
Throughput Optimization in a Distributed
Database System via Hypergraph

Partitioning

Master’s Thesis of

Patrick Firnkes

at the Department of Informatics
Institute of Theoretical Informatics, Algorithmics II

Reviewer: Prof. Dr. Peter Sanders
Second reviewer: Prof. Dr. Dorothea Wagner
Advisor: M.Sc. Tobias Heuer
Second advisor: M.Sc. Sebastian Schlag

1. November 2018 – 30. April 2019

Karlsruher Institut für Technologie
Fakultät für Informatik
Postfach 6980
76128 Karlsruhe

I declare that I have developed and written the enclosed thesis completely by myself, and
have not used sources or means without declaration in the text.

Walldorf, 30.04.2019

. .
(Patrick Firnkes)

Abstract

In this thesis, we introduce a workload-aware reassignment framework that optimizes
the throughput of the distributed database SAP Vora for OLTP workloads. In distributed
databases the primary way to scale is to horizontally partition the tables into shards and
assign them across to hosts of a cluster. However, distributed queries are expensive in OLTP
settings [8, 26]. Therefore, we optimize the shard assignment in a way that distributed
queries are minimized while the load across the hosts of the cluster stays balanced.

Our approach monitors the executed queries, creates a hypergraph model of the work-
load and partitions it using the state-of-the-art hypergraph partitioner KaHyPar to �nd
an optimized shard assignment. We integrate this reassignment framework into the dis-
tributed database SAP Vora. To the best of our knowledge, this is the �rst time that such a
framework is implemented and evaluated in a commercial enterprise database system.

Furthermore, we present our novel approach KaDaRea that combines partitioning results
from di�erent time slices to get a better picture of the workload over time. Thus, it is able
to optimize the assignment for workload peaks and changing workload patterns.

Finally, we evaluate our results using the popular TPC-C and TPC-E benchmarks which
show that optimizing the shard assignment using our framework results in a great per-
formance improvement in terms of throughput and response time, e.g. it increases the
throughput for the TPC-E benchmark up to 5 times compared to the current state in Vora.
Also, the evaluation shows that KaDaRea outperforms other state-of-the-art approaches
as it increases the throughput by 42% during peaks and up to 92% if the workload patterns
change compared to other approaches.

i

Zusammenfassung

In dieser Thesis wird ein arbeitslast-bewusstes Neuzuordnungs-Framework vorgestellt,
das den Durchsatz der verteilten Datenbank SAP Vora für OLTP-Arbeitslasten optimiert.
Hauptsächlich werden verteilte Datenbanken skaliert, indem die Tabellen horizontal in
Shards partitioniert und über die Hosts eines Clusters verteilt werden. Jedoch sind verteilte
Anfragen im OLTP Umfeld teuer [8, 26]. Deshalb optimieren wir die Shard-Zuordnung
so, dass verteilte Anfragen minimiert werden und die Last über die Hosts des Cluster
balanciert ist.

Unser Ansatz überwacht die ausgeführten Anfragen, erstellt ein Hypergraph-Modell
der Arbeitslast und partitioniert das Modell mittels des State of the Art Hypergraph-
Partitionierers KaHyPar, um eine optimierte Shard-Zuordnung zu �nden. Wir integrieren
dieses Neuzuordnungs-Framework in die verteilte Datenbank SAP Vora. Nach unserem
besten Wissen ist dies das erste Mal, dass ein solches Framework in ein kommerzielles
enterprise Datenbank-System integriert und evaluiert wird.

Darüber hinaus präsentieren unseren originellen Ansatz KaDaRea, der Partitionierungs-
Ergebnisse von verschiedenen Zeitabschnitten kombiniert und so ein besseres Bild der
Arbeitslast über die Zeit erhält. Dadurch ist es ihm möglich die Zuordnung für Lastspitzen
und Änderungen in den Arbeitslast-Mustern zu optimieren.

Schließlich evaluieren wir unsere Ergebnisse mittels der weit verbreiteten TPC-C und
TPC-E Benchmarks, die zeigen, dass durch das Optimieren der Shard-Zuordnung mit Hilfe
unseres Frameworks eine große Performanz-Verbesserung in Bezug auf Durchsatz und
Antwortzeit erreicht wird. So erhöht sich beispielsweise der Durchsatz für den TPC-E
Benchmark um bis zu den Faktor 5 im Vergleich mit dem aktuellen Stand in Vora. Auch
zeigen sie, dass KaDaRea bessere Ergebnisse als andere State of the Art Ansätze liefert, da
KaDaRea, verglichen mit diesen, den Durchsatz um 42% für Lastspitzen und um bis zu 92%
für Änderungen in den Arbeitslast-Mustern erhöht.

iii

Contents

Abstract i

Zusammenfassung iii

1. Introduction 1
1.1. Problem Statement . 2
1.2. Contributions . 2
1.3. Outline . 3

2. Foundations 5
2.1. Hypergraph Partitioning . 5

2.1.1. Hypergraphs . 5
2.1.2. Problem De�nition . 6
2.1.3. Multilevel Paradigm . 7
2.1.4. Maximum Weighted Bipartite Matching Problem 8

2.2. Distributed Databases . 9
2.2.1. Database Partitioning . 9
2.2.2. SAP Vora . 10
2.2.3. OLTP vs. OLAP Workloads . 11

2.3. Allocation Problem . 12

3. RelatedWork 13
3.1. Schism . 13
3.2. SWORD . 14
3.3. Clay . 15
3.4. HEPart . 17
3.5. Comparison . 18
3.6. Other Approaches based on Hypergraph Partitioning 19
3.7. Approaches for OLAP Workloads . 19

4. Integrating a Workload-Aware Reassignment Framework into SAP Vora 21
4.1. Approach . 21
4.2. Implementation . 22

5. KaDaRea - A Peak- and Pattern-Aware Database Reassignment Technique 27
5.1. Motivation . 27
5.2. Implementation . 29

v

Contents

6. Evaluation 31
6.1. Experimental Setup . 31

6.1.1. Methodology . 31
6.1.2. TPC-C . 32
6.1.3. TPC-E . 33

6.2. Parameter-Tuning Experiments . 34
6.2.1. Imbalance . 34
6.2.2. Objective Metric . 35
6.2.3. Weight Policy . 35
6.2.4. Sampling . 36

6.3. Comparison with Current State in Vora 37
6.3.1. TPC-C . 37
6.3.2. TPC-E . 39

6.4. Comparison with State-of-the-Art Approaches 42
6.4.1. TPC-C . 42
6.4.2. TPC-E . 43

6.5. Evaluation of KaDaRea . 45
6.5.1. Non Changing Workload . 45
6.5.2. Peak Workload . 46
6.5.3. Workload Changing in Patterns 48

7. Conclusion 51

8. Future Work 53

Bibliography 55

A. Appendix 59
A.1. Database Schema of TPC-E . 59
A.2. Distributed Query Plots . 60
A.3. Additional Response Time Plots . 61
A.4. Increased Shard Number for Database Partitioning 62
A.5. Reassignment Time . 63

vi

List of Figures

2.1. Clique and bipartite representation of a hypergraph 6
2.2. Hypergraph partitioned into k = 3 blocks 7
2.3. Multilevel hypergraph partitioning [12] 8
2.4. SAP Vora architecture [28] . 11

3.1. Schism’s graph model of workload [8] . 14
3.2. SWORD’s hypergraph model of workload: (a) Tuple level hypergraph, (b)

Compressed hypergraph [26] . 14
3.3. Clay’s heat graph [29] . 16
3.4. Heat graph that is balanced under Clay’s load de�nition and thus no

optimization takes place. 16
3.5. Di�erence between vertex and hyperedge partitioning [32] 17
3.6. Comparison of model and partitioning result of Schism, SWORD, Clay and

HEPArt . 18
3.7. Shard placement optimization for OLTP and OLAP approaches ignoring

any balance constraint . 20

4.1. Design of shard reassignment in Vora . 23
4.2. Reduced number of moves by using maximum weighted bipartite matching.

Color indicates host of shard. 25

5.1. Using a sliding window results in a balanced assignment for changing
workload patterns . 28

6.1. TPC-C database schema (adapted from [30]) 33
6.2. TPC-E models a �nancial brokerage house (adapted from [6]) 33
6.3. Evaluation of varying ε values regarding speed-up in throughput S and

weighted share of distributed queries D 34
6.4. Workload graph for TPC-C benchmark running on 4 Hosts. The node

labels symbolize the table of the shard. 37
6.5. Normalized throughput (current/max) with 0.95 con�dence interval before

and after reassignment for TPC-C . 38
6.6. Normalized response times (current/max) for each transaction type of

TPC-C on 4 hosts . 39
6.7. Workload graph for TPC-E benchmark running on 4 Hosts. The node

labels symbolize the table of the shard. 40
6.8. Normalized throughput (current/max) with 0.95 con�dence interval before

and after reassignment for TPC-E . 40

vii

List of Figures

6.9. Normalized response times (current/max) for each transaction type of
TPC-E on 4 hosts . 41

6.10. Comparison of SWORD, Schism, and Clay: Normalized throughput
(current/max) with 0.95 con�dence interval after reassignment for TPC-C
on 4 host . 42

6.11. Comparison of SWORD, Schism, and Clay: Workload graphs after assign-
ment optimization for TPC-C benchmark running on 4 Hosts. The node
labels symbolize the table of the shard. 43

6.12. Comparison of SWORD, Schism, and Clay: Normalized throughput
(current/max) with 0.95 con�dence interval after reassignment for TPC-E
on 4 hosts . 43

6.13. Comparison of SWORD, Schism, and Clay: Workload graphs after assign-
ment optimization for TPC-E benchmark running on 4 Hosts. The node
labels symbolize the table of the shard. 44

6.14. Optimizing assignment for peak workload on 4 hosts using modi�ed TPC-
C/E benchmarks: Normalized throughput (current/max) with 0.95 con�-
dence interval for SWORD and KaDaRea 46

6.15. Comparison of workload graphs for peak load using SWORD and KaDaRea
for TPC-C. The node labels symbolize the table of the shard. 47

