
Bachelor Thesis

Using Per-Cell Data to accelerate
Open Addressing Hashing Schemes

Jan Benedikt Schwarz

Submission date: 13.05.2019

Supervisor: Prof. Dr. rer. nat. Peter Sanders,
M. Sc. Tobias Maier

Institute of Theoretical Informatics, Algorithmics II
Department of Informatics

Karlsruhe Institute of Technology



Hiermit versichere ich, dass ich diese Arbeit selbständig verfasst und keine anderen, als die
angegebenen Quellen und Hilfsmittel benutzt, die wörtlich oder inhaltlich übernomme-
nen Stellen als solche kenntlich gemacht und die Satzung des Karlsruher Instituts für
Technologie zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung
beachtet habe.

Ort, Datum

3



Zusammenfassung
Hash Tabellen werden fast überall verwendet, wobei von der Such Opera-

tion am meisten Gebrauch gemacht wird. Diese Arbeit beschäftigt sich mit
der Speicherung von zusätzlichen Daten pro Zelle um die Performance von
Open Addressing Hashing Schemes zu verbessern. Es werden Variationen von
linear probing, robin hood hashing und hopscotch hashing vorgestellt, welche
diese Daten benutzen um ihre Performance zu verbessern. Außerdem wird
zwischen den Speichermöglichkeiten dieser Daten verglichen, diese können en-
tweder innerhalb der Hash Tabelle oder außerhalb in einer eigenen Tabelle
gespeichert werden. Einige Variationen haben sich in den Tests als sehr erfol-
greich gezeigt, so war es zum Beispiel möglich erfolgreiche Suchanfragen, im
Vergleich zu linear probing, um bis zu 80% zu verschnellern.

Abstract
Hash tables are used nearly everywhere, often for a find heavy workload.

This thesis deals with the use of per-cell data to accelerate the performance of
open addressing hashing schemes. It introduces variations of linear probing,
robin hood hashing and hopscotch hashing which use this additional data to
accelerate their performance. In addition, we compare how the additional data
can be stored, which is either inside the hash table between its cells or outside
of it in a second array. Some variations have shown to be quite competitive,
one of them, for example, had up to 80% faster successful lookup times than
linear probing.
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1 Introduction

1 Introduction

1.1 Overview

Hash tables have become one of the most used data structures in computer science. Their
main use is to store key-value pairs and allow access to the pairs though their keys. To
achieve fast lookup times the key is hashed and then used as the index where the element
is stored. However a problem occurs once two elements are hashed to the same index,
which is called a collision. Hash tables have lookup times of Θ(1) if they are mostly
empty, but the collision resolution has a large impact on the performance the more the
table is filled. Therefore it is important to find a trade-off between size and speed.
One of the most common practices for collision resolutions is open addressing, where el-
ements with collisions are stored at another index of the array, which previously had no
element. The most common technique used for open addressing, linear probing, stores
elements in the first empty cell after the already filled one. Alternative hashing schemes
like hopscotch and robin hood hashing often try to reposition other elements in the table
for a more favorable position.
While hash tables are used for a variety of applications, the workload of the hash table
varies and the used hash table should be adjusted to the workload of its application.
Using a hashing schemes that optimizes the operation which an application uses the most
can greatly increase the overall performance. For example, a word by word translator
mostly has successful lookups, therefore a hash table with optimal successful lookup per-
formance is desired even if the insert, delete or unsuccessful lookup operation had a worse
performance. A duplicate detector on the other hand, which only inserts elements until
the insertion is unsuccessful because an element is a duplicate and already in the table,
should be tuned for fast insertions.
The contribution of this paper is twofold. First, it introduces variations of the known
cache efficient algorithms linear probing, robin hood hashing and hopscotch hashing that
use per-cell data to e.g. improve negative find performance of linear probing, reduce cache
misses of robin hood hashing or reduce the additional space of hopscotch hashing. Sec-
ond it introduces and compares different ways of storing per-cell data for each collision
resolution method. The hashing schemes in this work are easily swappable so one can
test which is best for a given application. Last, it will be elaborated where each hashing
scheme would fit best.

1.2 Related Works

Linear Probing [8] stores all elements in a continuous array where each cell can store
one element. Elements are stored at the first empty cell after the cell with the index of
the elements hashed key. Linear probing is the most commonly used technique and using
per-cell data can optimize it for specific aspects.

Robin Hood Hashing was introduced by Pedro Celis in 1985 [3] and is a variation of
linear probing that stores all elements in a sorted order. This is used to reduce variance
and improve the performance of unsuccessful lookups. In this work we will use the sorting
to our advantage to allow faster lookups and deletions though the usage of per-cell data.

Coalesced Hashing [12] splits the table into two segments. The first segment is used
as addressing region and has the same number of cells as the hash functions range. The
second segment called cellar is solely used to store elements that caused collisions. This
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1.3 Outline

hashing scheme already uses per-cell data for pointers to create a linked list for each group
of elements with the same hash.

Hopscotch Hashing [6] is a hashing scheme where elements are stored in a constant
sized neighborhood around the cell they are hashed to. A per-cell bitmask is used to
reduce the number of cells that have to be looked at in the case of a contains operation.
In this work we will try to reduce the bits needed for each cell to lower the space used
and test different storage methods to improve the cache friendliness.

Chained Hashing [8] stores elements with the same hash in a dynamically allocated
linked list. While its theoretical performance is great, it is not cache friendly because of
its dynamic allocations and indirections. While we will not explore this method further
because it demands dynamic allocation, other works [11] have shown that per-cell data
can be used to accelerate chained hashing.

Cuckoo Hashing [9, 7] assigns elements to two cells and an element has to be stored in
one of them. If both cells are filled the element is swapped with one of the elements the
assigned cells. The element that is removed from its cell is then stored at the other cell it
is assigned to. If this cell is also filled, the same occurs again for the element at that cell.

1.3 Outline

Chapter 2 provides an overview of a hash table that uses per-cell data (Section 2.1) and
why using such data can be advantageous (Section 2.2). Lastly it describes how this data
can be stored by using an additional array or increasing the space of the hash table and
placing it between the cells of the table (Section 2.3).
Different hashing schemes that use per-cell data, as well as the hashing scheme they are
based on, are discussed in Chapter 3. It starts with a description of open addressing and
displacement (Section 3.1). Then it provides general information about linear probing and
variations of it. These variations store if an element was hashed to a cell or create an upper
bound for the maximum displacement an element can have (Section 3.2). Section 3.3 is
about robin hood hashing and its variations which optimize the time it takes to find
the first element that is hashed to the same cell as the key that is searched. The final
Section 3.4 describes hopscotch hashing and how the per-cell data it needs could be
reduced by allowing bits to address multiple cells or using one bit that indicates if there
is an element outside the neighborhood.
In Chapter 4 the different hashing schemes are empirically evaluated using two different
scenarios. In the first scenario (Section 4.3) we ignore the additional space that is allocated
for the per-cell data and fill the hash table up to 60%. In the second scenario (Section 4.2)
each hash tables allocated space is fixed, giving hash tables which use less per-cell data
a higher capacity. The table is filled up to 90%, to simulate a situation where allocated
space is a major concern. Future research targets for hashing schemes with per-cell data
are discussed in Chapter 5 and the conclusion of this work is provided in Chapter 6.
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2 Acceleration Data

2 Acceleration Data

In this thesis additional data is stored for each per cell, called acceleration bits, to improve
the performance of hashing schemes. This chapter introduces a notation scheme for this
data, possible uses as well as different methods to store it.

