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Basics – Hash Tables

ubiquitous dictionary datastructure

we do not consider chaining

find (preferably O(1))
insert

erase (preferably O(1))

not space efficient for small elements
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“Classic” Space Efficient Hashing

densely filled table

lots of collisions

needs good collision handling

static size (post-initialization)

fixed number of elements
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Final Size Not Known A Priori

conservative estimate

strict bound might not be reasonable

less space efficient
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Final Size Not Known A Priori

conservative estimate

optimistic estimate

might overfill

needs growing strategy
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Final Size Not Known A Priori

conservative estimate

number of elements changes over time

optimistic estimate

cannot be initialized with max size
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Resizing

growing has to be in small steps

basic approaches

additional table full migration inplace+reorder

+

reorder

most common
in libraries
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Secondary Contribution – Efficient Growing

addressing the table (no powers of two)

conventional wisdom: modulo table size

faster: use hash value as scaling factor
idx(k ) = h(k ) · size

maxHash + 1

very fast migration due to cache efficiency
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Secondary Contribution – Efficient Growing

addressing the table (no powers of two)

conventional wisdom: modulo table size

faster: use hash value as scaling factor
idx(k ) = h(k ) · size

maxHash + 1

very fast migration due to cache efficiency

inplace variant going from right to left
not portable
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Multi Table Approach

T = 2c subtables with expected equal count
reduces memory during subtable migration

h(k )⇒ ht (k ) for the subtable hp(k ) within the table

ht (k )
hp(k )
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Cuckoo Displacement

H alternative buckets per element
h1(k ), ..., hH (k )

buckets of B cells

if buckets are full, move existing elements

breadth-first-search

H-ary B-Bucket Cuckoo Hashing
[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]

h1(k )

h2(k )
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Contribution – Dynamic Space Efficient Cuckoo Table

use subtables of unequal size (use powers of 2)

use displacements to equalize load imbalance

doubling one subtable⇔ small overall factor

hi (k )⇒ hi t (k ) table and hip(k ) position in table

h2t (k ) h1t (k )
h2p(k ) h1p(k )
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Result – Insertion into Growing Table
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Result – Word Count Benchmark
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Result – Load Bound
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Conclusion

lack of published work on dynamic hash tables

cuckoo displacement offers more untapped potential

only dynamic tables offer true space efficiency

even simple techniques are largely unpublished

code available:https://github.com/TooBiased/DySECT

DySECT
addressing uses bit operations
no overallocation constant lookup
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(Ab)using Overallocation

tab 0 tab 1 tab 2

allocation (initially unmapped) mapped memory

subtables are islands of physical memory in a virtual
allocation

inplace growing

no explicit indirection

limited portability

+

+

-

writing to virtual memory ≈ increasing local allocation
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Result - Successful Find
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Result - Unsuccessful Find
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