6.16. Comparison of workload graphs for peak load using SWORD and KaDaRea
for TPC-E. The node labels symbolize the table of the shard. 48

6.17. Optimizing assignment for workload changing in patterns on 4 hosts:
Normalized throughput (current/max) with 0.95 con�dence interval for
SWORD and KaDaRea. 49

6.18. Comparison of workload graphs for workload changing in patterns for
SWORD and KaDaRea. The node labels symbolize the table of the shard. 49

A.1. TPC-E database schema (adapted from [33]) 59
A.2. Share of distributed queries before and after reassignment for TPC-C . . 60
A.3. Share of distributed queries before and after reassignment for TPC-E . . 60
A.4. Normalized response times (current/max) for each transaction type of

TPC-E using Schism on 4 hosts . 61
A.5. Normalized response times (current/max) for each transaction type of

TPC-E using Clay on 4 hosts . 62
A.6. Normalized throughput (current/max) with 0.95 con�dence interval for

tables partitioned into 4 and 8 shards on 4 hosts 63
A.7. Reassignment times for 2, 4, and 8 hosts 63

viii

List of Tables

4.1. Description of parameters for reassignment query 23

6.1. Evaluation of cut and connectivity (λ − 1) metric regarding throughput in
speed-up S and weighted share of distributed queries D 35

6.2. Evaluation of frequency and execution time policies regarding speed-up
in throughput S and weighted share of distributed queries D on 4 hosts . 36

6.3. Evaluation of robustness to sampling regarding speed-up in throughput S
and weighted share of distributed queries D on 4 hosts 36

6.4. Evaluation of KaDaRea with non changing workload regarding speed-up
in throughput S and weighted share of distributed queries D on 4 hosts . 45

ix

1. Introduction

In the age of Big Data andCloud Computing databases are distributed over multiple physical
machines called hosts. The primary way in which distributed databases are scaled is
through horizontal partitioning of tables into shards and assigning these shards to hosts
in the cluster [24]. This shard assignment (also called allocation) a�ects the performance
of the system as depending on the assignment the hosts which participate in processing
of a query change. A distributed query is a query that accesses shards which are placed on
di�erent hosts and thus multiple hosts participate in its processing.

In context of databases we can distinguish between OLAP (On-line Analytical Processing)
workloads which consist of mostly long running queries for data analyzing and OLTP
(On-line transaction processing) workloads which consist of mostly short running queries
for executing daily business tasks [10]. In OLAP scenarios distributed queries are desired
in order to distribute the load and parallelize the processing of a query. However, in OLTP
scenarios distributed queries are expensive [8, 26] and should be kept to a minimum. In
contrast to OLAP workloads, OLTP workloads are highly selective and fast running [10],
thus they do not gain much from parallel processing on multiple hosts [8]. Therefore,
we can improve the system performance by reducing overhead introduced by distributed
queries. On the one hand, distributed queries lead to a communication overhead because
the data must be exchanged between the involved hosts. On the other hand, they lead
to a duplication of the load as a distributed query must be processed on each involved
host, blocking processing slots for other queries. This decreases the performance in OLTP
workloads, as there are many parallel queries creating a high load in the system, whereas
in OLAP workloads there are only a single or few queries at a time [10]. Therefore, it is
desired for OLTP workloads to minimize the number of distributed queries while balancing
the load across hosts to substantially increase the transaction throughput [26].

To realize this, existing approaches place shards that are frequently accessed together
on the same host while keeping the load of the hosts balanced. It is necessary to keep the
load balanced as otherwise some hosts are overloaded while others are idling, leading to a
performance degeneration [31]. This problem is called the allocation problem: For a given
set of shards S and an expected query workload Q , the goal is to allocate the shards to
hosts of a cluster such that a certain objective function for Q is maximized or minimized
[26]. For instance, possible objective functions are the throughput of the system [8, 26] or
the response time of queries [26, 31].

A common approach to solve the allocation problem is to use graph [8] or hypergraph
[26] models of the workload and partition the model using graph or hypergraph partitioners
to create an optimized shard assignment. In these workload models vertices represent
shards and edges represent queries that co-access the spanned shards.

However, to the best of our knowledge, previous work did not integrate and evaluate
their approaches in a commercial enterprise database system. Instead they implement

1

1. Introduction

their approaches in less complex experimental research databases, like Relational Cloud or
H-Store [8, 25]. Furthermore, previous work do not consider the workload over time when
solving the allocation problem, instead they build the workload model as an aggregation
over all queries. Therefore, they cannot detect changes in the intensity or mixture of the
workload. Thus, they are not able to optimize for times where the workload is much higher,
yet these are the times that require the best performing system. Also, without considering
the workload over time it is not possible to detect patterns in the workload, e.g. created by
multi-tenant databases. For instance, multiple teams from di�erent regions are working
on the same database. These teams access di�erent parts of the database to execute their
tasks which leads to two di�erent patterns of workloads. Partitioning the workload model
of these two workload patterns without considering the workload over time could result
in an assignment that is bad for both patterns as it is imbalanced at any point in time.

1.1. Problem Statement

This thesis examines the question what the e�ects of introducing a workload-aware re-
assignment approach into the commercial enterprise database SAP Vora are and how the
performance changes compared to the current state of assigning the shards.

Furthermore, this thesis investigates how a reassignment technique can consider the
workload over time in order to react to changes in the workload patterns or to peaks in
the workload.

1.2. Contributions

In this master’s thesis we present a workload-aware database reassignment framework
based on hypergraph partitioning to solve the allocation problem, which we integrated
into the commercial enterprise database system SAP Vora.

Furthermore, we present our novel approachKaDaRea for solving the allocation problem
that combines partitioning results from di�erent time slices to get a better picture of the
workload over time. This approach enables us to consider the time of execution of queries
and therefore we can optimize the assignment for peaks in the workload and create more
balanced and better performing assignments if the workload patterns changes.

Finally, we evaluate extensively the impact of using hypergraph partitioning to optimize
the allocation of shards in a commercial enterprise database system by using the popular
TPC-C and TPC-E benchmarks. The results show that the throughput increases up to 1.94
times for TPC-C benchmark and up to 5.11 times for the more complex TPC-E benchmark.
Also, it shows that KaDaRea outperforms other state-of-the-art approaches as it increases
the throughput by 42% during peaks and up to 92% if the workload patterns change
compared to other approaches.

2

1.3. Outline

1.3. Outline

The outline of this thesis is a follows: Chapter 2 describes the tools and techniques used
in this thesis, while Chapter 3 gives an overview on the related work. The approach and
implementation of optimizing the assignment via hypergraph partitioning in SAP Vora are
described in Chapter 4. Chapter 5 details the motivation and implementation of KaDaRea,
our novel approach for solving the allocation problem. Our evaluation takes place in
Chapter 6, in which we use the widely used TPC-C and TPC-E benchmarks to compare
our results with the current state in Vora and other state-of-the-art approaches. Finally,
Chapter 7 gives a conclusion on this thesis and Chapter 8 outlines the future work.

3

2. Foundations

This chapter gives an overview on the tools and techniques that create the basis for this
thesis, including a de�nition of hypergraph partitioning and the allocation problem in
context of distributed databases that is solved in this thesis. Furthermore, we present
KaHyPar as a state-of-the-art hypergraph partitioner and the distributed database SAP
Vora in which we integrate our solution.

2.1. Hypergraph Partitioning

2.1.1. Hypergraphs

Hypergraphs are a generalization of graphs where a hyperedge (also called net) can connect
more than two vertices (also called hypernodes) [17]. Hypergraphs are classically applied
in areas such as VLSI design to model circuits [17] or in scienti�c computing to compute
sparse matrix-vector multiplications [9].

De�nition 2.1 (Hypergraph). An undirected weighted hypergraph H = (V ,E, c,ω) is de-
�ned as a set of verticesV , a set of hyperedges E, where ∀e ∈ E : e ⊆ V , a hypernode weight
function c : V → R, and a hyperedge weight function ω : E → R.

For a subset V ′ ⊆ V and E′ ⊆ E we de�ne:

c(V ′) =
∑
v∈V ′

c(v) (2.1)

ω(E′) =
∑
e∈E ′

ω(e) . (2.2)

A hypergraph H = (V ,E) can be transformed into a graph by using the clique or bipartite
transformation [15]. The clique transformation creates a clique graph Gc = (V ,Ec) where
each hyperedge e ∈ E is modeled as a clique between all vertices u,v ∈ e with u , v . More
formally, Ec = {{u,v} | ∃e ∈ E : u,v ∈ e∧u , v}. In contrast, the bipartite transformation
creates a graph Gb = (V ∪ E,Eb) that models all vertices and hyperedges of H as nodes
and connects each hyperedge e with an edge {e,v} to all vertices v ∈ e . More formally,
Eb = {{e,v} | ∃e ∈ E : v ∈ e}. The di�erences between these two transformations are
shown in Figure 2.1.

5

2. Foundations

Hypergraph H Clique Representation Gc(H) Bipartite Representation Gb(H)

Figure 2.1: Clique and bipartite representation of a hypergraph

2.1.2. Problem Definition

De�nition 2.2 (Hypergraph Partitioning Problem). The k-way hypergraph partitioning
problem is to partition a hypergraph H into k disjoint non-empty blocks Π = {V1, ...,Vk}
while minimizing an objective function on the nets and keeping a balance constraint so that
all blocks are nearly equal sized regarding an imbalance parameter ε [13].

