newPQ sequential bulk 196 617 297
newPQ sequential single 153 629 248
StxxlPQ sequential bulk 271 542 361
StxxlPQ sequential single 293 539 379
StxxlPQ sequential bulk (1 thread) 181 529 269
StxxlPQ sequential single (1 thread) 179 589 275
Sorter sequential bulk 410 580 480

Table 4: Homogeneous insert/delete data rates on Intel8 (MiB/s).
P = nIHs = 8, V = 16 GiB, M = 4 GiB,

H = 1 MiB, b = 1024, p = 14 ·B, w = 14 ·B
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7.7. Intermixed Insert/ExtractMin

The performance for a sequence of intermixed PQ operations is evaluated using the following
benchmark: First, n elements are inserted in row. This assures that the PQ operates on an
adequately filled state and thus sorted arrays and external-memory storage are taken into
account. Afterwards, a loop extracts an element with a probability of pextract = b

b+1 and
inserts a bulk of size b = 1024 with a probability of pinsert = 1

b+1 . Of course, this is restricted
in a way that nothing is extracted from an empty PQ. The expected value of the number of
extractions in a row is equal to the bulk size. The loop finishes when n elements have been
inserted and n ones have been extracted. Algorithm 6 shows the procedure in detail.

Algorithm 6: Benchmark Bulk Intermixed
Input: Number of elements n, Bulk size b

1 ni, nd ← 0
2 for i← 0 to n do
3 b′ ← if ni + b > 2 ∗ n then n mod b else b
4 bulk_insert_begin(b′) // only for newPQ
5 for j ← 0 to b′ do
6 r ← random value
7 bulk_insert_step(r) // resp. insert()

8 bulk_insert_end() // only for newPQ
9 ni ← ni + b′

10 for i← 0 to 3 ∗ n do
11 r ← random value ∈ {0, 1, ..., b}
12 if nd < ni ∧ nd < n ∧ (r > 0 ∨ ni ≥ 2 ∗ n) then
13 extract_min()
14 nd ← nd + 1
15 else
16 b′ ← if ni + b > 2 ∗ n then n mod b else b
17 bulk_insert_begin(b′) // only for newPQ
18 for do
19 r ← random value
20 bulk_insert_step(r) // resp. insert()

21 bulk_insert_end() // only for newPQ
22 i← i + b′ − 1

There is also a non-bulk variant which is implemented analogous to algorithm 3, but without
the inner loops and using pinsert = pextract = 1

2 .
Unfortunately, the results for the intermixed test case are not as good as the ones for insert-
all-delete-all. Tables 5 and 6 list data rates in internal and external memory.
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Insert 8 GiB Intermixed 12 GiB Overall
newPQ parallel bulk 803 284 362
newPQ sequential bulk 307 283 290
newPQ sequential single 205 214 211
StxxlPQ sequential bulk 268 307 293
StxxlPQ sequential single 291 308 302
StxxlPQ sequential bulk (1 thread) 163 240 207
StxxlPQ sequential single (1 thread) 165 236 207
StlPQ sequential bulk 367 64 88
StlPQ sequential single 393 58 81

Table 5: Intermixed data rates in internal memory (MiB/s).
Intel16. P = nIHs = 8, b = 1024, M = 48 GiB, H = 1 MiB.

Fill 8 GiB Intermixed 16 GiB Overall
newPQ parallel bulk 252 253 259
newPQ sequential bulk 166 265 221
newPQ sequential single 166 268 223
StxxlPQ sequential bulk 261 282 275
StxxlPQ sequential single 261 284 276
StxxlPQ sequential bulk (1 thread) 157 236 202
StxxlPQ sequential single (1 thread) 159 238 204

Table 6: Intermixed data rates in external memory (MiB/s).
Intel16. P = nIHs = 8, b = 1024, M = 4 GiB, H = 1 MiB, p = 8 ·B, w = 8 ·B.

It’s particularly striking that the intermixed part is with sequential bulk insertion as fast as
or even faster than with parallel bulk insertion. Remember that parallel bulk insertion more
than doubles the speed of IM-insert-all-delete-all. We spent much time in interpreting this
circumstance.
For a more detailed view, we’ve extracted the exact shares, insertions and deletions have in
the intermixed execution time. Table 7 shows that the parallel insertion is nearly three times
faster than the sequential one, but deletion is slower with parallel insertion. This is odd since
the ExtractMin code is the same in both cases. We’ve also taken care that the random
numbers and their distribution among the insertion heaps are equal for both runs.