2.1 Notation

A hash table contains elements that consist of a key k and a value v. Furthermore, hash
tables use a hash function h(k) that maps the key to an integer in range of the hash tables
capacity as indexer. If the cell to which an element is hashed to, which called assigned
cell, is already filled by an element that was inserted earlier, it gets stored in another
nearby cell. We call the index of the cell where an element with key k is stored X(k). In
this paper we inspect hash tables that store nA additional bits for each index. These are
called acceleration bits A[x], with Ai[x] being the i-th acceleration bit at index x. A Data
Pair P [i] is a pair of containing the element and the acceleration bits at index i. The
acceleration table A is treated as an array containing the acceleration bits of all indexes.
A hash tables capacity is the maximum number of elements it can store and its physical
size is the space needed to store the hash table. A hash table which uses more bits per cell
therefore has a lower capacity than another table with the same size using less acceleration
bits.

2.2 Purpose

Each index has a set amount of acceleration bits where the hashing method can store
additional information about the hash table to boost its performance. Already known
applications using acceleration bits are hopscotch hashing where the bits give information
about the position of elements that are hashed to the index [6], and deletion flags. Deletion
flags improve deletion performance by marking the element of a cell as deleted in order to
avoid an expensive backward shift deletion[3]. Other ways to use acceleration bits explored
in this work include storing if an element was ever hashed to an index to preemptively
stop unsuccessful searches and pointing to the first element that is hashed to a cell.

2.3 Storage

For the overall performance of the table, it is important where and how the acceleration
bits are stored. If they are physically close to their corresponding element, accessing
acceleration bits and elements together becomes faster. On the other hand sequential
access on just one of them is faster if the acceleration data is stored in a separate table. If
a storing method does not fully use its allocated space it not only has a lower capacity that
is possible for a given physical space, but also loses some cache efficiency as the unused
space could be loaded into the cache. Lastly, because some hashing methods access the
acceleration bits of multiple cells sequentially, the speed of a lookup should not be ignored
even when no cache miss occurs.

2.3.1 Split Tables Storage
These methods store elements and acceleration bits in separate tables. As a result a
minimal amount of cash misses when accessing either only elements or only acceleration
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2.3 Storage

A[i]
A[i + 1]

A[i + 2]

A[i] A[i + 1]

A[i + 2]

A[i + 3] A[i + 4]

A0[i], A1[i], A2[i], A3[i], A4[i], A0[i+1], A1[i+1]

Figure 1: Data layout - split storage: acceleration table storing A(i) in an array of a bigger
data type (top-left), a continuous array (top-right) and a bit-by-bit storage
(bottom).

bits sequentially is achieved as only relevant data is loaded into the cache. On the other
hand it creates at least two cache misses when a hashing method needs a data pair,
because the element and the acceleration bits are stored physically far away from each
other. The simplest form of split table storage is to store the acceleration bits of each cell
in a data type that uses the same or a higher amount of bits and then store these data
objects in an array. The main drawback of using this method is that nA should be equal
to the size of a basic data type. Otherwise, allocated space is wasted as the remaining
bits of the data type will not be used. Because of this, nA is often bigger than needed
,e.g., using hopscotch with a bit-mask of 20 bits provides little benefit over using 32 bit as
both would need the same space. To allow more flexible sizes without wasting space we
use two other methods. The first one is bit-by-bit storage which splits the acceleration
bits into single bits and the second one continuous storage, which stores the acceleration
bits directly next to each other with no space between them. Figure 1 shows how these
storage methods would look like.

bit-by-bit Storage Each bit is stored individually, e.g. using std::bitset or std::vector<bool>
in c++, where the bits from i ∗nA to (i+ 1) ∗nA− 1 are the acceleration bits for index i.
This is especially useful if nA is very small or if each individual bit plays a different role
,e.g., when the bits are used as flags. However the cost of combining the bits is linear in
nA, making this method inefficient if a large amount of acceleration bits per cell is used.
The main advantages of bit-by-bit storage are that no space is wasted and any amount of
bits per cell is allowed. To reduce the performance dependency on nA it is also possible
to use byte-by-byte storage if nA is a multiple of eight, which uses bytes instead of bits.

Continuous The acceleration bits are directly next to each other in one array. To access
the acceleration bits of a specific index, the byte containing the first bit of the acceleration
bits that are currently demanded is interpreted as eight byte data type. Then the data
object is shifted to the left so the bit is at the start of the data object. Afterwards a
bit-mask is used to remove the suffix created by acceleration bits of later elements. This
method has a constant runtime as it does not depend on the amount of acceleration bits
each element has. The only wasted space of less than 64 bits is at the very end of the
array and insignificant. If a data type with eight bytes is used it has to be guaranteed
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2 Acceleration Data

that the acceleration bits are spread over no more than eight bytes, restricting nA to be
less than 59, equal to 60, or 64. In a 64 bit operating system using a data type bigger
than 8 bytes would result in a more expensive bit shift and is therefore not recommended.
This drawback is minor in the context of this work as all hashing methods use 32 or less
acceleration bits per cell. Nevertheless, this restriction but plays a bigger role if a 32 bit
operating system is used.

2.3.2 In Table Storage

A[i] A[i+ 1] A[i+ 2]
H[i]
H[i+ 1]
H[i+ 2]

A[i]
A[i+ 1]

A[i+ 2]

H[i]
H[i+ 1]

H[i+ 2] A[i+ 3]

Figure 2: Data Layout - in table storage: Content of a 512 bit cache line with 128 bit
elements and 32 bit acceleration data per cell for grouped storage (left) and
alternating storage (right).

In tables storage methods store the elements and acceleration bits in the same table.
If their index is the same they are stored physically close to each other, often allowing
data pairs to be accessed with only one cache miss. On the other hand sequential access
on either elements or acceleration data creates more cache misses than needed as both
are loaded into the cache while only one of them is needed. For in table storage this
thesis introduces two different storing methods. First is alternating Storage which has
acceleration bits and elements of the same index directly next to each. The second method
is grouped storage which stores groups of elements and acceleration bits. How these two
storage methods would look in practice like is shown Figure 2.

Alternating Storage Acceleration bits and elements are alternating between each
other in the array, with either the element following its corresponding acceleration bits
(which will be assumed in this work) or vice versa. Because bit shifting the elements
would be too expensive, the size of the acceleration data per cell is padded to a multiple
of eight bit. This padding guarantees that the first bit of the acceleration data as well as
the first bit of the element are always at the start of a byte. In this work we used a hash
table with 128 bit elements, resulting in the acceleration data for index i being stored at
byte (dnA/8e+ 16) · i of the hash table and the element dnA/8e bytes later.

