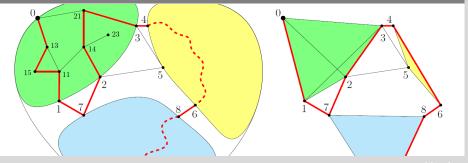


Finding Optimal Longest Paths by Dynamic Programming in Parallel

12th Annual Symposium on Combinatorial Search Kai Fieger, Tomáš Balyo, Christian Schulz, Dominik Schreiber | July 17, 2019

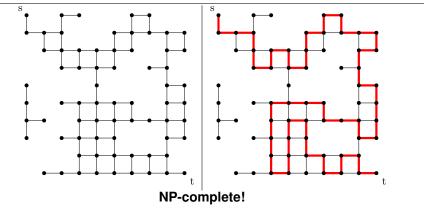
INSTITUTE OF THEORETICAL INFORMATICS, KARLSRUHE INSTITUTE OF TECHNOLOGY

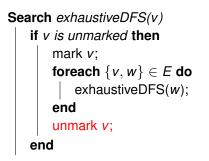


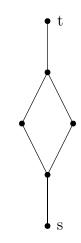
www.kit.edu

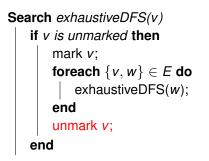
Longest Path Problem (LP)

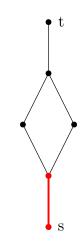
<u>Given:</u> Undirected graph G = (V, E), start and target vertex $s, t \in V$ <u>Problem:</u> Find a simple path of maximum length from *s* to *t*.

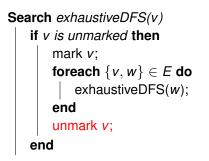


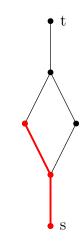


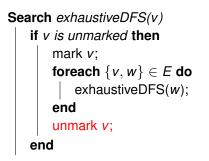


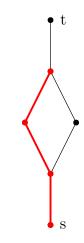


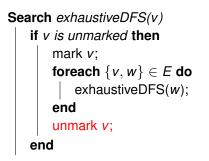


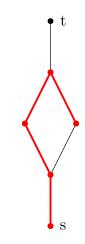


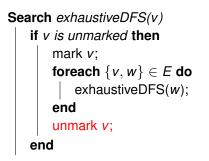


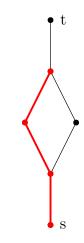




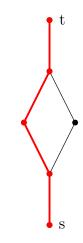


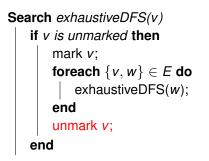


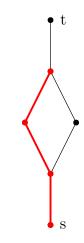


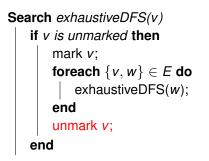


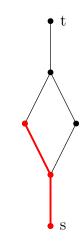

```
Search exhaustiveDFS(v)if v is unmarked thenmark v;foreach \{v, w\} \in E do| exhaustiveDFS(w);endunmark v;end
```

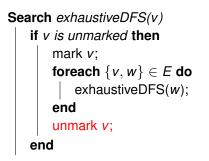


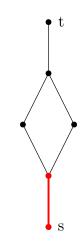


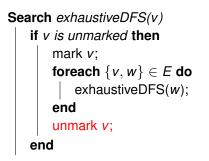


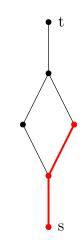




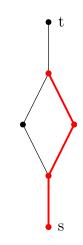




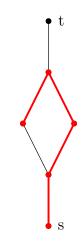




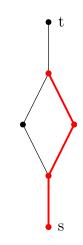

```
Search exhaustiveDFS(v)if v is unmarked thenmark v;foreach \{v, w\} \in E do| exhaustiveDFS(w);endunmark v;end
```