Insert share ExtractMin share sum
parallel 10.34 s 77.34 s 87.68 s
sequential 28.68 s 57.35 s 86.03 s

Table 7: Intermixed shares
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Cache inefficiency has turned out to be the reason for this. Figure 17 depicts a bulk of four
insertions followed by two deletions, both with parallel (a) and with sequential (b) insertion.
In case (a), each CPU Pi taking part in the bulk insertion updates the insertion heap Hi

in it’s local cache Ci. ExtractMin is executed by only one CPU Pe and it’s not known
which one it is. If the minimum value is located in Hi with i 6= e, the PopHeap operation
is executed on a heap which is not locally cached. The probability for this is quite high
(pmiss = nIHs−1

nIHs
).

Since not all heaps fit into one local cache (L2 on Intel16: 256 KiB, heap size: 1 MiB),
sequences of consecutive extracts, like they occur in our test case, repeatedly overwrite the
local cache. Of course, a solution could be to choose a smaller heap size, but chapter 7.5 has
already shown that this has other disadvantages.
In case (b), one CPU C0 handles all insertions as well as the deletions and thus at least
parts of the heaps are cached in C0. Since the extraction has a large share in the overall
execution time of the intermixed test case, this explains the comparatively poor performance
of newPQ in the intermixed bulk-parallel test case.
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Figure 17: Two deletions follow four insertions into cached insertion heaps.
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8. Conclusions
The objective of this bachelor thesis has been to make much use of parallelism in an external-
memory priority queue. We have seen that, in addition to the parallelization of internal
routines, there are multiple, in some cases opposing possibilities for providing a parallel
interface. Finally, we have chosen a bulk approach where one master thread coordinates sets
of concurrent operations.
For the insertion of large bulks, a great speedup compared to the Stxxl implementation
has been observed. Unfortunately, the overhead for the thread creation is quite large, so for
smaller sets of operations, sequential execution is faster. Furthermore, the winner tree we use
for keeping track of the global minimum is more expensive for a larger number of insertion
heaps.
The parallel overhead issue also occurred in the context of internal parallelism. We’ve re-
placed several parallel sections, since they were slower than a sequential equivalent. In some
cases it’s hardly predictable whether parallel execution pays off or not. Experimentally de-
termined thresholds have been introduced then. Further improvements are certainly possible
here.
We’ve observed, that the parametrization of the priority queue has a major effect on the
performance and may depend on the use case. For example, large heaps are beneficial for ho-
mogeneous inserts, whereas for intermixed accesses, smaller heaps are better. The strategies
that schedule when to do sorting and how to distribute available main memory are of great
importance, too.
A key performance issue occurred in the context of intermixed bulk-parallel Insert and
ExtractMin operations. There are cache-inefficiencies when a thread extracts a value
from a heap that has been modified by another thread. Solutions to this are conceivable, for
example using an intelligent thread pool management. Unfortunately, this conflicts with our
implementation (fork and join parallelism) and would therefore go beyond the scope of this
thesis.

8.1. Future Work

There are some ideas, how the performance of the priority queue can be further improved.
First, the size of the external array’s prefetch buffers is currently fixed. A more flexible
dimensioning allows a more generous memory assignment for the buffers and still avoid I/O-
intensive external array merges. The amount of external array data being exclusively in
internal memory is fixed, too. Dynamically setting this size to more than one block of data
for each EA could improve the efficiency of parallel merging due to larger runs.
Analyzing the access patterns of real-world problem instances may also help to improve the
performance. Using this knowledge, further work should be done on automatically finding
good parameters depending on the machine’s properties and suitable for common access
patterns.
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But the most important step in improving the priority queue is, as already stated above,
to introduce a thread pool. Unfortunately, OpenMP doesn’t provide such functionality, so
additional libraries like Boost Threads are needed. A thread pool allows the ExtractMin
function to assign the PopHeap instruction to the thread that corresponds to the insertion
heap. This is expected to improve the performance of intermixed operations significantly.
A thread pool even allows us to overlap background work of the priority queue and I/O with
application processing. Just one possibility among others is the following: The ExtractMin
operation immediately returns the minimum value from the minima tree, while updating the
minima tree and refilling the extract buffer is assigned to a background thread from the
pool. Sorting and merging are tasks that could be done in background, too. One could
even conceive intelligent algorithms for assigning additional work (like merging some small
external arrays) to a background task while one or more cores are idle.
Similarly, the Stxxl already handles buffered EM accesses in the background and therefore
overlaps computation with I/O. But overlapping application processing with any work that
doesn’t need to be done immediately may be a whole new approach to significantly improve
the CPU utilization on parallel machines. Particularly single-threaded applications could
profit from that.
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A. Appendix

A.1. Tournament Trees

In chapter 5.4, a data structure called winner tree is used. Just like loser trees, they are a
variant of tournament trees. This chapter will introduce both of them in detail and explain
why we decided for the use of winner trees, despite the fact that loser trees are expected to
perform better on systems with cached memory. In general, a tournament tree allows O(1)
access to the minimum of a set of elements. Replacing the minimum by a new value has a
complexity of O(log(n)).