Grouped Storage Data pairs are grouped together, such that the content of one group
take as much or less space than one cache line. If the size of a group is smaller it has
to be padded. Each group is then stored by first listing all acceleration bits, second the
padded space and lastly the elements. By guaranteeing that a group is exactly as large
as a cache line, groups do not lap over multiple cache lines and all content of a group can
be accessed with one cache miss. In the context of this work, an element has a size of
128 bits and a cache line is 512 bits long. Therefore a group first contains three 32 bit
blocks of acceleration data, then 32 bits of free space and finally the three blocks of 128
bits for elements. While it is possible to use a nA of up to 42 with this setup, it would

10



3 Hashing Schemes

require more operations to access the data and decrease performance. The main problems
with this method are the wasted space that is used for the padding and that the amount
of acceleration bits per cell is dependent on cache line and element size, forcing many
hashing schemes to use more bits than they would normally.

3 Hashing Schemes

Hashing schemes specify how and where elements are stored in a hash table how collisions
are handled. This chapter discusses open addressing and three hashing schemes that use
it: linear probing, robin hood hashing and hopscotch hashing. For each hashing scheme
multiple variations are introduced that use per-cell data to accelerate their performance.

3.1 Open addressing

Open addressing is a method for handling collisions in hash tables where all elements are
stored in a single array with a fixed size. An elements key is hashed and the hash is then
used as the index of the cell where the element will be stored. If this cell is already taken
it is placed in another, often nearby, cell of the array which is determined by the coalition
resolution. The main advantage of open addressing is its cache friendliness as all elements
are stored in the same array, often in the vicinity of the index they are hashed to. The
drawback is that it can only store a fixed amount of elements before resizing is needed
and its performance varies depending on the amount of elements in the table relative to
its size (load factor α).

3.1.1 Displacement
An elements displacement D(k) = X(k) − h(k) is the distance between its keys hashed
index and the index of the cell where it actually stored. Elements with high displacements
often take more time to find, as most find-algorithms start at the keys hashed index which
can result in additional element accesses and cache misses. Hash tables with a high load
factor have increased displacement rates as more elements share their hashes and have to
be placed somewhere else.

Note: The following sections will contain experiments for different configurations of each
variation and only a few will later be used in the evaluation. We think this is nec-
essary to avoid overfilling plots in the evaluation with configurations that are not as
competitive as others. Often each variation can use up to five different storage methods
in addition to having its own variations. For all experiments we used a fixed absolute
size of 10 million 128 bit elements and xxHash [4] as hashing function. Each configura-
tion is tested 50 times. The legend has the format (hashing scheme) (variation) (storage
method) (configuration), where storage methods can be bit (bit-by-bit storage) char (byte
by byte storage), con (continuous storage using an array containing doubles), alt (alter-
nating storage) and group (grouped storage where each group contains three data pairs).

3.2 Linear Probing

Linear probing (lp simple) is an old algorithm for hash tables that was first analyzed in
1963 by Donald Knuth. An element that has to be inserted is stored in its assigned cell
if it is empty. Otherwise, the algorithm linearly probes cells, starting at the elements
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3 Hashing Schemes

assigned cell, until an empty cell is found [8]. For lookups the algorithm probes the cells
in the same linear order as the insert operation, starting at the searched elements assigned
cell, until the element or a empty cell is found. For low load factors the number of cache
misses for each operation is low as elements can be stored close to their assigned cells in
most cases. However at higher load factors bigger clusters appear and the performance
degrades more quickly.

3.2.1 Insertion
To insert an element its key is first hashed. The algorithm then checks the content of
the elements assigned cell and stores the element there if it is empty. If the cell is not
empty because of an earlier insertion, the algorithm steps one step further in the array
and checks the content of the newly reached cell. This is repeated until an empty cell is
found. The element is then inserted and the algorithm returns.
Because no elements are swapped, linear probing can create large displacements for ele-
ments that are inserted at the start of a large cluster. On the other hand it is also very
fast as other hashing schemes, e.g, edit acceleration bits and swap or hash other elements
inside the hash table, which reduces their speed.
The estimated amount of element accesses the insertion needs to find an empty cell is
O(1 + 1/(1− α)2) [8]. For high load factors clusters appear in the hash table which have
to be traversed, increasing the amount of element accesses drastically if the load factor
comes close to 100%. The algorithm is rather cache friendly as it accesses the cells in
linear order, which is one of its main advantages.

3.2.2 Lookup
To find an element the linear probing algorithm looks at each cell in the same order as the
linear probing algorithm does for insertions. The element in each passed cell is compared
with the key that is searched. It stops once the searched element or an empty cell is found,
which takes an average of O(1 + 1/(1 − α)) [8]. Because lookups traverse the table in
the same manner as the insert operation and unsuccessful ones only stop at empty cells,
which is where the insertion algorithm would also stop, the amount of element accesses is
the same for unsuccessful lookups and insertions.
For both operations, lookups and insertions, the amount of element accesses a that single
operation performs has a high variance. This is a result of element clusters forming inside
the hash table. Therefore, elements that have their assigned cell at the very start of a
cluster could be stored at the very end of it.

3.2.3 Deletion
Because the elements are in no particular order and an element can only be found if there
is no empty cell between the element and its assigned cell, one cannot simply remove an
element. Doing so would cause later lookups to stop at the cell that contained the deleted
element, even if an element that is stored further ahead could be the searched element.
For this reason it is necessary to search for elements that are stored further ahead in the
hash table, but could also be placed into the deleted elements cell. To do so it is necessary
to hash all elements between the deleted one and the next empty cell. Starting at the cell
of the deleted element, each cell is linearly passed to find an element that can be placed
into the deleted elements cell. If the hash of a passed cells element is lower or equal to the
index of the deleted elements cell the element is moved into it. Afterwards the algorithm
continues by searching for an element that can be placed into the now empty cell where
the just moved element got taken from. This is repeated until an empty cell is reached.
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3.2 Linear Probing

It is also possible to use a lazy deletion strategy and mark the cell of a deleted element
using a deletion flag. This allows the search algorithm to skip over it. The drawback here
is that, for each cell with a deletion flag, unsuccessful lookups will on average take longer,
because empty cells without a set deletion flag are rarer. For this reason none of the tests
in this work will use deletion flags.

3.2.4 Variations
One of the main disadvantages of linear probing is, that unsuccessful lookups have to
iterate over each cell until they find an empty one to return. To improve this we present
two methods (is-Empty bit and bloom filter) that allow some of these lookups to return
without accessing any elements by using the per-cell data to sometimes guarantee that an
lookup will be unsuccessful. Another property of linear probing, which can be a problem,
is the high variance in the amount of elements a lookup has to access. To reduce this
variance we present a variation of linear probing (maximum distance) where all lookups
can return after a set amount of element accesses. Our variation of coalesced hashing also
fixes this issue by allowing lookups and insertion to skip most elements that do not have
the same hash as the currently searched or inserted element.

Is-Empty Bit To increase the performance of unsuccessful lookups, each cell has a
single bit (lp ebit), which is set if there is an element in the hash table which hash is the
index of the cell. Now the find algorithm first checks this bit and only continues if it is
set. If the bit is not set it returns as it already knows that the search will be unsuccessful.