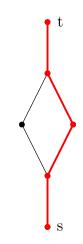

```
Search exhaustiveDFS(v)if v is unmarked thenmark v;foreach \{v, w\} \in E do| exhaustiveDFS(w);endunmark v;end
```




```
Search exhaustiveDFS(v)if v is unmarked thenmark v;foreach \{v, w\} \in E do| exhaustiveDFS(w);endunmark v;end
```




```
Search exhaustiveDFS(v)if v is unmarked thenmark v;foreach \{v, w\} \in E do| exhaustiveDFS(w);endunmark v;end
```



Generalized Longest Path Problem

Given:

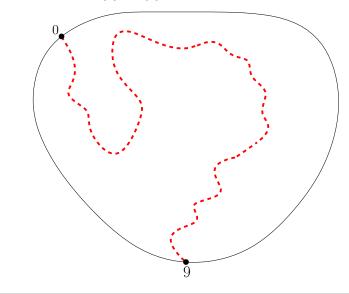
- G = (V, E) and $s, t \in V$
- a block $B \subseteq V$
- the boundary of B:

 $b(B) := \{ v \in B \mid v = s \lor v = t \lor \exists \{v, w\} \in E : w \notin B \}$

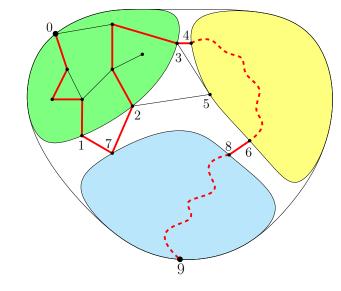
- a set of boundary vertex pairs *P* ⊆ {{*a*, *b*} | *a*, *b* ∈ *b*(*B*)} Problem:
 - Restrict G to the vertices of B
 - Find a simple path from a to b for each $\{a, b\} \in P$
 - Find these paths in such a way that they do not intersect and have the maximum possible cumulative weight.

Special case: B = V and $P = \{\{s, t\}\}$ results in LP problem for *G*

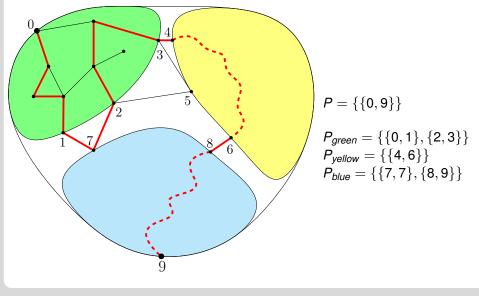
B = V and $P = \{\{0, 9\}\}$



Partition of G



Subproblems



Longest Path by Dynamic Programming

Multiple levels of partitioning $(0, 1, \ldots, L)$

- Level 0: Finest level of partitioning, many small blocks
- Level $i \rightsquigarrow i + 1$: Multiple subblocks yield a bigger block $B = B_1 \cup B_2 \cup \ldots \cup B_n$
- Level L: one single block B = V

Longest Path by Dynamic Programming (LPDP)

- Solve generalized LP for every level 0 block and every possible P
- Level i = 1, ..., L:

Combine solutions for subblocks B_1, B_2, \ldots, B_n to solve block B

Longest Path by Dynamic Programming

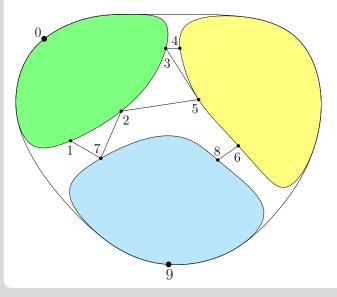
Multiple levels of partitioning $(0, 1, \ldots, L)$

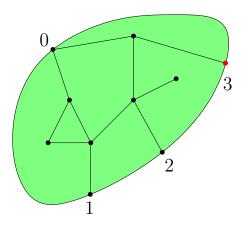
- Level 0: Finest level of partitioning, many small blocks
- Level $i \rightsquigarrow i + 1$: Multiple subblocks yield a bigger block $B = B_1 \cup B_2 \cup \ldots \cup B_n$
- Level L: one single block B = V

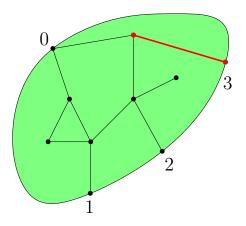
Longest Path by Dynamic Programming (LPDP)