A partitioning result Π is balanced if the following constraint is ful�lled:

∀Vi ∈ Π : c(Vi) ≤ (1 + ε) ·
⌈c(V)

k

⌉
+max

v∈V
c(v) . (2.3)

The connectivity of a hyperedge e is de�ned as λ(e,Π) = |{Vi ∈ Π |Vi ∩e , ∅}|, which is
the number of blocks a hyperedge e is part of. A hyperedge e is cut if λ(e,Π) > 1. Further,
we de�ne E(Π) = {e ∈ E | λ(e,Π) > 1} as the set of all cut hyperedges. There are two
prominent objective functions in the hypergraph partitioning context: the cut metric and
the connectivity metric. The cut metric is the generalization of the edge-cut objective in
graph partitioning:

cut(Π) =
∑

e∈E(Π)

ω(e) . (2.4)

The other prominent metric is the connectivity metric (also called (λ − 1) metric) which
considers how many blocks a hyperedge is spanning:

(λ − 1)(Π) =
∑
e∈E

(λ(e,Π) − 1)ω(e) . (2.5)

Figure 2.2 shows a hypergraph that is partitioned into k = 3 blocks where all blocks
have an equal size of c(Vi) = 2. The cut metric for this example is cut(Π) = 1, whereas the
connectivity metric is (λ − 1)(Π) = 2.

In contrast to vertex partitioning, which was described in the previous part of this section,
hyperedge partitioning partitions hypergraphs by cutting vertices instead of edges [32].
Yang et al. proposed a hypergraph partitioning algorithm for hyperedge partitioning based
on hyperedge moves where a hypergraph H = (V ,E, c,ω) is partitioned into k disjoint
sets of hyperedges Π = {E1, ...,Ek} while keeping the weight of the block balanced.

6

2.1. Hypergraph Partitioning

V1 V2

V3

Figure 2.2: Hypergraph partitioned into k = 3 blocks

Analogously, we de�ne λ(v,Π) = |{Ei ∈ Π |v ∈ Ei}| as the number of blocks a vertex v is
part of and V (Π) = {v ∈ V | λ(v,Π) > 1} as the set of cut vertices.

Using these de�nitions the cut and connectivity metric can be de�ned as follows [32]:

cut(Π) =
∑

v∈V (Π)

c(v) (2.6)

(λ − 1)(Π) =
∑
v∈V

(λ(v,Π) − 1)c(v) . (2.7)

2.1.3. Multilevel Paradigm

Hypergraph partitioning is known to be NP-complete [20], therefore several heuristics
have been created to solve the partitioning problem. The most common heuristic to solve
the problem is the multilevel paradigm [27].

Such algorithms consist of three phases: The �rst phase is the coarsening phase in which
the input hypergraph is recursively coarsened to create a hierarchy of smaller hypergraphs
by calculating clusterings or vertex matchings, which are then contracted. Each coarsened
hypergraph represents one level. As soon as a prede�ned number of vertices is reached,
the initial partitioning phase takes place in which algorithms are applied to the smallest
hypergraph to partition it into k blocks. Finally, in the re�nement phase the coarsening is
undone by uncontracting the vertices in reverse order of contraction and simultaneously
using a local search heuristic to improve the quality of the solution [27]. Figure 2.3 depicts
the process of a multilevel hypergraph partitioning.

KaHyPar1 is a state-of-the-art hypergraph partitioner developed by researchers at
Karlsruhe Institute of Technology. It takes the multilevel paradigm to its extreme by
contracting only a single vertex in each level of the multilevel hierarchy. It supports direct
k-way as well as recursive bisection partitioning. Direct k-way partitioning partitions the
hypergraph directly into k balanced blocks, in contrast to recursive bisection where the
hypergraph is recursively bipartitioned until k blocks are reached [1].

1https://github.com/SebastianSchlag/kahypar

7

https://github.com/SebastianSchlag/kahypar

2. Foundations

Initial Partitioning

R
efi

n
em

en
t

P
h

as
e

C
oa

rs
en

in
g

P
h

as
e

contract hypernodes
uncontract hypernodes

refinement

Input: Hypergraph H

V1
V2

V2V1

V1
V2

Output: Partition Π

...

......

...

Figure 2.3: Multilevel hypergraph partitioning [12]

Furthermore, KaHyPar supports the cut as well as the connectivity metric as objective
function for partitioning the hypergraph [1].

By applying it’s n-level approach combined with strong local search heuristics, KaHyPar
outperforms other state-of-the-art hypergraph partitioners in solution quality [14].

2.1.4. MaximumWeighted Bipartite Matching Problem

This section de�nes the maximum weighted bipartite matching problem as we make use of
it later in this thesis.

De�nition 2.3 (Bipartite Graph). A bipartite graph G = (V = L ∪ R,E) with L ∩ R = ∅ is
a graph where ∀e = {u,v} ∈ E : u ∈ L ∧v ∈ R.

Based on the de�nition of bipartite graphs we can now de�ne the maximum bipartite
matching problem as:

De�nition 2.4 (Maximum Bipartite Matching Problem). Given a bipartite graphG = (V =
L∪R,E), the maximum bipartite matching problem is to select a subsetM ⊆ E such that for
each node v ∈ V there is at most one edge e ∈ M with v ∈ e while maximizing |M |. If for
each node v ∈ V there exists exactly one edge e ∈ M with v ∈ e , then M is called a perfect
matching.

This problem can be solved by converting the graph into a �ow network and calculating
the maximum �ow [7]. An extension of the maximum bipartite matching problem is the
maximum weighted bipartite matching problem:

De�nition 2.5 (Maximum Weighted Bipartite Matching Problem). Given a weighted bi-
partite graphG = (V = L∪R,E,ω)with an edge weight functionω : E → R, the maximum

8

2.2. Distributed Databases

weighted bipartite matching problem is to select a bipartite matching M ⊆ E such that the
sum of edge weights inM is maximized.

This problem also appears in context of hypergraph partitioning with �xed vertices,
which means that vertices are preassigned to speci�c blocks where they should be assigned
to after the partitioning [2].

One method that solves the maximum weighted bipartite matching problem is the
Hungarian algorithm, which makes use of the duality between the maximum weighted
bipartite matching problem and �nding the minimum weighted vertex cover in bipartite
graphs [19].

De�nition 2.6 (Minimum Weighted Vertex Cover Problem). Given a weighted bipartite
graph G = (V = L ∪ R,E,ω) with an edge weight function ω : E → R, the minimum
weighted vertex cover problem is to choose labelsU = (u1, ...,u |L|) andV = (v1, ...,v |R |) such
that ∀i, j : ui +vj ≥ ωi,j while minimizing the sum of all labels.

The Hungarian algorithm creates such a vertex cover U ,V for a bipartite graph G. It
constructs a subgraph which contains an edge between each node u ∈ L and v ∈ R where
for its corresponding labels the condition ui +vj = ωi,j holds. If we �nd a perfect matching
in this subgraph, we can return this matching as a solution for the problem. Otherwise,
we adjust the cover until we �nd a perfect matching. For more implementation details we
refer the reader to [19]. This algorithm solves the maximum weighted bipartite matching
problem in O(n3) time [19].

Because KaHyPar supports hypergraph partitioning with �xed vertices, it contains an
implementation of the Hungarian algorithm to solve the maximum weighted bipartite
matching problem. We are reusing its implementation in this thesis.

2.2. Distributed Databases

A distributed database is a collection of multiple, logically interrelated databases (also
called hosts) distributed over a computer network [24]. The data of a distributed database
is partitioned using a partition function and spread across the hosts of the database.
Distributed databases promise higher scalability, reliability, and availability than non-
distributed databases, but require more complex mechanisms to guarantee data integrity
[24] and there is a communication overhead in query processing because hosts have to
communicate with each other to process queries that touch data from multiple hosts.

Firstly, we describe how distributed databases are partitioned into shards to make them
scalable. Then we detail the distributed database SAP Vora as our approach is implemented
in this system and lastly we describe the di�erences between OLTP and OLAP workloads.

2.2.1. Database Partitioning

The primary way in which distributed databases are scaled is by horizontal partitioning of
the data [8]. Horizontal partitioning splits the rows of a table into disjoint subsets, called
shards in this thesis. These shards are then distributed over the hosts of the database.

9

2. Foundations

Two prominent partition functions for database partitioning are hash partitioning and the
range partitioning.

Let T = (t1, ..tn) be a table, where ti represents tuple i of T and p(ti) be a function that
extracts partition relevant information from row ti . An example for such a function is
the extraction of the value of the primary key from tuple ti . We can now create a hash
partition function by using a universal hash function h(p(ti)) that assigns all tuples ti to a
shard with index {1, ..,k}, where k is usually the number of hosts.

Instead of using a hash partition function, one could also use a range partition function.
Based on a sequence S = (s1, ..., sk−1 | sj < sj+1) the shards are created by assigning each
row ti to shard l where l is either the highest index for which p(ti) ≤ sl is ful�lled or k if
p(ti) > sk−1.

The bene�t of using a hash function is that it leads to shards of equal size and avoids
clustering of the data [23]. On the other hand, range partitioning increases the performance
for range scans on the partitioned column, hence it is often used to partition tables on a
timestamp column, leading to small scans if data from a month or year is queried [23].

2.2.2. SAP Vora

SAP Vora is a distributed database system for big data processing and is built to scale with
load by scaling up the number of computing nodes in the cluster [28].

To make the database scalable and to distribute the load, the tables are horizontally split
into shards using hash or range partition functions and these shards are assigned to the
computing nodes in round-robin fashion [28]. Vora is designed for both OLTP and OLAP
workloads [11] (see Section 2.2.3 for the di�erences between OLTP and OLAP).

Figure 2.4 shows the architecture of Vora. The transaction coordinator is the entry point
of the system, which can be used to execute queries by connecting to via Vora Tools or
interfaces like JDBC. The transaction coordinator also controls the execution of queries
by generating an execution plan which is send to the engines. For the plan generation it
fetches metadata about the database structure and the data layout from the catalog server
and host assignment from the landscape manager. After sending the execution plan to
the engines, the engines generate execution code for the plan, execute the code to get the
result whereby the engines communicate with each other if it is required and propagate
the result back to the user. Vora supports di�erent kind of engines like in-memory or disk
engines. Other important components are the landscape manager which is responsible for
data placement and the distributed log which is responsible for persistence of metadata
and information needed to recover system after failover.