A0[k] = 1 ⇐⇒ ∃i ∈ N : h(P [i].key) = k

For low load factors the find algorithm can often return due to this bit not being set.
Nonetheless, the performance increase is only small, since a simple linear probing algo-
rithm would not continue for long anyways as most cells are empty. On the other hand, if
the hash table has a high load factor, most of the is-Empty bits will be set and therefore
lose their effectiveness as fewer lookups can preemptively return.
This method also has a worse deletion performance as it has to check if there is another
element mapped to the same cell as the deleted element. To do this, up to all keys between
the assigned cell of the deleted element and the first empty cell have to be hashed. This
is very inefficient, however elements after the cell of the deleted element already have
to be hashed for simple linear probing and its performance is therefore not that much
worse than simple linear probings. Because deletion flags are preferred for low amounts
of deletions or low load factors, not updating the is-Empty bit if deletion flags are also
used could be advantageous. At the same time the performance increase will probably be
low for low load factors, since only a few elements have to be hashed as clusters sparse
and small for low load factors.

Bloom Filter For high load factors is-Empty bits are inefficient as most bits are set.
With the majority of cells marked because another element is mapped to them, the al-
gorithm has to continue until it finds an empty cell. To achieve a better negative lookup
performance even at high load factors a bloom filter [2, 11] can be used instead. It allows
up to 92% of unsuccessful lookups to return without accessing a single element. Bloom
filters are probabilistic data structures that can tell if an element is definitely not in a set
or if it might be in it. They use a bit array and hash elements multiple times, with each
hash being used as an index for the bit array where the bit with the index is set. To find
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3 Hashing Schemes

out if an element was inserted the same procedure is used, this time checking if the bits
are set instead of setting them. If one of the bits is not set the bloom filter can guarantee
that an element was not inserted.
A bloom filter can be used as a replacement for is-Empty bits by adding the key of an
inserted element to the bloom filter at the elements assigned cell. In this thesis only
the last bits of the hash function are used to determine an elements assigned cell. This
allows for the remaining bits to be used as the hashes of the bloom filter, improving the
performance as no additional hash functions are needed.
The amount of negative searches that pass the bloom filter is dependent on the size of
the bit array and the number of bits set for each element. While increasing these values
increases the accuracy, it also results in more allocated space or worsens the time the
algorithm needs for passing the bloom filter as it has to inspect more bits.
According to our tests (Figure 3) for low load factors (<50%) it is best to use eight bits
for the bloom with two hashes per element and a 16 bit sized filter with two hashes per
element for medium load factors (<85%). If the table size is fixed and the load factor
gets too high the 16 bits variations cannot insert all elements. In the case that the 16
bits variation cannot insert all elements an eight bit sized variation with two hashes per
element should be used again.
Simple bloom filters do not support the removal of inserted elements, therefore a new
bloom has to be created every time an element is deleted from the table. This forces the
algorithm to not only access all elements between the deleted elements assigned cell and
the cell it is stored in, which is needed for linear probing, but to also hash them.
Creating a new bloom filter on every deletion can be avoided by using a counting bloom
filter [5, 11] instead. Each bit of a simple bloom is replaced with a counter which increases
whenever the simple bloom would set the bit. Deleting an element can now be done by
simply decreasing the counters. There are two major reasons why we decided not to use
this method. First, the paper of H. Song [11] used this method with separate chaining
as collision resolution, which does not require to hash other elements when an element is
deleted while linear probing does. Second, the space needed to store a counting bloom
filter. The number of acceleration bits per cell has to be at least tripled, because using
less than 3 bits per counter could quickly lead to an overflow.

Maximum Distance This method tries to minimize the maximum displacement dmax

in the hash table. The algorithm for swapping is a variation of the one used for hopscotch
hashing, described farther ahead in Section 3.4.1. First an element is inserted using
linear probing. Afterwards it is swapped with other elements so that all elements have a
displacement lower than the current maximum displacement. If that is impossible dmax

is incremented by one and the algorithm tries again.

∀k ∈ Keys : X(k)− h(k) ≤ dmax ∧ dmax minimal

Now the find algorithm can stop if the maximum displacement is reached, as the searched
element cannot be in farther ahead, and does not need to continue until an empty cell
is reached. For backward shift deletions one can either ignore that the maximum dis-
placement could go down or use an additional data structure described in Section 3.3.2.
This would also affect the insertion time. As this method does not lower the average
displacement and forces the find algorithm to check an additional condition for every cell
it passes, the average time of successful lookups is higher. Unsuccessful lookups, on the
other hand, are only faster if the load factor is very high. This is shown in Figure 3. One
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advantage of maximum distance linear probing is that the variance of a single lookups
time is far lower.
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Figure 3: Linear probing variations throughput for successful (left) and unsuccessful
(right) lookups.

Standard Coalesced Hashing One idea is to enable the skipping of elements with
a different assigned cell than the element one is looking for by creating linked lists for
elements with the same assigned cell inside the hash table. Each cell stores a pointer
to the next element in the list inside its acceleration bits. If an element is inserted,
the algorithm follows these pointers, with the first pointer being at the cell the element
is assigned to, until it reaches the last element of the list. It then searches an empty
cell, inserts the element there and sets the pointer of the last element of the list to the
previously empty cell. To find an element one can now simply iterate the linked list that
starts at an elements assigned cell.
This method is a specific case of Coalesced Hashing without a cellar called standard
coalesced hashing [12], however there are two differences to the implementation in the
original paper. The first difference is the place where elements are stored when the
assigned cell is already filled. The original paper stores them at the very end of the
hash table while we try to store them near their assigned cell. Secondly we reduced the
number of acceleration bits needed for each cell by storing the amount of cells between the
lists elements, instead of their actual index, and use these distances as pointer by adding
the index of the current element to it. An example for our implementation of standard
coalesced hashing is shown in Figure 4.
Because lists can store their elements in the cells where other lists would start, it is
possible for an element to be hashed to a cell where an element of another list is. This
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means that the cell where a list of elements with the same assigned cells starts can be in
the middle of another list. Lists can therefore contain elements with different assigned
cells and the search operation still looks at them.
We propose another insert algorithm to guarantee that all members of a list are assigned
to the same cell (coalesced 16 sc). This is achieved by comparing the assigned cell of the
element that has to be inserted with the assigned cell of the element that the cell contains.
If they are the same, the algorithm can proceed like normal. If they are not the same the
algorithm swaps the two elements and corrects the pointer to the cell: Either to point to
the next element of the list or to point nowhere if there is no such element. Afterwards,
the element that has been removed from the hash table is inserted again. Overall this
results in lists being shorter and therefore finding an element in a list is generally faster.
Deletions with standard coalesced hashing have to be handled carefully if their value is
the distance to the next elements. They only have a limited range and, after deletions
occurred, it is possible for empty cells to exist between the elements of a list. Pointers in
a hash table with standard coalesced hashing in most cases do not shrink and their value
only decreases if they are removed after all later elements of their list have been deleted.
As a result it is far more likely for a pointer to exceed its maximum range if deletions
occur and no precautions have been taken.
To improve the longevity of the hash table using coalesced 16 we remove all elements
that are stored after the removed element and that are part of the same list, and reinsert
them. This guarantees that no empty cell exist between all removed elements and the
last element in the list that was not removed. Therefore the distance between the lists
elements remains small even after many deletion/insertion cycles.
For coalesced 16 sc on the other hand we utilize that the elements of each list all have
the same assigned cell. It allows the remaining elements of the list to all swap with the
element before them or the last element of the list to be placed in the cell of the deleted
element. As a result deletions do not increase the distance between elements, however
they also do not reduce them which should make this method worse for the hash tables
longevity. However, it is also far faster than the previous method as no additional elements
are hashed and fewer elements are accessed.
We had two other ideas for deletions that we did not implement. The first is very fast but
unsustainable: deletions simply remove an element and update the pointer pointing to the
cell that contained the element. As a result lookups have to continue until a cell without
a pointer is found, even if it passes an empty cell on the way, resulting in worse lookup
performances and a worse longevity. The second idea is for insertions to not follow the
cells pointers but instead use the same insert as simple linear probing. The pointers can
be updated after an empty cell is found. As a result it does not matter if there are empty
cells between the elements of a list and deletions do not have to worry about creating
them. If the same deletion algorithm as coalesced 16 is used the longevity of the hash
table should be guaranteed.