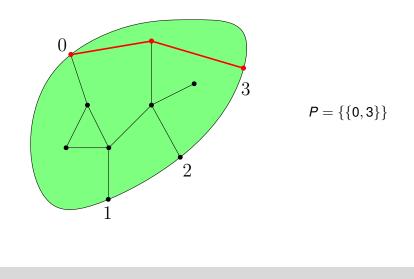
- Solve generalized LP for every level 0 block and every possible P
- Level *i* = 1, . . . , *L*:

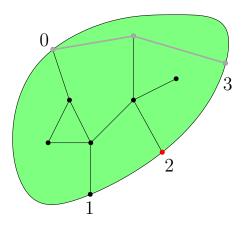
Combine solutions for subblocks B_1, B_2, \ldots, B_n to solve block B

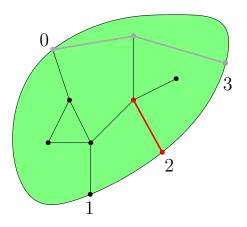


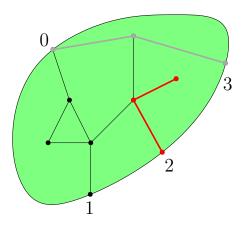


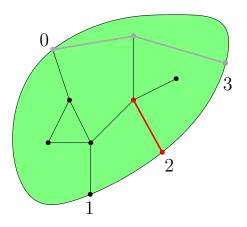


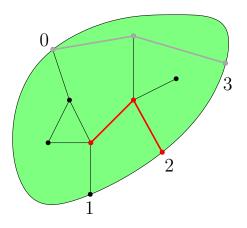


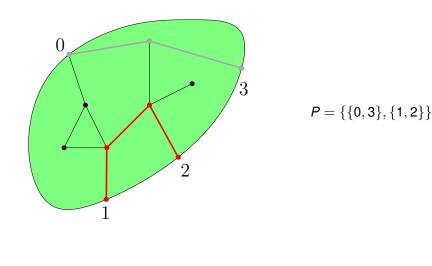


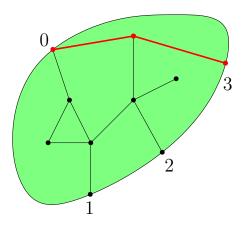


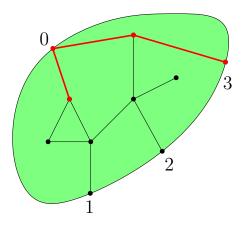


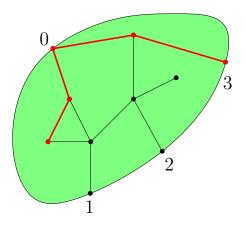




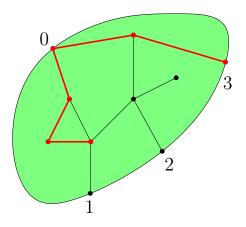




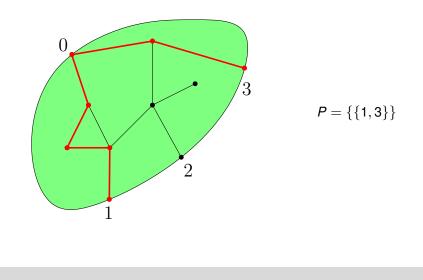




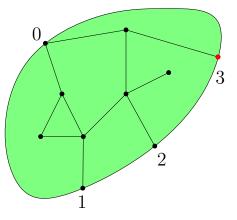
Solving a Level 0 Block



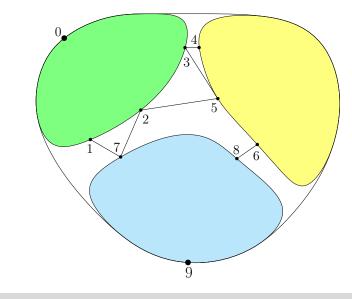
Solving a Level 0 Block

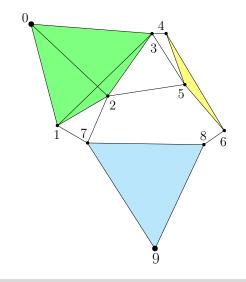


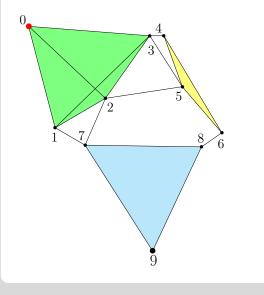
Solving a Level 0 Block