10

2.2. Distributed Databases

Figure 2.4: SAP Vora architecture [28]

2.2.3. OLTP vs. OLAPWorkloads

On-line transaction processing (OLTP) workloads are characterized by many short running
queries that often a�ect only single or a small number of tuples in the database [10]. The
workload consists of SELECT, INSERT, DELETE, and UPDATE statements, which are used to
control and run daily business tasks [10]. Because the queries are typically rather short
running, systems designed for OLTP workloads try to optimize the throughput of the
system [10].

On the other hand, on-line analytical processing (OLAP) workloads consist of long
running queries with a low volume of transactions that often a�ect a large number of
tuples in the database [10]. The workload consists of read-only queries which are operating
on consolidated data from one or several OLTP databases [5]. These workloads are used to
analyze data and help with decision making and planning. For OLAP systems the response
time of queries is a good measuring metric [10].

11

2. Foundations

2.3. Allocation Problem

In general the resource allocation problem is to �nd an optimal allocation of a �xed amount
of activities to resources so that the cost incurred are minimized [18].

This thesis solves the allocation problem in context of distributed databases and OLTP
workloads. We can de�ne the allocation problem in this context as:

De�nition 2.7 (Allocation Problem). Given a distributed database consisting of a set of
hosts H = {1, ..,k}, a set of shards S = {s1, .., sn}, an expected query workload Q =
(q1, ...,qm), the allocation problem is to assign shards to the hosts such that a certain ob-
jective function for the given workload is maximized or minimized.

For instance, possible objective functions are the throughput of the system [8, 26] or
the response time of the queries [26, 31].

In distributed database tables are partitioned into shards and spread across the hosts
of the database. Queries that touch shards from multiple hosts are expensive in OLTP
settings because they lead to a communication overhead and a duplication of the load [8].
Furthermore, it should be aimed to balance the load across the hosts to avoid overloaded
or idling hosts.

12

3. RelatedWork

The following sections give an overview on related workload-aware database partitioning
approaches.

3.1. Schism

Schism [8] is an approach using graph partitioning to partition tables in distributed
databases for OLTP workloads implemented in the experimental database relational cloud.
Besides partitioning, it also implements replication of tuples to avoid distributed transac-
tions. Furthermore, it provides an explanation phase using machine learning techniques
that tries to �nd a simple model for the mappings produced in the partitioning phase. In
this explanation phase it creates a decision tree and decides if the found partitioning is
either equal to hashing, range-predicates or look-up tables.

Schism logs the executed queries, generates SELECT queries to �nd the involved tuples
which causes a second execution of the workload, and using these found tuples to build
the workload graph [8].

It models a tuple of a table in the database as a vertex in the graph and vertices that
are connected by an edge represent tuples that are co-accessed. The weight of an edge
describes the frequency of co-accessing the connected vertices and the vertex weight
describes how often a tuple is accessed. Figure 3.1 depicts this graph model for an example
workload. To �nd the best partitioning Schism minimizes the cut metric.

To reduce the distributed transactions even further, Schism introduces tuple-level repli-
cation by expanding a node into a star-shaped group of n + 1 nodes where n is the degree
of the node. The edges between these nodes represent the replication cost of the tuple
which is the number of updates a�ecting it, because in contrast to reads, updates are then
distributed over multiple blocks. Finally, the tuple is replicated to each block that it is
assigned to after the graph partitioning.

However, in contrast to hypergraphs, graphs cannot represent the executed transactions
correctly, e.g. one cannot di�erentiate if two edges belong to the same transaction or if
they represent two separate ones, whereas in context of hypergraphs a hyperedge clearly
represents a single transaction. Also, Wagner et al. proved that there is no general model
that can be used to transform a hypergraph H = (V ,H) into a graph G = (V ,E) that
returns the same min-cut model [16]. The authors of Schism decided against the usage of
a hypergraph to model the workload because the hypergraph partitioners at that time did
not perform well [8].

In addition, the scalability of Schism is questionable because the vertices in the graph
represent tuples and not an aggregation of them [26].

13

3. Related Work

Figure 3.1: Schism’s graph model of workload [8]

3.2. SWORD

SWORD [26] is based on hypergraph partitioning and focuses on scalability, tolerance to
failures and workload changes. One technique used to improve scalability is the generation
of a compressed hypergraph where multiple tuples in a table are collapsed into a single
virtual node using a hash function. This technique is widely used in distributed databases
to partition tables. SWORD is implemented in a transaction manager that orchestrates a
number of PostgreSQL instances and routes incoming queries to their destination databases
[26]. This transaction manager was specially created for the implementation of SWORD
[26].

As Schism, SWORD is designed for OLTP workloads and it minimizes the cut metric
to �nd the best partitioning. The hypergraph models the workload as H = (V ,E, c,ω)
where V represents the virtual nodes and a hyperedge e ∈ E represents a transaction with
its spanned nodes. In the workload model the weight of a node represents how often
this node was accessed and the weight of a hyperedge represents the frequency of the
transactions. Figure 3.2 shows the di�erence between a workload model based on tuples
and based on compressed nodes.

Figure 3.2: SWORD’s hypergraph model of workload: (a) Tuple level hypergraph, (b)
Compressed hypergraph [26]

14

3.3. Clay

SWORD proposes an incremental repartitioning technique to avoid resorting to complete
data migration when the workload has changed. For that it monitors the number of
distributed transactions and triggers a data migration step whenever a threshold is crossed.

In contrast to Schism, SWORD aggressively replicates the data and does not trade-o�
performance for fault tolerance, thus each tuple is at least replicated once. Depending
on the write-to-read-ratio of a tuple it can be replicated multiple times - the smaller the
ratio is, the more replicas are created to avoid distributed reads. One drawback of this
aggressive replication is overhead introduced for distributed updates. To control this
overhead quorums like read-one-write-all (updates need to access all replicas) or majority
(updates need to access more than 50% of the replicas) are used, which control the number
of blocks that must be accessed in a transaction. SWORD de�nes these quorums on
virtual node level depending on their access pattern. However, another drawback of the
replication is that data size is at least two times as big, which makes it questionable if
SWORD can be applied for large data sizes.

SWORD follows Schism’s approach of logging the executed queries, generating SELECT

queries to �nd the involved tuples, and using them to build the hypergraph model [26].

3.3. Clay

In contrast to most other approaches, Clay [29] is an on-line partitioning approach for
OLTP workloads that is based on a greedy algorithm instead of graph partitioning. It is
implemented in the experimental research database H-Store and hooks into its database
query processing components to build the workload graph, hence it does not require to
query the tuples a second time for model building as Schism and SWORD do [29].

Clay builds a so called heat graph with the accessed tuples V where the weight of the
vertices and edges E represent the frequency of access, which is basically the same model
as Schism’s workload graph. Clay uses this model to search for hot (frequently accessed)
tuples and tuples that are co-accessed with them. These build a so called clump of tuples
that should be placed together. Figure 3.3 shows how such a heat graph and an example
clump look like.

Clay’s migration algorithm starts by �nding a set of overloaded blocks that have a load
higher than a threshold θ which is the average load across all blocks multiplied with 1 + ε .
The load LΠ of block Vi ∈ Π is de�ned as:

LΠ(Vi) =
∑
v∈Vi

c(v) +
∑
u∈Vi
v<Vi
{u,v}∈E

ω({u,v}) · k , (3.1)

where k is a constant factor representing the cost of a distributed transaction (set to k = 50).
It then initializes a clump M by �nding the hottest tuple h in an overloaded block and

�nding a target block d that minimizes the overall load of the system. M is then expanded
with the most frequently co-accessed tuples of h. After each expand, Clay veri�es that the
move of M is still feasible, which means that d does not become overloaded or the receiver
delta is negative. The receiver delta for a clump M to receiver d describes how the load of

15

3. Related Work

Figure 3.3: Clay’s heat graph [29]

block d changes if M would be moved to it. Because the distributed transactions are part
of the load de�nition, a negative receiver delta implies that the cut is reduced.

If the move is not feasible, it tries to �nd another destination block for M . Clay creates
and moves clumps until no block exceeds the threshold θ or it cannot �nd a feasible move
any more.

Clay works best with workloads that are highly skewed [29]. However, the authors
of Clay claim that they substantially outperform other state-of-the-art workload-aware
database repartitioning techniques like Schism [29]. Additionally, they claim to require
less data migration than other approaches.

One drawback is that Clay stops as soon as all blocks have an equal load and does not
continue until the overall load is minimized, which is shown in Figure 3.4. Tuples v1 and
v3 are placed on one block and v2 and v4 are placed on another block. As v1 is queried
together with v2 and v3 is queried together with v4, the number of distributed queries is
maximal for the current assignment. However, the load for both blocks is equal, and thus
the algorithm does not optimize it. This makes it questionable if Clay performs better than
other partitioning approaches based on graph or hypergraph partitioning techniques.

v2

v3 v4

v1
V1 V2

Figure 3.4: Heat graph that is balanced under Clay’s load de�nition and thus no optimiza-
tion takes place.

16

3.4. HEPart

Figure 3.5: Di�erence between vertex and hyperedge partitioning [32]

3.4. HEPart

In contrast to other workload-aware database repartitioning approaches, HEPart [32] uses
hyperedge partitioning instead of vertex partitioning.

Hyperedge partitioning has the advantage that vertices are replicated in the partitioning
phase, and thus it does not require an additional modeling step over auxiliary vertices
as other approaches. Figure 3.5 shows the di�erence between vertex and hyperedge
partitioning: In hyperedge partitioning a hyperedge always belongs to only one block
and a vertex belongs to one or more blocks if it is cut, whereas in vertex partitioning a
vertex always belongs to one block and a hyperedge to one or more if it is cut. By using
hyperedge partitioning HEPart reduces the distributed transactions by the greatest extent,
but it could lead to a large number of replicas. However, we cannot apply a hyperedge
partitioning as HEPart in Vora as it does not support replication yet.