3.3 Robin Hood

Robin hood hashing (rh simple) was first introduced in 1985 by P. Celis and P. Larson and
J. I. Munro. The idea behind it, is to move elements based on their displacement to have a
lower variance in the overall displacement of elements. While for linear probing elements
that were inserted early generally have lower displacement than the elements that are
inserted later, and are never moved unless a deletion occurs, in robin hood hashing the
time when an element has been inserted matters little as it tries to give each element the
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2 4 1 0 2 1 0 0

0 1 0 3 2 1 0 -
i k h y c s o -

Figure 4: Example of a hash table using standard coalesces hashing (coalesced 16). The
letters represent the elements, the number at the bottom right is their hash and
the number above the distance to the next element of the list.

same displacement. Elements that have a low displacement are placed farther away from
their assigned cell to allow other elements that have a high displacement to be placed
closer to their assigned cell.

3.3.1 Insertion
To achieve that elements have a normalized displacement, the insertion algorithm swaps
elements during the insertion depending on their displacement. It goes linearly over each
cell, starting at the inserted elements assigned cell and hashes every passing element. The
displacement of each element that is passed is compared with the displacement of the
element that is currently inserted had it been in the cell instead. If the passed element
has the lower displacement it will be placed into the cell. To make space for it, the current
element in that cell and all following ones until the next empty cell are moved by one cell.
The element is then inserted into the now empty cell.
The algorithm also stores the maximum displacement that is currently in the table, allow-
ing unsuccessful find operations to stop if the maximum displacement is reached. While
the maximum displacement is needed to allow unsuccessful lookups to return early, every
time an element is moved inside the hash table its new displacement has to be calculated.
Therefore the find algorithm, which often shifts many elements by one to make space for
the currently inserted element, has to hash far more elements than it would otherwise
have to.
One property of robin hood hashing is that the elements of the table are sorted by their
hash and all elements with the same assigned cell are directly next to each other, which
will be important for the variation this thesis introduces.

3.3.2 Deletion
Each element after the deleted cell is hashed and, if the hash is lower than the index of the
cell they are in, moved one step back. If the hash is not lower it means that the element is
already in its assigned cell and cannot be shifted back, making the algorithm stop. Other-
wise, it continues until an empty cell is reached. For the maximum displacement counter,
the first method is to simply not update it and ignore that the actual maximum displace-
ment could be lower than the counter. This can be done, because it would only force
unsuccessful find operations to do more cell lookups than necessary. The second method
is to store an array of integers which tell how many elements for each displacement exist.
Therefore, the value at index zero proclaims how many elements have a displacement of
zero, the value at index one how many elements have a displacement of one, etc. The
array does not need a lot of space as robin hood keeps the maximum displacement at its
minimum. The drawback of this method is that the array has to be updated on every
swap which also includes the insert operation, therefore reducing its performance. In this
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work we choose to use neither of these methods and simply not support deletions if one
of them would be needed to not influence insertion or lookup times.

3.3.3 Variations
While robin hood hashing has a far lower variance than linear probing, the additional
performance loss of the insertion operation is often too high to justify using it. The
variations we present try to solve this by using the sorting that robin hood hashing
creates to improve the performance of lookups. Our first variation (Startpointer) will use
a pointer to skip directly to the first element that is assigned to the same cell as the
element that is searched for or that is getting deleted. The second variation (3Bit) will
scan over the acceleration bits of multiple cells to archive the same.
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Figure 5: Robin hood hashing variations throughput for successful and unsuccessful
lookups.

Startpointer Each cell gets one byte of acceleration data, called startpointer (rh sp),
which, added to the cells index, is the index of first element that is mapped to the cell.
Because hash tables that use robin hood hashing are sorted, elements with the same hash
form a chain. The startpointer can be used to determine where the chain of the elements
with the same assigned cell starts. As a result the find algorithm only has to go over this
chain to find an element.
One implementation for robin hood hashing with startpointers initiates all acceleration
data with a bytes maximum value to identify cells that have no element hashed to it. An
example of it is shown in Figure 6. Because the find algorithm only knows where a chain
starts, but not where it ends, unsuccessful lookups have to continue until the maximum
distance or an empty cell is reached. Other stop conditions, like hashing each passed
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element to see if the chain ended or searching for the startpointer that tells where the
next chain would start, are also possible. It is interesting to note that the insert algorithm
in our tests was slower if it used the startpointer to find the start of the chain. Most likely
this is because of branching issues as it has to check if the startpointer has the maximum
value.
A second implementation (rh sp lh ntb) has each cell, that contains an element but has
no element hashed to it, point to the same position as the next cell that has an element
hashed to it. Now the end of a chain is simply the startpointer of the cell that is next to
the one indicating where the chain starts. Insertions can also be improved as an element
can always be inserted at either the startpointer of the initial cell, if it previously had
no element hashed to it, or at the end of the chain. To increase the performance of
unsuccessful finds it is also possible to only use seven bits as startpointer and the last bit
as is-Empty bit (rh sp lh). On the other hand using only seven bits for the startpointers
also increases the probability that an element has a displacement larger than what is
addressable with seven bits and thus fail the insert. An unsuccessful insert because the
element was placed outside the addressable range is far less likely if eight bits are used
instead of seven.
The efficiency of the startpointer variations comes from the low amount of cells that are
accessed and the fact that these cells are all directly next to each other in the table, which
allowed for up to 100% faster lookups than simple robin hood hashing. A find operation
therefor only accesses the startpointer and all elements that are mapped to the cell, plus
a maximum of one, if its unsuccessful, creating a very low amount of cache misses.
The deletion algorithm is similar to the one used in simple robin hood hashing. The only
difference is the updating of startpointers for shifted elements.

0 2 2 7 7 1 7 7

0 0 0 1 2 2 5 -
i k h y c s o -

Figure 6: Example of a hash table using robin hood with startpointer (rh sp) with nA = 3
and is Empty bit combination. The letters represent elements and the number
to their bottom right is their keys hash.