$$\{\{0\}, \{\{1\}\}, \{\{2\}\}, \{\{3\}\}, \\ \{\{0\}, \{1\}\}, \{\{0\}, \{2\}\} \dots \\ \{\{0\}, \{1\}, \{2\}\}, \{\{0\}, \{1\}, \{3\}\} \dots \\ \{\{0\}, \{1, 2\}\}, \{\{0\}, \{1, 3\}\}, \\ \{\{0\}, \{1, 2\}\}, \{\{0\}, \{1, 3\}\}, \\ \{\{0\}, \{2, 3\}\}, \{\{1\}, \{0, 2\}\}, \\ \{\{1\}, \{0, 3\}\}, \{\{1\}, \{2, 3\}\}, \\ \dots \\ \{\{0, 1\}, \{2, 3\}\}, \{\{1, 2\}, \{0, 3\}\}, \\ \{\{0, 2\}, \{1, 3\}\}$$



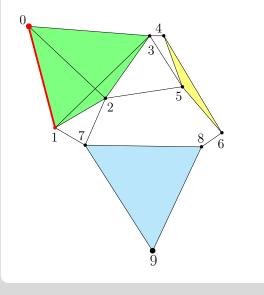




 $P = \{\}$

 $egin{aligned} & P_{green} = \{\{0,0\}\} \ & P_{yellow} = \{\} \ & P_{blue} = \{\} \end{aligned}$

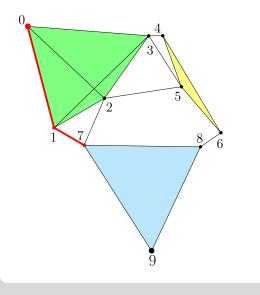
Fieger, Balyo, Schulz, Schreiber - Parallel Optimal Longest Path Search



 $P = \{\}$

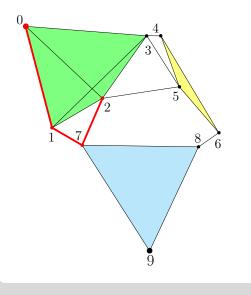
 $egin{aligned} & P_{green} = \{\{0,1\}\} \ & P_{yellow} = \{\} \ & P_{blue} = \{\} \end{aligned}$

Fieger, Balyo, Schulz, Schreiber - Parallel Optimal Longest Path Search



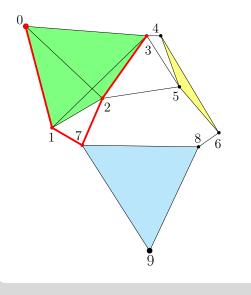
$$P = \{\}$$

 $egin{aligned} & P_{green} = \{\{0,1\}\} \ & P_{yellow} = \{\} \ & P_{blue} = \{\{7,7\}\} \end{aligned}$



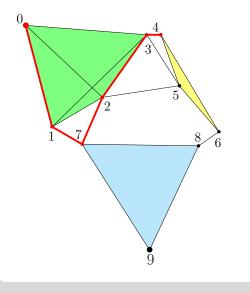
$$P = \{\}$$

$$\begin{split} P_{green} &= \{\{0,1\},\{2,2\}\}\\ P_{yellow} &= \{\}\\ P_{blue} &= \{\{7,7\}\} \end{split}$$