HEPart is designed for general big data applications and could be applied to a model of
database workload where hyperedges represent queries, vertices represent tuples in the
database and the weight of them is related to their load. The gain дpq(e) of a hyperedge
e refers to the reduction in the cut if e would be moved from block p to block q. To
partition the hypergraph, HEPart computes the possible gains and pin distributions for
each hyperedge. It then moves the hyperedge with the highest gain that does not violate
the balance constraint if it is moved. After the move the gains and pin distributions
of all hyperedges that have at least one common vertex are updated. It continues to
move hyperedges until no move that decreases the cut and does not violate the balance
constraint is possible. Finally, tuples are placed on a block if they are connected to at least
on hyperedge in that block.

However, Yang et al. did not implement a prototype in a distributed database system
and thus performance comparisons to other approaches are missing.

17

3. Related Work

P = {p1, p2, p3, p4, p5, p6, p7, p8}
Q = ({p1, p2}, {p1, p2}, {p1, p2}, {p2, p3, p4}, {p2, p3, p4},

{p5, p6}, {p5, p6}, {p5, p6}, {p5, p6}, {p7, p8}, {p7, p8})

3

2

2 2

3

2

2 2

4

2

2

4

3

2

2 2

4

2

Initial Workload Model

Graph Model used by Schism and Clay

Hypergraph Model used by Sword and HEPart

Partition Result of Schism

Partition Result of Sword Partition Result of HEPart

Partition Result of Clay

p1

p2

p3

p4

p6

p5
p8

p7

p1

p2 p4

p3

p5

p6

p7

p8

p1

p2

p3

p4

p5

p6

p8

p7

p7

p8p5

p6

p2′
p4

p2

p1

p8

p6

p5

p7

p4

p3

p2

p1p1

p2

p3

p4

p5

p6

p8

p7

p3

3

2

4

2

3 3

2
2

4 4

2
2

Partition

Partition Result

Workload

Initial Partitioning

Initial Partitioning

Figure 3.6: Comparison of model and partitioning result of Schism, SWORD, Clay and
HEPArt

3.5. Comparison

This section compares the model and partitioning result of Schism, SWORD, Clay, and
HEPart, whereby replication of shards is omitted. Figure 3.6 shows that Schism and Clay
are using graph models whereas SWORD and HEPart are using hypergraph models to
model the workload.

Using graph models instead of hypergraph models can lead to a worse partitioning
results as the example shows. To reduce the number of distributed queries p2 should be
placed on the same block as p1. However, Schism places these nodes on two separate
blocks resulting in 50% more distributed queries than SWORD’s result. That is the case,
because in the graph model the smallest cut is 3 by cutting the edge between p1 and p2,
whereas in the hypergraph model the smallest cut is 2 by cutting the hyperedge containing
p2, p3, and p4.

Furthermore, the �gure shows that Clay does not change the partitioning, even if the
number of distributed queries could be reduced greatly. That is the case because both
blocks have nearly equal load according to their de�nition of load (see Equation (3.1)).
Clay is designed to work best for skewed workloads and does not improve the partitioning
in this case [29].

Lastly, HEPart creates a solution with no distributed queries by using hyperedge par-
titioning. However, this can only be reached by replicating p2, which is currently not
supported by Vora.

18

3.6. Other Approaches based on Hypergraph Partitioning

3.6. Other Approaches based on Hypergraph Partitioning

Beside SWORD, there are several other approaches based on hypergraph partitioning that
di�er in details and are only slightly related to our work. These approaches are brie�y
described in this section.

Catalyurek et al. presented a hypergraph model for periodic load balancing that does
not only consider the communication costs of distributed transactions, but also the data
migration costs [4]. Thus, the partitioning result optimizes the minimal total execution time
needed for executing the transactions and migrating the data. To consider the migration
cost in the partitioning they insert a �xed vertex called partitioning vertex for each block
and connect the partition vertex with all data nodes that are assigned to it. The weight of
these hyperedges represents the cost of moving the data which is equal to the size of it.

Yu et al. examined the data placement in geo-distributed applications and created an
approach called ADP that considers the location of data and services when optimizing
the data placement [34]. To realize this, ADP models two types of vertices: storage nodes
that represent data centers and data items that represent items that should be assigned to
the storage nodes. Storage nodes are connected with each data item and the weight of
this hyperedge is the frequency of access from the data center. Also, data items that are
accessed together are connected by a hyperedge with the frequency of access as weight.
By placing each storage node in a separate block using �xed vertices, the partitioning
result can be used to place the data items to their nearest data center, optimizing localized
data serving and the co-location of associated items.

Turk et al. implemented hypergraph replication and repartitioning for social networks
[31], which is one of the only approaches that uses the (λ − 1) metric. Furthermore, they
created a hypergraph model that utilizes temporal information in prior workloads to
predict future query patterns. To re�ect changes in the workload they divide the workload
Q into T = {t1, ..tT } time spans and weight each hyperedge in time span t with the decay

factor α =
|Qt ∩QT |

|QT |
, where Qt denotes the set of queries in time span t . This decay factor

describes the similarity of time span t to the most current time span [31]. The motivation
of weighting hyperedges with the decay factor is that workloads in social networks consist
of requesting the latest tweets or news-feeds of friends, thus older tweets or news will
probably not be queried again.

3.7. Approaches for OLAPWorkloads

All approaches mentioned in the previous sections are designed for OLTP workloads.
However, there are also methods for OLAP workloads. Because our work is designed for
OLTP workloads, we just give a brief overview on them.

In contrast to the goal in OLTP settings which is to minimize all distributed transactions,
in OLAP settings the goal is to co-locate the pair of tuples that participate in a join on
the same machine, but distribute di�erent pairs to gain parallelism. Figure 3.7 shows the
di�erence between these approaches: In OLTP setting two tables participating in a join

19

3. Related Work

Host 1 Host 2

Table B
id = 0

select * from A inner join B on A.id = B.id;

Host 1

Table B
id = 0

Host 2

Table B
id = 1

Host 1

Table B
id = 0

Host 2

Table B
id = 1

O
pt
im
iz
e
fo
r
O
LT
P

O
ptim

ize
for

O
LA
P

id = 1
Table B

Table A
id = 1

Table A
id = 0

Table A
id = 0

Table A
id = 1

Table A
id = 1

Table A
id = 0

Figure 3.7: Shard placement optimization for OLTP and OLAP approaches ignoring any
balance constraint

would be placed on the same host completely, whereas in OLAP the matching tuples are
distributed in the cluster, so that each host can process the result locally.

Nam et al. introduced GPT [22], an approach based on graph partitioning for OLAP
workloads, which outperforms other state-of-the-art methods in terms of both storage
overhead and query performance. They create a join graph where the vertices represent
tables, an edge indicates the join predicates of the connected tables and the weight of
the edges describes the frequency of the joins. This graph is then used to derive the
partitioning scheme that minimizes the joins that are executed in distributed machines.

20

4. Integrating a Workload-Aware
Reassignment Framework into SAP Vora

To optimize the shard assignment in Vora, we implement a workload-aware reassignment
framework that reduces the number of distributed queries while keeping the load on the
hosts balanced. We model the workload as a hypergraph and use the state-of-the-art
hypergraph partitioner KaHyPar to assign shards to hosts.

To the best of our knowledge, this is the �rst time that such an approach is implemented
in a commercial enterprise database system. Previous approaches implemented their
solutions in experimental databases like H-Store or Relational Cloud [8, 25, 26] that are
designed for research purposes. In contrast to Vora, such database systems are much less
complex because they lack failure resistance, failure recovery, authentication, auditing or
support of multiple engine types. Thus, this thesis implements and examines the e�ects of
optimizing the shards assignment via hypergraph partitioning in a complex enterprise
database system.

The �st section of this chapter describes our approach and the second section gives a
detailed overview on the implementation in Vora.

4.1. Approach

In Vora tables are horizontally partitioned into shards S = {s1, ..., sn} using hash or
range partition functions and assigned to hosts in the cluster in round-robin fashion.
However, distributed transactions are expensive in OLTP settings [8] and should be kept to
a minimum. On the one hand they lead to communication overhead between the involved
hosts and on the other hand they increase the load of the system because each involved
host has to execute the query. Our approach tries to optimize the shard assignment to
hosts while keeping the load across the hosts balanced.

First of all, our approach is workload-aware, thus it monitors the executed queries
Q = (q1, ...,qm) where each query q ∈ Q touches a given set of shards. Formally, we
de�ne for all queries q ∈ Q that q ⊆ S . We construct the workload hypergraph as follows:
H = (S,E = Q, c,ω), which depending on the weight functions can be the same workload
model as SWORD uses [26]. Note that we assign the query sequence Q to hyperedge set E,
which consists of all distinct queries of the workload (in general |E | ≤ |Q |). The functions
c and ω are chosen according to a precon�gured weight policy.

One weight policy is the frequency weight policy:

∀s ∈ S : c(s) = |{q ∈ Q | s ∈ q}| (4.1)
∀e ∈ E : ω(e) = |{q ∈ Q | e = q}| , (4.2)

21

4. Integrating a Workload-Aware Reassignment Framework into SAP Vora

where c(s) denotes the number of queries which shard s is part of and ω(e) denotes the
number of queries that touch the same shards as hyperedge e . This workload hypergraph
is the same model as SWORD uses in their approach.

By partitioning the workload hypergraph H using the frequency weight policy, we place
frequently co-accessed shards together, thus minimizing the number of distributed queries
and balance the load so that all hosts have to process a nearly equal number of queries.

Another policy we examine is the execution time policy for which we de�ne the functions
texec(q) that returns the execution time for a query and texec(q, s) that returns the execution
time of a query q on the host where shard s is placed on. Using this functions we can
de�ne c(s) and ω(e) as:

∀s ∈ S : c(s) =
∑
q∈Q
s∈q

texec(q, s) (4.3)

∀e ∈ E : ω(e) =
∑
q∈Q
e=q

texec(q) , (4.4)

where c(s) denotes the total execution time of all queries where s is part of and ω(e)
denotes the total execution time of queries that touch same the shards as hyperedge e .

By partitioning the workload hypergraph H using the execution time weight policy, we
place shards together that are frequently co-accessed by long running queries (e.g., multi
table joins) and balance the load so that all hosts have a nearly equal execution time.