A.1.1. Winner Trees

There are k players which compete against each other in one-on-one matches for the winning
position. k is either a power of two or the game is extended by k′ := 2dlog2 ke−k always-losing
players. Then each participant plays against exactly one other one. In further rounds the
winners of the previous one play against each other. The construction is finished when there
is only one winner left. This results in exactly k′ − 1 games whose results can be illustrated
as inner nodes in a tree of size dlog2 ke like depicted in figure 18 (left).

2

2 16

2 32 16 ∞

2 40 32 ∞ 16 69 ∞ ∞

0

0 4

0 2 4 ⊥

0 1 2 ⊥ 4 5 ⊥ ⊥

Figure 18: A winner tree (left) and the corresponding index winner tree (right) for the
players {0 : 2, 1 : 40, 2 : 32, 3 : empty, 4 : 16, 5 : 69, 6 : empty, 7 : empty}

The elements we compare using this tree are the elements of the priority queue, which could
have any size. Therefore it could be disadvantageous to store them directly inside the nodes,
since cache faults are more likely if large elements are moved around. Instead, the leaves are
given distinct indices, which are referred to by the inner nodes. We call this variant an index
winner tree (see figure 18 (right) for an example).
Conveniently, the indices are required anyway because the ReplaceMin operation needs to
know which leaf corresponds to the winning value in order to replay all involved games with
the new value iteratively up. These are exactly the games on the path from the leaf to the
root. Algorithm 7 describes this replay function in detail. Note, that when using indices, a
custom comparator is needed which dereferences the indices to their values and determines
the winning index.
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Algorithm 7: Replay (Winner Tree)
Input: Winner Tree T , Node labels L, Player index i

1 node ← leaf i
2 while node 6= root do
3 node ← parent of node
4 L[node] ← L[WinnerOfGame(node, sibiling of node)]

A.1.2. Loser Trees

There is another type of tournament tree: The loser tree. Each inner node corresponds to
the loser of the game played between the winners of the child node games, here. This leaves
just one player who is not the loser in any of the k′−1 games and who is therefore the overall
winner. Winners are not stored explicitly, except for the overall winner. An example is given
in figure 19.

2

16

32 ∞

40 ∞ 69 ∞

2 40 32 ∞ 16 69 ∞ ∞

Figure 19: A loser tree for the players
{0 : 2, 1 : 40, 2 : 32, 3 : empty, 4 : 16, 5 : 69, 6 : empty, 7 : empty}. Value 2 wins.

While a loser tree looks less intuitional, it’s in many cases the better choice. Let’s look
at the ReplaceMin operation described in algorithm 8. As you can see, the procedure
only references the leaf and its ancestors, which makes two referenced memory locations per
iteration instead of three in algorithm 7. This is the main advantage over the winner tree.
Unfortunately, our priority queue does not fulfill the requirements for this kind of loser
tree. Quite often, not only the winning player changes it’s value (ExtractMin operation),
but any other player can do this (e.g. in Insert or FlushInsertionHeaps operations).
Algorithm 8 restricts the changing player to the current winner. If we try to eliminate this
restriction, we have to reference further memory locations in at least two cases:
(i) We consider the parent p of the updated leaf l. It’s possible, that l had been the loser

before and therefore L[p] = L[l]. In this case we don’t know anything about the game
result if the sibling of l isn’t regarded.
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Algorithm 8: Replay after the winning player has changed (Loser Tree)
Input: Loser Tree T , Node labels L, Winning player index i

1 contendingValue ← L[leaf i]
2 defender ← leaf i
// Note: The winner is not considered to be part of the tree

3 repeat
4 defender ← parent of defender
5 if contendingValue = LoserOfGame(contendingValue,L[defender]) then
6 swap(contendingValue, L[defender])
7 until defender = root
8 winner ← contender

(ii) The algorithm has only access to the updated leaf and to all it’s ancestors. If the leaf
had been the winner, this is sufficient. Otherwise, however, the new overall winner can
be a leaf which is not referenced by any of the regarded nodes. An example for this
case is given in figure 20. Note that the overall winner is not read in algorithm 8.

2

6

4 8

2 4 8 6
Replace
6 by 7

ReplaceMin
for player 6

6

7

4 8

2 4 8 7

Figure 20: Blue: Regarded nodes. Red: Wrong entry after running ReplaceMin

From this it follows that in our application, a loser tree would have to regard at least two
special cases and reference further memory locations. There is no advantage in terms of
runtime performance to be expected in this case. Due to that we’ve decided to use an index
based winner tree for keeping track of the global minimum.
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