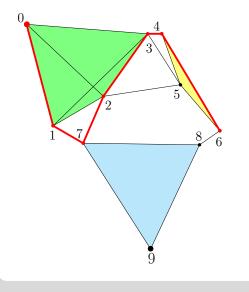
$$P = \{\}$$

$$\begin{split} P_{green} &= \{\{0,1\},\{2,3\}\}\\ P_{yellow} &= \{\}\\ P_{blue} &= \{\{7,7\}\} \end{split}$$



$$P = \{\}$$

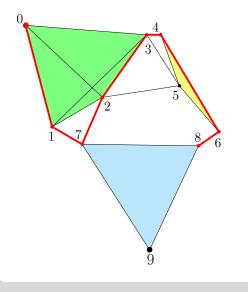
$$\begin{split} P_{green} &= \{\{0,1\},\{2,3\}\}\\ P_{yellow} &= \{\{4,4\}\}\\ P_{blue} &= \{\{7,7\}\} \end{split}$$



$$P = \{\}$$

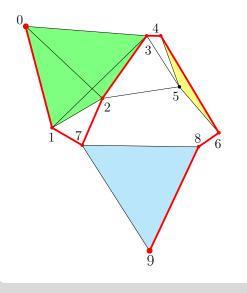
$$\begin{split} P_{green} &= \{\{0,1\},\{2,3\}\}\\ P_{yellow} &= \{\{4,6\}\}\\ P_{blue} &= \{\{7,7\}\} \end{split}$$

Fieger, Balyo, Schulz, Schreiber - Parallel Optimal Longest Path Search



$$P = \{\}$$

$$\begin{split} P_{green} &= \{\{0,1\},\{2,3\}\}\\ P_{yellow} &= \{\{4,6\}\}\\ P_{blue} &= \{\{7,7\},\{8,8\}\} \end{split}$$



$$P = \{\{0, 9\}\}$$

$$\begin{split} P_{green} &= \{\{0,1\},\{2,3\}\}\\ P_{yellow} &= \{\{4,6\}\}\\ P_{blue} &= \{\{7,7\},\{8,9\}\} \end{split}$$

Solving multiple blocks in parallel

- A block can be solved once its subblocks have been solved: independence among blocks on the same level
- Simple, synchronization-free opportunity for parallelization!

Parallelization



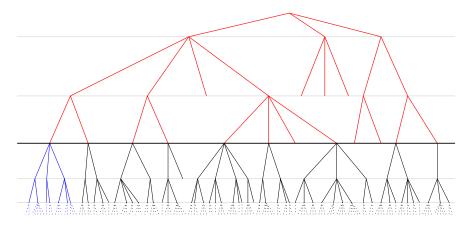
Solving multiple blocks in parallel

- A block can be solved once its subblocks have been solved: independence among blocks on the same level
- Simple, synchronization-free opportunity for parallelization!
- Inefficient: Majority of work still done sequentially

Parallelize algorithm within a single block

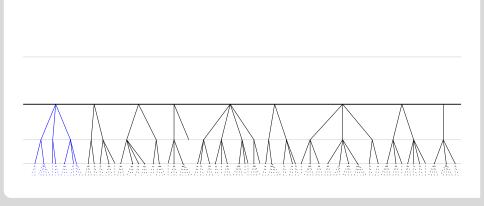
Parallelizing LPDP-Search

- Run LPDP-Search() with a limited recursion depth
- Store the current state of the search each time the limit is reached



Parallelizing LPDP-Search

- Run LPDP-Search() with a limited recursion depth
- Store the current state of the search each time the limit is reached



Parallelizing LPDP-Search

- Execute the search branches in parallel
- List of branches represents a queue
- Thread finishes a branch \rightarrow get next branch from front of the queue
 - \Rightarrow Leads to good load balancing
 - ⇒ Requires some synchronization (fetching branches, updating partial solutions)

Evaluations

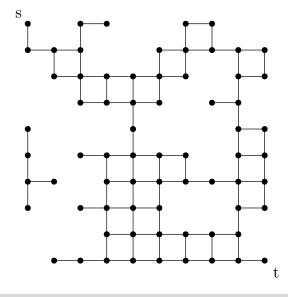
Instances

- 300 grids
 - 30%: sizes 10*x*10, 15*x*15, ..., 50*x*50 (10 instances per size)
 - 40%: sizes 10*x*10, 15*x*15, ..., 120*x*120 (10 instances per size)
- 150 road graphs: 2, 4, 6, ..., 300 vertices
- 60 word graphs: sizes 10, 20, ..., 60, 10 instances per size