We model the workload on shard level instead of tuple level because Vora is only able
to track access on shard level. However, shards are an aggregation of tuples and using
such aggregations instead of working on tuple level showed greater scalability and less
sensitivity to workload changes [26].

4.2. Implementation

To trigger the reassignment we implemented a dedicated SQL command in Vora, which
is shown in Listing 4.1. Our approach then creates the hypergraph model based on the
monitored queries Q , partitions it using KaHyPar, and uses its result to move the shards.
To be able to partition the hypergraph using KaHyPar, we integrated it as a library into
Vora.

01 | REASSIGN PARTITIONS WITH 'HYPERGRAPH' OPTIONS (

02 | EPSILON 0.1, WEIGHT_POLICY 'FREQUENCY',

03 | TRANSFORMATION 'SCHISM', OBJECTIVE 'KM1', SAMPLING_FACTOR 0.5

04 |);

Listing 4.1: Reassignment query syntax example

All parameters of the reassignment statement are con�gurable. Their purpose and the
possible values are shown in Table 4.1.

Most of our work is implemented in the landscape component of Vora because it is
responsible for data placement (see Section 2.2.2 for the architecture overview of Vora). In

22

4.2. Implementation

WITH The method that is used to optimize the assignment. It can be ei-
ther SWORD, CLAY or KaDaRea (described in Chapter 5).

EPSILON The imbalance parameter ε passed to the hypergraph partitioner.
WEIGHT_POLICY The weight policy that determines the weights in the

hypergraph. Possible values are frequency or execution_time.
TRANSFORMATION The transformation that is used to enrich or modify the workload

model. It can be either schism to transform it into Schism’s
workload model or none to keep the unmodi�ed model.

OBJECTIVE The objective that is minimized by the hypergraph partitioner.
It can be km1 or cut.

SAMPLING_FACTOR Indicating the fraction of queries that are sampled before
building the workload model. It can be any numeric value in (0, 1]

Table 4.1: Description of parameters for reassignment query

this component we aggregate statistics about each executed query, which are extracted and
forwarded from transaction coordinator to landscape manager. These statistics contain
information about touched shards of a query and the execution times on each host, which
are used to build the workload hypergraph.

Figure 4.1 shows the design of our approach and the steps that happen if a reassignment
is triggered. The �rst step is that the landscape server builds an internal representation of
the workload hypergraph. For each query q ∈ Q that is stored in a component which we
call the statistic collector, the spanned shards are added as vertices to the hypergraph and
a hyperedge connecting these shards is added.

If the sampling factor is set, we sample the queries before creating the workload hyper-
graph. Thus, we are able to simulate the e�ects of having smaller monitoring timespans
because in some systems monitoring each query could be very expensive. Moreover, the
landscape component scans for shards that are not touched by any query and adds them
to hypergraph to receive the complete unweighted workload hypergraph.

Transaction
Coordinator

Statistic
Collector

Weight
Policy

Hypergraph
Transformed
Hypergraph

Hypergraph
Partitioner

Create hypergraph
from workload

Determine weight for
hypernodes and hyperedges

Apply
transformation

rule

New assignment
for shards to host

Landscape Server

Send query
statistics

Figure 4.1: Design of shard reassignment in Vora

23

4. Integrating a Workload-Aware Reassignment Framework into SAP Vora

The workload hypergraph is transformed into a weighted hypergraph by applying the
weight policy speci�ed in the repartitioning statement presented in Section 4.1.

Afterwards, the hypergraph model is transformed based on a transformation rule. Such
a rule can be used to transform our hypergraph model into Schism’s graph model by
applying clique expansion.

Both the weight policy and the transformation rule are easily extendable to experiment
with other weight policies or to extend the basic model with more advanced techniques.

Finally, the model is transformed into the input data structure of KaHyPar’s interface
and it is then called to partition the hypergraph into k (number of hosts) blocks with
the con�gured imbalance parameter (speci�ed by option EPSILON) and objective function
(speci�ed by option OBJECTIVE). KaHyPar is integrated into Vora and the communication
between Vora and KaHyPar takes place by using its C style library interface.

The result of the hypergraph partitioning are k disjoint blocks that describe which
shards should be placed together. However, before moving the shards to their new hosts,
we want to �nd a mapping between the current assignment Ψ = {Ψ1, ...,Ψk} and the new
one Π = {Π1, ...,Πk}, such that the required moves are minimized.

To solve this problem we create a weighted bipartite graph G = (V = L ∪ R,E,ω) (see
De�nition 2.3) where the nodes on the left sideL represent the blocks of the new assignment,
and the nodes on the right side R represent the blocks of the current assignment. An
edge between a node u ∈ L and v ∈ R is weighted with the number of vertices which the
corresponding blocks Πu and Ψv have in common. More formally, ω(u,v) = |Πu ∩ Ψv |.
In order to minimize the number of moves, we try to �nd a permutation of the new
assignment Π̄, such that

∑
i∈{1,...,k} |Ψi ∩ Π̄i | is maximized. This is an instance of the

maximum weighted bipartite matching problem (see De�nition 2.5) and can be solved by
applying the Hungarian algorithm (see Section 2.1.4) on the previously created bipartite
graph G [19].

Figure 4.2 shows the e�ect of our algorithm: Initially the shards A1, B1, and C1 are
placed on host h1. Partitioning the workload hypergraph reduces the distributed queries
by placing A1, A2, and B2 together, however the partitioning result would place them on
h1, resulting in a total of 4 moves. By �nding the maximum weighted bipartite matching
between the new assignment and the current assignment, A1, A2, and B2 are placed on h2,
reducing the required moves to 2.

At the end, the landscape component sends the move instructions to the transaction
coordinator and updates the shard information in the catalog server, so that incoming
queries are routed to the new hosts of the shards.

24

4.2. Implementation

A1

A2 B1 C1

C2

B2

A1

A2 B1 C1B2

A1

A2 B1 C1B2

C2

C2

Workload model with current assignment

partition model

Assignment after partitioning

maximum weighted

bipartite matching

Assignment after max. weighted bipartite matching

2

1
2

1

Current AssignmentNew Assignment

create bipartite graph

Bipartite Graph

h1 h1

h2 h2

Figure 4.2: Reduced number of moves by using maximum weighted bipartite matching.
Color indicates host of shard.

25

5. KaDaRea - A Peak- and Pattern-Aware
Database Reassignment Technique

In this chapter we propose Karlsruhe Database Reassigning, called KaDaRea, a novel ap-
proach for solving the allocation problem in context of shard placement. Our technique
divides the workload into time intervals and partitions the workload hypergraph for each
of it. With a special rating function we are able to optimize shard placement in presence
of workload peaks or even changes in the workload patterns, which would lead to several
shortcomings with the traditional approach, such as assignments that are not optimized
for peaks in the workload or assignments that are not balanced at any point in time.

Our approach is novel as to the best of our knowledge there is no other technique
which partitions the workload hypergraph for each time interval. Turk et al. consider the
time of execution for computing the hyperedge weights, but in contrast to our approach
they create a single workload hypergraph and partition it [31]. Without partitioning the
workload hypergraph for each time interval it is not possible to detect changes or peaks
in the workload.

Firstly, we outline the main idea and the motivation of using such a technique, before
we go into implementation details.

5.1. Motivation

In real world applications the processed load by a distributed database system varies
heavily depending on the time of the day or external events. On the one hand, the intensity
of the load changes, thus there are times where the load is low and peak times where
the load is much higher. Most systems can handle the low or regular load without any
advanced repartitioning techniques. However, they fail to deliver their service during peak
times, leading to a huge dissatisfaction for the customers. Examples for this peak times
are popular sport events leading to failures at sport streaming services or launches of new
products at web shops.

On the other hand, the mixture of the load changes over time leading to patterns in the
workload. An example for this are multi-tenant distributed databases, where teams from
di�erent regions are working on the same database. To illustrate, there are two teams, one
in Central Europe and one in the US, which access di�erent tables of the database to ful�ll
their tasks. Because the US workday is much later than the one in Central Europe, it leads
to two di�erent patterns of workloads, one for the team in Central Europe and one for the
team in the US. Partitioning the workload model of these two workload patterns without
considering when the workload is executed could result in an assignment that is bad for

27

5. KaDaRea - A Peak- and Pattern-Aware Database Reassignment Technique

T1 T2

Workload

Partition without sliding window

Partition with sliding window

Figure 5.1: Using a sliding window results in a balanced assignment for changing workload
patterns

both patterns because it is imbalanced at any point in time even if the partitioning result
of the combined workload is balanced.

To solve these problems we propose an approach that is based on splitting the workload
into several time slices and then partition each workload hypergraph independently,
similar to a sliding window. The resulting assignments for the di�erent time intervals are
aggregated in a rating function and weighted with the relative load inside a time slice. At
the end, a shard is assigned to the block with the highest rating.

The �rst advantage of this approach is that it gives windows with peak load more impact
to be able to adapt better to peak times. Secondly, by partitioning the hypergraph using a
sliding window the weight of nodes from di�erent time slices do not interact when trying
to �nd a balanced partitioning as they do when we partition the hypergraph without
sliding windows. Figure 5.1 depicts how the assignment is di�erent if a sliding window is
used and the workload patterns are changing. In time intervalT 1 only the upper shards are
queried and inT 2 only the lower ones. If the resulting workload hypergraph is partitioned
without considering when the queries are executed, the best assignment is to assign the
upper shards to one host and the lower ones to the other host. However, this assignment
is heavily imbalanced as in one time frame one host is busy while the other on is idling. A
better assignment regarding performance and load balance is to cut the upper and lower
group of shards and assign one part of the each group to a host, resulting in a utilization
of both hosts at any time.

28

5.2. Implementation

5.2. Implementation

In the following section we present our sliding window algorithm in detail, which was
motivated and sketched in the section before.

For a query q ∈ Q we de�ne functions ts(q) and te(q) with ts(q) < te(q) that return the
start and end time of a query. Using this functions we can construct the sequence of all
queries Qw and the workload hypergraph Hw for time interval w = [ts , te):

Qw = (qi ∈ Q |ts 6 ts(qi) ∧ te(qi) < te) (5.1)
Hw = (S,E = Qw , cw ,ωw) . (5.2)

The weight functions cw and ωw are one of the weight policies de�ned in Section 4.1
based on the queries in Qw .