3Bit A relative unknown variation of robin hood is based on quotient filters [1] and will
be called 3Bit in this thesis. Similar to startpointers, 3Bit robin hood only has to ac-
cess acceleration bits to find all elements that are mapped to a cell. Like a quotient filter,
a cell gets three acceleration bits, each to describe if one of the following statements is true:

• is-occupied bit: The cell has an element mapped to it
A0[i] = 1⇔ ∃j ∈ N : h(P [j].key) = i

• is-continuation bit: The key in the cell and the previous cell have the same hash
A1[i] = 1⇔ h(P [i].key) = h(P [i− 1].key)

• is-shifted bit: The element in this cell has a displacement higher than zero
A2[i] = 1⇔ h(P [i].key) = i
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To find the elements that are mapped to a cell, the algorithm first checks if the cell has
an element mapped to it and stops if that is not the case. It then goes backwards until
the first element with a displacement equal to zero is found, counting all cells that have
an element mapped to them as well as every occurrence of an unset is-continuation bit.
Afterwards it goes back to the cell where it originally started, stops counting cells that have
an element mapped to them and continues forward, only counting unset is-continuation
bits. Once both counters have the same value the first element that is mapped to the cell
is reached and the algorithm can start comparing the keys of each cell. Starting with the
second element, unsuccessful finds can be identified using the is-continuation bit. If this
bit is set, the algorithm has passed all elements that were assigned to the same cell as the
element that is searched. Therefore the search was unsuccessful and the algorithm can
return.
For insertions, because we do not use a maximum displacement, not every element that
is moved has to be hashed, since the acceleration bits can be updated without hashing
the elements (rh 3bit). However the same tactic used for the find algorithm can also be
used to find the position where an element has to be stored (rh 3bit fi). This allows us to
not hash any element in the table, and we only need to hash the element that has to be
inserted. In theory this should not change the time of element lookups, however in our
experiments the find operation was slower if 3Bit fi was used for a not yet solved reason.
As 3Bit robin hood hashing accesses the acceleration bits of multiple cells while ignoring
their element, it is recommended to use split table storage for the acceleration table. On
some occasions the 3Bit algorithm does not need all acceleration bits at once, which can
be used to increase performance if the storage method allows access of individual bits
(rh 3bit idv).
Figure 5 shows how bit-by-bit storage is worse than continuous storage, even if only three
bits are used. If eight bits are used, the difference between byte by byte storage and
continuous storage is negligible. Another important note is how variations that often
iterate over the acceleration data are far better of using split table storage. This is best
seen by looking at the startpointer variation with one hash per element using continuous
and alternating storage, as it iterates little for low load factors and more for higher ones.

3.4 Hopscotch

Hopscotch hashing was introduced in 2008 by M. Herlihy, N. Shavit and M. Tzafrir. The
idea behind hopscotch hashing is, similar to many of our variations, that finds only need
to access cells that are storing an element that was hashed to the assigned cell. To achieve
this, hopscotch hash tables (hop simple) store all elements inside a set range of the cell
they are assigned to, called neighborhood. In addition, they use per-cell data to store at
each cell the positions of elements that are assigned to the cell. They do so by using a bit
array, the nth bit of the bit array at index i denotes if the element at cell n+i is assigned
to index i.

Ai[x] = 1 =⇒ h(P [x+ i].key) = x

Now the hopscotch algorithm can skip all cells where the corresponding bit is not set as
it knows that their element is mapped to another cell. This is done by starting at the
assigned cell and looking at the first bit of the bit array, if it is set the element at the cell
is accessed. If it is not set or the accessed element was not the one that is searched, the
bit array is left shifted by one and the process repeated for the next bit until the element
is found or the bit array only has zeros remaining. Because the lookup algorithm always
checks all elements in the neighborhood of a cell, regardless if cells inside it are empty,
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deletions can be done by simply removing the element and setting the corresponding bit
in the bit array back to zero. An example for how a table using hopscotch hashing looks
like can be seen in Figure 7.

3.4.1 Insertion
To insert an element an empty cell is first searched by starting at the assigned cell of an
element and begins a linear search. If the found empty cell is inside the neighborhood of
the elements assigned cell, which means that the bit array has a bit responsible for the
empty cell, the bit is set and the element inserted. Otherwise, the algorithm has to create
an empty cell inside the neighborhood of the elements assigned cell.
This is achieved by repeatedly finding an element closer to the assigned cell that can be
moved into the empty cell without it leaving the neighborhood of its own assigned cell. To
find such an element the algorithm starts at the first cell that has the empty cell inside its
neighborhood and hashes the element in the cell. If the index of the empty cell minus the
hash is smaller than the range of a neighborhood, the element can be stored at the empty
cell and is therefore moved. If the difference is not smaller, the same repeats with the cell
one step closer to empty cell. Should the algorithm reach the empty cell, it returns with
an unsuccessful lookup. Otherwise elements are moved using this method, until an empty
cell in the range of the inserted elements bit array range is created. The element is then
inserted into this created empty cell and the responsible bit in the bit array is set.

0 0 2 3 2 5 4 -
zk h y c f o -

1 1 1 1 1 110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Figure 7: Example of a hash table using hopscotch hashing with nA = 3. The letters are
elements and the number to their bottom right is their hashed index.

3.4.2 Variations
For hopscotch hashing to work, the neighborhood has to be relative large - in this work
it contained 32 cells. However a hash table with a capacity of 10 million elements could
not be filled to 80%. To allow higher load factors without increasing the neighborhoods
size, we present hopscotch hashing with out of bounds bit. It uses an additional bit per
cell which will be set at a cell if an element was hashed to the cell but could not be placed
inside its neighborhood.
Another problem of hopscotch hashing is that often the needed amount of acceleration
data is too high. In our tests the acceleration data size was a quarter of the size of the data
array and a hash table using linear probing would have had a 25% higher capacity using
the same space. To reduce the size of the acceleration data we implemented a variation
(Areas) that allows for each bit in the bit array to be responsible for more than one cell.
This increased the neighborhoods size and allowed us to reduce the number of bits used
per cell.

Out of Bounds Bit To avoid the resizing needed in simple hopscotch hashing, one bit
is added to the bit array that indicates that there is an element assigned to the cell which
is outside its neighborhood (hop oob).

Aimax(x) = 1 =⇒ ∃j ∈ N : H(D(x+ j).key) = x ∧ j ≥ nA
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If an element can not be inserted using the simple hopscotch hashing algorithm, it is
stored inside the empty cell at which the algorithm stopped and this bit is set. Because
this only happens at large clusters in the table, only a few of these out of bounds bits are
set. If the bit is set and the element was not found inside its assigned cells neighborhood,
the find algorithm begins a linear search. This search starts at the first cell outside of the
neighborhood.
Because now linear probings search is used, deletions have to be done more carefully. In
addition to deleting the element, all elements between the first empty cell and the cell of
the deleted element have to be checked. If they are out of bounds they are moved to the
empty cell if possible, creating a new empty cell where the element was previously and the
process is repeated. This is very inefficient as shown in Figure 9. A large bit array is not
necessary anymore as its always possible to fill the hash table to its maximum capacity,
independent of the neighborhood size. As the large neighborhood of simple hopscotch
hashing is only necessary because of a few big clusters, it can be advantageous to, e.g.,
only use eight bits for the bit array if the out of bounds variation is used as it reduces the
space needed for the hash table.

Areas To increase the range of the bit array, in the hopscotch hashing with areas vari-
ation a single bit can be responsible for more than one cell. If a bit is set all cells its
responsible for have to be checked during the lookup. The following configurations were
tested in this work:

• Constant: Each bit is responsible for the same amount of cells (cons).
• Linear: It is linear increased, giving a bit one more cell than the previous bit.
• Exponential: With each bit amount of cells its responsible for doubles (exp).
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Figure 8: Hopscotch hashing with areas throughput for unsuccessful find operations, the
first value at the end of the variations name is the number of nA (8 for expo-
nential areas) and, for constant areas, the second value is the number cells each
bit is responsible for.