Competitors

- LPDP with two configurations of graph partitioner KaHIP: eco (LPDPe) and strong/high-quality (LPDPs)
- Exhaustive Depth-first search (ExDFS)
- Stern et al. 2014 : A* and Depth-first Branch&Bound (DFBnB)

10x10 Grid. 30% Deleted Vertices



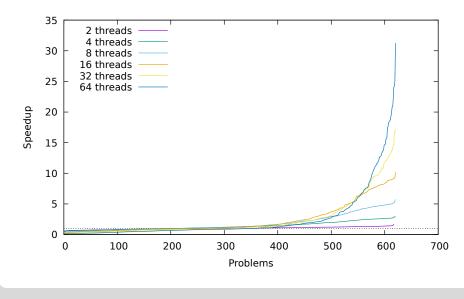
Comparison with previous algorithms

Solver	Number of Solved Instances				
	Grids	Roads	Words	Total	
A*	34	70	40	144	
DFBnB	37	85	46	168	
ExDFS	31	72	44	147	
LPDPe	296	144	58	498	
LPDPs	300	144	59	503	

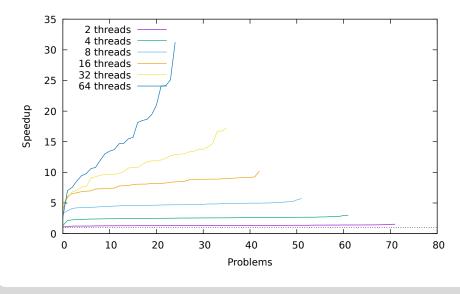
Parallel Speedups

Threads Parallel		Both	Speedup All		Speedup Big			
meaus	Solved	Solved	Avg.	Tot.	Med.	Avg.	Tot.	Med.
2	618	618	1.038	1.360	1.031	1.335	1.363	1.331
4	624	621	1.392	2.623	1.224	2.542	2.638	2.564
8	627	621	1.788	4.833	1.189	4.707	4.913	4.720
16	628	621	2.257	8.287	1.127	8.097	8.569	8.208
32	629	621	2.344	10.714	0.987	11.272	11.553	11.519
64	633	621	2.474	11.691	0.889	15.180	13.512	14.665

Parallel Speedups



"Hard" Instances (weak scaling)



Conclusion

- New exact algorithm LPDP for longest path problem by graph partitioning and dynamic programming
- Experiments: LPDP outperforms previous exact algorithms on nontrivial problems
- Efficient parallelization of our algorithm: Significant speedup for up to 64 threads

Thank you for your attention!

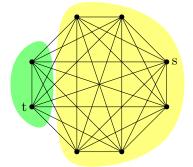
Worst Case Performance

Clique/Complete graph

- random vertices $s \neq t$
- random edge weights \in [0, 100]

LPDP partitioning:

Level 0: two blocks B₁ and B₂
B₁ contains s and 75% of all vertices
B₂ contains t and 25% of all vertices
Level 1: one block B = V



Worst Case Performance

vertices	exhDFS	LPDP		
	runtime [s]	runtime [s]	speedup	
8	< 0.001	0.001	0.102	
9	<0.001	0.002	0.262	
10	0.005	0.007	0.758	
11	0.034	0.031	1.098	
12	0.278	0.254	1.095	
13	3.107	0.527	5.895	
14	37.761	3.682	10.255	
15	535.457	40.667	13.167	
16	N/A	568.151	N/A	
17	N/A	1081.140	N/A	

Fieger, Balyo, Schulz, Schreiber - Parallel Optimal Longest Path Search

Worst Case Performance

vertices	exhDFS	LPDP		
	steps	steps	speedup	
8	3 914	5 828	0.672	
9	27 400	11 532	2.376	
10	219 202	62 552	3.504	
11	1 972 820	478 234	4.125	
12	19 728 202	4 760 073	4.145	
13	217 010 224	8 659 923	25.059	
14	2 604 122 690	66 442 136	39.194	
15	33 853 594 972	738 510 944	45.840	
16	N/A	9 995 560 186	N/A	
17	N/A	16 468 631 539	N/A	