Let wsize > 0 be the sliding windows size and wstep > 0 be the sliding window step with
wstep 6 wsize , we can de�ne the set of windowsW = {w0, ...,wl }, where

wi = [tstart + i ·wstep, tstart + i ·wstep +wsize] with tstart = min(ts(Q)) . (5.3)

Parameter l is de�ned as the minimum index where for wl = [ts , te) the condition te >
max(te(Q)) holds.

We can now calculate the partitioning ofH using the sliding window algorithm described
in Algorithm 1. For each window w we create the hypergraph Hw and partition it into k
disjoint blocks Π = {Π1, ...,Πk}. For all shards s we store a rating to each block Πi that
re�ects how often s was placed on Πi multiplied with a window factor. The factor of a
window gives windows with a higher load more impact, leading to an assignment that is
optimized for workload peaks. It is de�ned as follows:

f (wi) =

(
cwi (S)

M

)2
with M = max

i∈[0,l]
(cwi (S)) . (5.4)

However, before increasing the rating of the blocks, the most similar permutation
between the last partitioning result Πlast and the current result Π must be found because a
partitioning result can be equal to the last partition but only di�er in the indices of the
blocks. This is the same instance of the maximum weighted bipartite matching problem that
we solved in the previous chapter by applying the Hungarian algorithm (see Section 2.1.4).
At the end we place each shard to the block with the highest rating.

We extended the reassignment query syntax to be able to con�gure the usage of KaDaRea
and the parameters for it. See Listing 5.1 for a syntax example with the additional options
to use KaDaRea and to con�gure wsize and wstep , whereby the unit for both are seconds.

01 | REASSIGN PARTITIONS WITH 'KaDaRea' OPTIONS (

02 | EPSILON 0.1, WEIGHT_POLICY 'FREQUENCY',

03 | SLIDING_WINDOW_SIZE 50, SLIDING_WINDOW_STEP 10

04 |);

Listing 5.1: Reassignment query syntax for sliding window

29

5. KaDaRea - A Peak- and Pattern-Aware Database Reassignment Technique

Algorithm 1: KaDaRea
input :Q, wsize ,wstep,k
output :Π

1 t =min(ts(Q))
2 W = ()
3 do // determine all windows
4 W .append([t , t + wsize])

5 t = t + wstep

6 while t 6 max(te(Q))
7 ∀s ∈ S : ∀i ∈ {1, ...,k} : R(s, i) = 0 // set initial rating of shards to blocks
8 Πlast = ∅ // partitioning result of previous window
9 M = maxw∈W (cw (S))

10 foreachw ∈W do

11 Hw = (S,E = Qw , cw ,ωw)

12 Π = partition(Hw ,k)
// �nd most similar permutation to Πlast by max. weighted bipartite matching [19]

13 Π = maximumWeightedBipartiteMatching(Π, Πlast)
14 foreach s in S do

15 R(s, i) += cw (s)
M where s ∈ Πi

16 Πlast = Π

17 foreach s ∈ S do

18 Assign s to Πi where i = arg maxi∈[1,k](R(s, i))

This approach has several advantages: The �rst one is that queries during a peak load
have more impact on the partitioning result. Another bene�t is that if the workload
patterns change over time, partitioning the hypergraph using a sliding window will lead
to a more balanced solution, which results in a better utilization of the system.

30

6. Evaluation

In this chapter we compare the performance of our workload aware reassignment frame-
work to the current state in Vora of assigning the shards in round robin fashion. Ad-
ditionally, we compare our approach to other state-of-the-art techniques and evaluate
KaDaRea.

6.1. Experimental Setup

For the evaluation of our work we deployed Vora with Google Kubernetes Engine on a
GKE cluster. Each node in the cluster has 8 virtual CPU cores and 30 GB of main memory.
To avoid network e�ects negatively a�ecting the benchmark results like slow routers
or corporate �rewalls, we execute the benchmarks inside the cluster on a separate node
instead of executing them on a client machine outside the cluster.

We evaluate our approach by running the widely used TPC-C1 and TPC-E2 benchmarks,
which are implemented as Java applications and connect to the database via a JDBC
connection. Our benchmarks are based on open source implementations and we adapted
them to work with Vora. These benchmarks are described in Section 6.1.2 and Section 6.1.3
in more detail.

An experimental run consists of an initial benchmark run, where all queries are moni-
tored. Afterwards, the reassignment statement is triggered and based on the con�gured
reassignment strategy the shard landscape is optimized. Finally, we run the benchmark a
second time on the optimized assignment to compare its results with the results of the
initial benchmark run.

We partition the tables in both benchmarks by their primary key using a hash partition
function, leading to k shards for each table, where k is the number of hosts (see Section 2.2.1
for database partitioning). Furthermore, we create a su�cient amount of client connections
to Vora that query the system in parallel such that it is fully utilized. To avoid side e�ects
between multiple experimental runs, all hosts are restarted after each run.

6.1.1. Methodology

There are two main metrics we examine in this thesis. The �rst one is the speed-up in
throughput S which describes how much the throughput Naf ter after the optimization
increased compared with the throughput Nbe f ore of the benchmark execution before the

1https://github.com/AgilData/tpcc
2https://github.com/apavlo/h-store/tree/master/src/benchmarks/edu/brown/benchmark/tpce/

31

https://github.com/AgilData/tpcc
https://github.com/apavlo/h-store/tree/master/src/benchmarks/edu/brown/benchmark/tpce/

6. Evaluation

optimization, formally de�ned as:

S =
Naf ter

Nbe f ore
. (6.1)

The second one is the share of distributed queries weighted with the number of spanned
hosts after the optimization took place. Hence, queries which span many hosts lead to a
bigger value than queries which only span a few. D is formally de�nes as:

D =

∑
q∈Q : λ(q,Π)>1

λ(q,Π)∑
q∈Q

λ(q,Π)
. (6.2)

We are not able to make absolute throughput or response time numbers public due
non-disclosure clauses, thus we transform the throughput of the benchmarks and response
time of the transactions into normalized values by dividing each value with the maximum.

To visualize the shard assignment we create workload graphs such as the one depicted
in Figure 6.4. This workload graph is created by transforming the workload hypergraph
using the bipartite transformation. The large nodes in the �gure represent shards where
the node label represents the table of the shard and the node color represents the host of
the shard. Shards are connected to queries, represented by small nodes in the �gure. Thus,
shards that are connected to the same node are part of the same query. The thickness of a
edge represents the frequency of a query.

Furthermore, to visualize the throughput over time we output the throughput of the
last 20 seconds during the benchmark execution. Using this information, throughput over
time plots are created like the one shown in Figure 6.10. The depicted throughput is the
normalized throughput which is computed by dividing each value with the maximum
measured throughput in the experiment. Additionally, the �gure shows the 0.95 con�dence
interval as a band around the curve.

6.1.2. TPC-C

TPC-C [21] is a classical OLTP benchmark created in 1992 that models a warehouse
with its customers using 9 tables, 5 di�erent transaction types, and a data size of about
500.000 records per warehouse. We con�gured TPC-C to consist of a single warehouse. A
transaction type consists of several queries. For example, such a transaction type is the
new order transaction that creates a new order and updates relevant stock entries. The
database schema of TPC-C is depicted in Figure 6.1.

At the start of the benchmark a number of precon�gured clients are created, which
query the database in parallel. Each client randomly chooses a transaction type from a
prede�ned probability distribution and its parameters and executes all queries related to
the transaction. This is repeated until the benchmark ends.

TPC-C is a rather simple benchmark compared to TPC-E, however it is still widely used
to evaluate the results of partitioning approaches [3, 6].

The measured metric in TPC-C is the number of completed new order transactions per
minute.

32

6.1. Experimental Setup

Warehouse
W

Stock
W ∗ 100.000

Item
100.000

District
W ∗ 10

Customer
W ∗ 30.000

Order
W ∗ 30.000

New-Order
W ∗ 5.000

History
W ∗ 30.000

Order-Line
W ∗ 300.000

10

3.000

1+

1+ 0-1

10-15

W100.000

Figure 6.1: TPC-C database schema (adapted from [30])

6.1.3. TPC-E

TPC-E [6] is a more recent OLTP benchmark released in 2007 that models a brokerage
house with customers, stocks and trades using 33 Tables and 10 di�erent transaction
types. We con�gured the data size of TPC-E to be about 10 GB (~177.500.000 records). The
customer and stock exchange are modeled to drive transactions at the brokerage house,
which is the system under test, as shown in Figure 6.2. The brokerage house manages
information for the customers, the brokers and the stock market. Therefore, customer
query the brokerage house to place orders or get information about the market. The
brokerage house then updates its database or sends a request to the stock exchange. Also,
the stock exchange sends market ticker feeds to the brokerage house which then reacts to
these feeds by submitting orders if certain conditions in the market are met. The measured
metric in TPC-E is the number of all completed transactions per seconds.

TPC-E is designed to be a more realistic benchmark and is far more complex than TPC-C,
as it incorporates realistic data skews and multi table joins [6]. The database schema of
TPC-E is depicted in Figure A.1.

The �ow of the benchmark is the same as the �ow of TPC-C: At the start a number of
clients are created which randomly choose a transaction type with its parameters and
execute all queries related to the transaction. This is repeated until the benchmark ends.

Driver

Customers
Customer Request

Brokerage Response

Stock Exchange
Market Response

Ticker Feed

Brokerage Request

Brokerage House
Brokerage Response

Customer Request

Market Response
Ticker Feed

Brokerage Request

System
Under Test

Figure 6.2: TPC-E models a �nancial brokerage house (adapted from [6])

33

6. Evaluation

6.2. Parameter-Tuning Experiments

In this section we examine the e�ects of di�erent parameters on the reassignment quality
in order to �nd a proper setting to compare our results with the current state in Vora and
state-of-the-art approaches.