In Figure 8 it can be seen that for negative lookups variations where the amount of cells a
bit is responsible for increases are faster than the ones each bit is responsible for the same
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amount of cells. This is mainly because most elements are stored close to their cell and,
if a key is not found, fewer cells have to be looked up. The chance of a later bit being set
is low because most elements are stored close to their assigned cell. As a result accessing
many element because a bit that is responsible for many cells was set only happens in
a few instances. Furthermore, it is important to note that doubling the neighborhood
of cells only has a small effect on the maximum possible load factor. Simple hopscotch
hashing seems to be the best performance-wise. Nevertheless, at a high load factor it
is not usable as elements can not be placed inside their neighborhood because they are
already full (Figure 9). However the variations we presented allow a high load factor and
can be used instead.
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Figure 9: Hopscotch hashing variations throughput for insertions and deletions. The first
value at the end is the number of acceleration bits (exponential always uses 8)
and, for constant areas, the second value is how many cells each bit is responsible
for.
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4 Evaluation

4 Evaluation
Hashing schemes can be evaluated by a variety of factors like element size, hash function
and load factor [10]. In this paper a hashing schemes performance was evaluation for each
operation separately using different load factors. Hashing function and element size were
fixed while, depending on the scenario, either the hash tables capacity or its allocated
space was fixed.

4.1 Setup

The machine used for the tests had multiple AMD Ryzen 7 1800X Eight-Core CPUs which
ran at 1.9GHz. All implementations are written in C++, only use a single thread and use
xxHash as hashing function [4]. The insert operation is tested by measuring the time it
takes to fill an empty hash table with random elements to a given load factor. If one of the
tests failed because the hash table could not insert an element, we labeled the hash table as
not usable for the current load factor. For the performance of positive lookups all inserted
elements were searched once in the same order they were inserted. The performance of
negative lookups was tested by searching randomly generated elements. To measure the
throughput of deletions, the hash table was first filled to a given load factor, then we
deleted every tenth element in the order they were inserted. Afterwards the table was
filled to the load factor again. This deletion-insertion process was repeated 10 times so
that all elements that were present at the start of the deletion process had been removed.
The times between the start and end of each deletion process was measured and added
together. All hash tables were tested 50 times for each load factor, with different seeds
every time. The same seeds were used for each hash table. A compact overview of the
most competitive hashing schemes in this thesis can be seen in Table 1.

4.2 Unadjusted Capacity

Our first batch of tests (Figure 11) used an unadjusted capacity, meaning that each hash
table has the same maximum capacity, regardless of how much space they would actually
occupy. This can be useful in a scenario where speed is the primary concern and allocated
space only plays a background role. While other load factors are also shown on the graphs,
the evaluation will be focused on the performance of hash tables at a load factor of 50%.
Looking at the performance of the insert operation, it is unsurprising that simple linear
probing has the best performance. This is mainly because nearly every other hashing
scheme does the same as linear probing at some point during the insert, which is iterating
each cell to find an empty one, in addition to the other tasks they have to perform. Linear
probing is followed by standard coalesced hashing without shortened chains as it, similar
to linear probing, iterates over cells until an empty one is found. Its performance is most
likely worse than simple linear probing because it can only skip cells in a few instances
as the load factor is low. Robin hood hashing is third, most likely because it only has to
iterate over a few cells and hash them. The bad performance of robin hood hashing with
startpointers and less hashing as well as hopscotch hashing with exponential areas can be
explained by the large minimum amount of operations they perform.
While coalesced hashing comes out at the top, most featured hashing tables have the same
throughput for successful lookups if the capacity is unadjusted. This can be explained by
looking at the variance of elements that have to be looked up before the right element is
found. Less than 15% of elements can not be found with the first two element accesses. For
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unsuccessful lookups using an is-Empty bit is faster than simple linear probing, however
coalesced hashing and 3Bit robin hood hashing still have the best performance. This is
most likely because the is-Empty bit is stored in a separate table and lookups that passed
it will cause at least one additional cache miss. The standard coalesced hashing variations
on the other hand often have the elements they access in the same cache line and accessing
them is therefore faster. Simple linear probing and robin hood hashing are at the bottom
as they both iterate over multiple elements until they stop. Hopscotch hashing is in the
middle as it only has to access a few or no elements, however it needs to shift the bit
array multiple times to get the position of the elements that are assigned to a cell.
Hopscotch and coalesced hashing show great deletion performances as they do not have
to rearrange multiple elements in the hash table during the deletion process. However in
most cases the insertion performance also has to be taken into account when looking at
deletions. For every deletion an insertion has to have occurred, therefore coalesced hashing
has an advantage. On the other hand, depending on the implementation of coalesced
hashing, the longevity of the hash table can be far worse than hopscotch hashing. The only
other hashing scheme with a good deletion performance is 3Bit robin hood hashing which
suffers the same problem as hopscotch hashing of having a bad insertion performance.
The bad deletion performance of hopscotch hashing with out of bounds bit and linear
probing with is-Empty bit is caused by hashing all elements up to the next empty cell
and updating their acceleration bits.
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Figure 10: Percentage of lookups that require more than the given amount of element
accesses before returning (with unadjusted capacity of 50%) for successful and
unsuccessful lookups. Note: The following hashing scheme variations are con-
sidered optimal (only scan through elements that are hashed to the same cell):
hopscotch, rh 3bit, rh sp lh ntb and coalesced sc. The last two hashing scheme
variations access at least one element before they can return.
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Figure 11: Throughput of different hashing schemes using a low load factor and an unad-
justed capacity.
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4.3 Adjusted Capacity

Our second batch of tests (Figure 13) adjusted the capacity of each hash table to factor
in the space allocated for the per-cell data. This adjustment forces each hash table to
occupying the same space as a hash table with the given capacity that uses no per-cell
data. As a result hash tables that use a lot of acceleration bits have their capacity reduced
by more than 10%. Moreover, it means that some hash tables could not support a high
unadjusted load factor, which is the load factor of the hash table if its capacity had not
been reduced.
For insertions linear probing has by far the best performance. It is followed by its own
variations as they only do a few more operations for each insertion. The bad performance
of the variations for robin hood hashing and hopscotch hashing is mostly because they
also have to update the acceleration bits.
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Figure 12: Percentage of lookups that require more than the given amount of element
accesses before returning (with adjusted capacity of 80%). Note: The fol-
lowing hashing scheme variations are considered optimal (only scan though
elements that are hashed to the same cell): hopscotch, rh 3bit, rh sp lh ntb
and coalesced sc. The last two hashing scheme variations access at least one
element before they can return.

