
Dynamic Space Efficient Hashing

Presentation · 05. September 2017
Tobias Maier and Peter Sanders

KIT – University of the State of Baden-Wuerttemberg and
National Laboratory of the Helmholtz Association

INSTITUTE OF THEORETICAL INFORMATICS · ALGORITHMICS GROUP

www.kit.edu



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Basics – Hash Tables

ubiquitous dictionary datastructure

we do not consider chaining

find (preferably O(1))
insert

erase (preferably O(1))

not space efficient for small elements

1



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

“Classic” Space Efficient Hashing

densely filled table

lots of collisions

needs good collision handling

static size (post-initialization)

fixed number of elements

n

εn

+

2



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Final Size Not Known A Priori

conservative estimate

strict bound might not be reasonable

less space efficient

n

εn

n′

εn′

n ≤ n′

3



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Final Size Not Known A Priori

conservative estimate

optimistic estimate

might overfill

needs growing strategy

n

εn

n′

εn′

n ≈ n′

slow

n′

εn′

needs growing

3



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Final Size Not Known A Priori

conservative estimate

number of elements changes over time

optimistic estimate

cannot be initialized with max size

3



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Resizing

growing has to be in small steps

basic approaches

additional table full migration inplace+reorder

+

reorder

most common
in libraries

4



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Secondary Contribution – Efficient Growing

addressing the table (no powers of two)

conventional wisdom: modulo table size

faster: use hash value as scaling factor
idx(k ) = h(k ) · size

maxHash + 1

very fast migration due to cache efficiency

5



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Secondary Contribution – Efficient Growing

addressing the table (no powers of two)

conventional wisdom: modulo table size

faster: use hash value as scaling factor
idx(k ) = h(k ) · size

maxHash + 1

very fast migration due to cache efficiency

5



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Secondary Contribution – Efficient Growing

addressing the table (no powers of two)

conventional wisdom: modulo table size

faster: use hash value as scaling factor
idx(k ) = h(k ) · size

maxHash + 1

very fast migration due to cache efficiency

inplace variant going from right to left
not portable

5



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Multi Table Approach

T = 2c subtables with expected equal count
reduces memory during subtable migration

h(k )⇒ ht (k ) for the subtable hp(k ) within the table

ht (k )
hp(k )

6



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Cuckoo Displacement

H alternative buckets per element
h1(k ), ..., hH (k )

buckets of B cells

if buckets are full, move existing elements

breadth-first-search

H-ary B-Bucket Cuckoo Hashing
[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]

h1(k )

h2(k )

7



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Cuckoo Displacement

H alternative buckets per element
h1(k ), ..., hH (k )

buckets of B cells

if buckets are full, move existing elements

breadth-first-search

H-ary B-Bucket Cuckoo Hashing
[Pagh, Dietzfelbinger, Mehlhorn, Mitzenmacher, ...]

h1(k )

h2(k )

7



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Contribution – Dynamic Space Efficient Cuckoo Table

use subtables of unequal size (use powers of 2)

use displacements to equalize load imbalance

doubling one subtable⇔ small overall factor

hi (k )⇒ hi t (k ) table and hip(k ) position in table

h2t (k ) h1t (k )
h2p(k ) h1p(k )

8



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Contribution – Dynamic Space Efficient Cuckoo Table

use subtables of unequal size (use powers of 2)

use displacements to equalize load imbalance

doubling one subtable⇔ small overall factor

hi (k )⇒ hi t (k ) table and hip(k ) position in table

h2t (k ) h1t (k )
h2p(k ) h1p(k )

8



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Contribution – Dynamic Space Efficient Cuckoo Table

use subtables of unequal size (use powers of 2)

use displacements to equalize load imbalance

doubling one subtable⇔ small overall factor

hi (k )⇒ hi t (k ) table and hip(k ) position in table

h2t (k ) h1t (k )
h2p(k ) h1p(k )

8



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Result – Insertion into Growing Table

enforced min load δ
0.85 0.90 0.95 1.0

tim
e

pe
ro

p
·(

1−
δ
)

0
50

15
0

25
0[n
s]

1
1−δ “expected time” per insertion

B =8, H =3DySECT
Cuckoo
Lin Prob
Robin Hood

B =8, H =3

9



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Result – Word Count Benchmark

enforced min load δ
0.85 0.90 0.95 1.0

tim
e

pe
ro

p

0
20

0
40

0
60

0
80

0

not normalized

[n
s] DySECT

Cuckoo
Lin Prob
Robin Hood

B =8, H =3
B =8, H =3

CommonCrawl (avg. 12×)

10



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Result – Load Bound

0.9

216

0.99

0.999
1

218 222 224

0.927

0.967
0.978

0.989

0.997
0.997
0.998
0.9998

number of cells

hi
gh

es
ta

ch
ie

ve
d

lo
ad

220

B =8, H =3
B =8, H =2
B =4, H =3
B =4, H =2

we are in cooperation to prove bounds

11



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Conclusion

lack of published work on dynamic hash tables

cuckoo displacement offers more untapped potential

only dynamic tables offer true space efficiency

even simple techniques are largely unpublished

code available:https://github.com/TooBiased/DySECT

DySECT
addressing uses bit operations
no overallocation constant lookup

12



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

(Ab)using Overallocation

tab 0 tab 1 tab 2

allocation (initially unmapped) mapped memory

subtables are islands of physical memory in a virtual
allocation

inplace growing

no explicit indirection

limited portability

+

+

-

writing to virtual memory ≈ increasing local allocation

13



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Result - Successful Find

1.0
load factor

0.950.90.850.8

tim
e

pe
ro

p
[n

s]

10
0

20
0

30
0

40
0

0

DySECT
Cuckoo
Lin Prob
Robin Hood

B =8, H =3
B =8, H =3

14



Tobias Maier – Dynamic Space Efficient Hashing Institute of Theoretical Informatics
Algorithmics Group

Result - Unsuccessful Find

1.00.950.90.850.8
load factor

tim
e

pe
ro

p
[n

s]

10
0

20
0

30
0

40
0

0

DySECT
Cuckoo
Lin Prob
Robin Hood

B =8, H =3
B =8, H =3

15