Both implementations of standard coalesced hashing have the best performance for suc-
cessful finds. With the variation that shortens chains coming out ahead, being up to
80% faster than simple linear probing, as it looks at fewer elements per lookup. However
they both do not support an unadjusted load factor of 90%, making robin hood with
startpointers and no additional hashing, which is otherwise slightly worse, the best vi-
able option for this load factor. Our hopscotch variations that support this load factor
thanks to using fewer acceleration bits show a similar throughput as linear probing. The
robin hood 3Bit variation on the other hand has a worse performance as it accesses a
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high amount of acceleration bits because of the high load factor. The bad performance of
linear probing with bloom filter is expected, since it is optimized for unsuccessful lookups
and has a lower capacity than simple linear probing.
Similar to successful lookups, coalesced hashing with shortened chains and robin hood
hashing with startpointers and no additional hashing have the best unsuccessful lookup
performance. One of the reasons these two perform so well is that they only access ele-
ments that are hashed to the same cell as the key that is looked for. Coalesced hashing
without shortened chains is second tier as it has to look at more elements before it can
come to a stop (Figure 12). Linear probing with a bloom filter allows up to 92% of lookups
to return without accessing any elements (Figure 12), reducing the time of linear probings
unsuccessful lookups by up 50%. However because of the cases where a lookup successfully
passes the bloom filter, forcing the algorithm to iterate to the next empty cell, robin hood
hashing with startpointer still performs better. Hopscotch with exponential areas has a
similar time to linear probings bloom filter variation thanks to accessing fewer elements
by only looking at specific areas in the hash table. Linear probing with is-Empty bit
shows little improvement to regular linear probing compared to the previously mentioned
hashing schemes because the amount of unsuccessful searches where the is-Empty bit was
not set is low as a result of the high load factor. This forces many lookups to do the same
search as if normal linear probing was used.
For deletions coalesced hashing with shortened chains and hopscotch hashing with ex-
ponential areas show by far the best performance as they do not rearranging multiple
elements in the hash table. They are followed by hopscotch with exponential areas, which
only hashes few amounts of elements, as well as coalesced hashing without shortened
chains which reinserts the few remaining elements of the deleted elements chain. Hop-
scotch hashing with out of bounds bit and linear probing with bloom filter have the worst
performance as they both hash multiple elements to rearrange the array and to update
the acceleration bits.
Linear probing with maximum distance performs similarly to simple linear probing as the
only addition is the check if the maximum distance is reached (Figure 3). The variance
of lookups however is far better for the maximum distance variation, which can be seen
in Figure 10 and 12.
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Figure 13: Throughput of different hashing schemes using adjusted capacities and a high
unadjusted load factor.
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Table 1: Table of advantages and disadvantages comparing all hash table types.
Low load factor and unadjusted capacity High load factor and adjusted capacity

insert successful
lookups

unsuccessful
lookups erase insert successful

lookups
unsuccessful
lookups erase

lp_simple +++ ++ + 0 +++ ++ - +
lp_ebit_cont +++ ++ ++ 0 ++ ++ 0 +
lp_bloom_8_2_alt ++ - +++ - ++ 0 ++ 0
lp_maxD ++ ++ + 4 ++ ++ 0 4

coalesced_alt ++ ++ +++ ++3 ++1 +1 +1 +1 3

coalesced_sc_alt + ++ +++ +++3 +1 ++1 +++1 +++1 3

robin_hood ++ ++ + 4 + + + 4

rh_sp_lh_ntb_alt + ++ ++ 0 + +++ +++ +
3bit_cont + + +++ + + - ++ 0
hop_simple_alt + ++ ++ +++ 2 2 2 2

hop_oob_char8 + ++ ++ 0 + 0 + 0
hop_exp_areas_alt 0 ++ ++ ++ 0 0 ++ +++
1does not support an unadjusted load factor of 90%
2does not support an unadjusted load factor of 80%
3operation reduces the longevity
4 operation was not implemented

5 Future Work

The hashing schemes presented in this work have shown that the storing method of the
acceleration data impacts its performance notably. However multiple variables of hash
tables have been fixed in our tests and conclusions may change if these variables are
changed. Element size is especially important as larger elements would allow for more
per-cell data while affecting the hash tables total size less and accessing multiple elements
could become less cache efficient.
Since we tested a wide array of different variations of hashing schemes, focusing on one
variation might lead to better performances. For example, while we tested linear probing
with a bloom filter for different bloom sizes and hashes per element, we can not guarantee
that the used configurations are optimal. Counting bloom filters on the other hand were
only mentioned but not implemented and could allow for faster deletions - notably if the
size of the acceleration data does not matter.
Parallelization is another factor not included in this work that would be interesting for
future works, especially for the performance of our hopscotch variations as hopscotch
hashing was originally designed as concurrent data structure.
While the hash tables in this work had a fixed capacity, it is often the case that hash
tables are resized during their lifetime. Creating a new hash table with a larger capacity
and inserting all elements of the previous table one by one is possible, however it is far
from ideal and an efficient growth algorithm could be implemented instead.
While we tried many approaches for per-cell data to improve hashing schemes, there are
certainly more approaches possible, notably for other hashing schemes like multi hashing
and quadratic or exponential probing. Some ideas for variations and configurations also
had to be left for future research due to lack of time, these include:

• Linear probing with each cell storing the maximum distance the find operation has
to traverse in order to find all elements that are hashed to the cell. This method
could improve the performance of unsuccessful lookups, especially if the table has a
high load factor.

• Grouped storage with other group sizes: these were mainly left untouched as we only
used one element size resulting in three elements per group, to have each group in
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exactly one cache line. Other element sizes or machines with different cache sizes or
configurations might improve the performance. It could also be interesting to have
groups with a size of two or three cache lines, or a size that allows the accelerations
bits of one group to fill exactly one cache line.

Increasing the performance of iterating over the hash table could be another use for
acceleration bits. For example, the 3Bit robin hood variation we presented could already
be used to accelerate iterations by checking the is-occupied bit before accessing a cell.
This would improve the cache efficiency if the load factor is low and the acceleration bits
are stored in split storage.
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6 Conclusion

In this work we explored the design space of using per-cell data to accelerate hashing
schemes. While this idea was already present in hopscotch hashing we expanded it for
the use with other hashing schemes. In addition, we presented different ways of storing
the acceleration data and compared their performance for different hashing schemes.
Our benchmarks show that for hashing schemes that either access multiple sequential
elements or the acceleration bits of multiple sequential cells, but not both, storing accel-
eration bits and elements in different arrays, which we called split storage, is the better
option. While storing the acceleration data bit-by-bit or byte-by-byte can be slightly
faster in some scenarios, using a continuous array proved to be an all-rounder for these
hashing schemes. On the other hand hashing schemes that access a cells element and its
acceleration data at the same time perform the best if alternating storage is used, which
stores the two next to each other.
By specializing a hash table to its workload it is possible to increase the overall perfor-
mance. This specialization can be done by using per-cell data. For example one variation
of robin hood (rh sp lh ntb) stores where the relevant elements for a lookup will be and
jumps right to them. As a result it beats normal robin hood hashing, linear probing as
well as hopscotch hashing in lookup and deletion time for high load factors with the draw-
back of increased allocated space and worse insert performance. As another example, if
a workload mainly consists of negative lookups, it is possible to improve the performance
with the help of a bloom filters, which decreases the negative lookup time of linear prob-
ing by up to 50%. By storing a bloom filter for each hash, which can guarantee that
a searched element is not in the hash table, it is possible for most unsuccessful lookups
to return without accessing a single element. To use these bloom filters the hash table
sacrifices 6% of its capacity, reducing the performance of other operations.
Space usage can also be important for a hash table, and while hopscotch hashing already
uses per-cell data it takes a lot of space. Our variations reduced the needed additional
space by up to 75% and also allowed higher load factors than normal hopscotch at the
cost of performance.
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