If not stated otherwise, we run the benchmarks on 4 hosts, using the connectivity
objective, the frequency weight policy, an imbalance parameter ε of 0.1, a benchmark
measuring time of 300 seconds, and warm up time of 30 seconds per benchmark execution.

6.2.1. Imbalance

Figure 6.3 shows the speed-up in throughput S and the share of distributed queries D
weighted with the number of spanned hosts for varying ε parameter values.

As one can see, the throughput of the system increases greatly even for small ε values
like 0.03. Also, D drops with increasing ε until it reaches 0, which means that there are no
distributed queries in the benchmark execution after the optimization took place.

However, the throughput decreases at some point, hence the best performance cannot be
reached by increasing ε until all distributed queries are eliminated. This happens because
for big ε some hosts are idling while others are overloaded.

In fact, when looking at the TPC-E benchmark S drops signi�cantly for ε > 1 for 4
and 8 hosts. For 2 hosts, there is just a small decrease for ε > 0.1, because in this case all
distributed transactions can be eliminated using a rather small ε .

The optimal ε value di�ers depending on the number of hosts and increases as the
number of hosts increases. Thus, depending on the number of hosts the proper ε parameter
value must be found to maximize the throughput. We choose ε = 0.1 for 2 hosts, ε = 0.25
for 4 hosts, and ε = 0.5 for 8 hosts.

2 Hosts 4 Hosts 8 Hosts

TPC-C
TPC-E

0.03 0.1 0.25 0.5 1 0.03 0.1 0.25 0.5 1 2 4 0.03 0.1 0.25 0.5 1 2 4 8

0.0
0.1
0.5
1.0
2.0
3.0
4.0
5.0

0.0
0.1
0.5
1.0
2.0
3.0
4.0
5.0

ε

S
re
ga
rd
in
g
D

S D

Figure 6.3: Evaluation of varying ε values regarding speed-up in throughput S and weighted
share of distributed queries D

34

6.2. Parameter-Tuning Experiments

Table 6.1: Evaluation of cut and connectivity (λ − 1) metric regarding throughput in speed-
up S and weighted share of distributed queries D

4 Hosts 8 Hosts
TPC-C TPC-E TPC-C TPC-E

Objective S D S D S D S D

Cut 1.60 0.09 2.95 0.11 1.65 0.34 3.92 0.20
λ − 1 1.61 0.09 2.94 0.11 1.73 0.31 4.30 0.17

6.2.2. Objective Metric

This section examines the e�ects of using the cut or the connectivity (λ − 1) metric when
partitioning the hypergraph. Some of the state-of-the-art techniques use the connectivity
metric [4, 31], others use the cut metric [26, 34], however none of them compare the
metrics.

If a hyperedge is cut and this results in a query that is distributed across 3 hosts, the
performance is worse than if a hyperedge is cut and the query is distributed across 2 hosts
because there is more communication overhead and one more host that has to process the
query. This property is considered by the connectivity metric as it considers to how many
blocks a hyperedge is connected to.

As Table 6.1 shows, there is no signi�cant di�erence measurable for 4 hosts, but for
8 hosts the connectivity metric results in a larger speed-up in throughput S and less
distributed queries D.

Thus, we use the connectivity metric in our experiments.

6.2.3. Weight Policy

In Section 4.1 we provided two weight policies: the frequency and the execution time policy.
Nearly all state-of-the-art techniques model the weights of the hyperedges and vertices
using the frequency policy, but none of them apply a weight function that considers the
execution time of the queries.

We implemented the execution time policy in two variants, one where the execution
time is used to determine both the vertex and hyperedge weights (Equation (4.3) and
Equation (4.4)) and one where the execution time is only used to determine the hyperedge
weight and the frequency is used for the vertex weights (Equation (4.1) and Equation (4.4)).

Table 6.2 shows that the frequency policy performs best, leading to the highest speed-up
and the least distributed queries as both execution time polices perform signi�cantly worse
than the frequency policy for the TPC-E benchmark.

We observed that if the execution time policy for vertices and hyperedges is used, some
shards are getting too heavy, resulting in hosts with only a few shards on them.

Furthermore, in the second case where the execution time is only used to determine the
weight of the hyperedges, the performance is still worse than using the frequency policy

35

6. Evaluation

Table 6.2: Evaluation of frequency and execution time policies regarding speed-up in
throughput S and weighted share of distributed queries D on 4 hosts

TPC-C TPC-E
Weight Policy S D S D

Frequency 1.61 0.09 2.94 0.11
Execution Time (Vertices & Edges) 1.09 0.20 0.98 0.49
Execution Time (Edges) 1.60 0.10 1.28 0.40

for the TPC-E benchmark. This means that our assumption that reducing distributed long
running queries would lead to a larger speed-up is wrong, instead the frequency of queries
has more impact on the overall throughput.

Thus, the frequency weight policy should be preferred.

6.2.4. Sampling

In this section we evaluate the e�ect of sampling the monitored queries. As Table 6.3
shows, for both benchmarks 1% of the queries are enough to create a solid workload model
that increases the throughput by a great extent. In the case of the TPC-C benchmark 10%
of the queries are enough to create the best workload model for our approach. In contrast
to TPC-C, we need 50% of all queries to create the best workload model for TPC-E.

Thus, in general it is su�cient to monitor only a fraction of the queries to get a good
workload model.

Table 6.3: Evaluation of robustness to sampling regarding speed-up in throughput S and
weighted share of distributed queries D on 4 hosts

TPC-C TPC-E
Sampling Factor S D S D

1% 1.50 0.16 2.34 0.18
10% 1.61 0.08 2.58 0.15
25% 1.60 0.10 2.73 0.12
50% 1.62 0.08 2.94 0.10
100% 1.61 0.09 2.94 0.11

36

6.3. Comparison with Current State in Vora

C

C

C

C D

D

D

D

I

II

I

N

N

N

N

OO

O
O

OL

OL

OL

OL

S

S

S

S

W

C

C

C

C D

D

D

D

I

II

I

N

N

N

N

OO

O
O

OL

OL

OL

OL

S

S

S

S

W

Host 1 2 3 4 Query

(a) Workload graph before reassignment (b) Workload graph after reassignment

Figure 6.4: Workload graph for TPC-C benchmark running on 4 Hosts. The node labels
symbolize the table of the shard.

6.3. Comparison with Current State in Vora

This section evaluates the impact of our new reassignment framework compared to the
current state in Vora of assigning the shards in round robin fashion in detail using the
TPC-C and TPC-E benchmark.

The experiments in this section are executed with the following parameters that have
been determined in the previous section: We use the connectivity metric, the frequency
weight policy, a sampling parameter of 100% and an imbalance parameter ε = 0.1 for 2
hosts, ε = 0.25 for 4 hosts, and ε = 0.5 for 8 hosts.

6.3.1. TPC-C

A visualization of the shard assignment before and after the reassignment can be seen in
Figure 6.4, which shows that after the reassignment most of the shards that are queried
together are placed on the same host.

This leads to a big performance improvement depicted in Figure 6.5 which shows the
normalized throughput over the running time of the benchmark before and after the
reassignment. The throughput is much higher after the reassignment, leading to an
average speed-up in throughput S = 1.33 for 2 hosts, S = 1.78 for 4 hosts, and S = 1.94 for
8 hosts.

Also, the distributed queries are reduced and all highly distributed queries, which are
queries that access all hosts of cluster, are eliminated (see Figure A.2): The weighted share

37

6. Evaluation

2 Hosts 4 Hosts 8 Hosts

0 100 200 300 0 100 200 300 0 100 200 300
0.00

0.25

0.50

0.75

1.00

Time in seconds

N
or
m
al
iz
ed

Tr
ou

gh
pu

t

Before Reassignment After Reassignment

Figure 6.5: Normalized throughput (current/max) with 0.95 con�dence interval before and
after reassignment for TPC-C

of distributed queries D is reduced by 78 % for 2 Hosts, 92% for 4 Hosts, and 65% for 8
Hosts.

Figure 6.6 presents how the response time of transactions in TPC-C change by optimizing
the assignment. Overall, the response time improves greatly and the variance for the
transaction types decreases. The more distributed queries like joins or table scans a
transaction contains, the greater is the speed-up of the response time. When looking at
the implementation of the transactions, one can see that Delivery has 66% distributed
queries whereas OrderStat has only 20% distributed queries, thus Delivery has a much
larger speed-up. NewOrder does not improve much because most of its queries access
table Inventory(I) and Stock (S) for which the assignment before the optimization was
already good. The response time of StockLevel even decreases because it accesses single
shard of table District (D) and OrderLine (OL). This means that its queries have not
been distributed before the reassignment, but the shards of the tables have been placed on
di�erent hosts, thus simultaneous queries to District (D) and OrderLine (OL) could be
parallelized to a greater extend.

38

6.3. Comparison with Current State in Vora

Delivery NewOrder OrderStat Payment StockLevel

0.00

0.10

0.25

0.50

0.75
1.00

Transaction type

N
or
m
al
iz
ed

re
sp
on

se
tim

e

Before Reassignment After Reassignment

Figure 6.6: Normalized response times (current/max) for each transaction type of TPC-C
on 4 hosts

6.3.2. TPC-E

As already mentioned in Section 6.1 the TPC-E benchmark is much more complex than
the TPC-C benchmark. This can be seen in Figure 6.7 which depicts the shard assignment
before and after the reassignment and shows that shards that are frequently queried
together are placed on the same host after the optimization.

The performance improvement is even higher than for the TPC-C benchmark: The
speed-up in throughput is S = 1.88 for 2 hosts, S = 3.09 for 4 hosts, and S = 5.11 for 8
hosts. One important thing to note is that the throughput before the reassignment does
not increase if hosts are added, as Figure 6.8 shows. This means that one cannot scale
the throughput of the system by simply adding hosts, one must also optimize the shard
assignment to get any performance improvements.

Also, the distributed queries are reduced and again all highly distributed queries are
eliminated (see Figure A.3): The weighted share of distributed queries D is reduced by 65%
for 2 Hosts, 79% for 4 Hosts, and 91% for 8 Hosts.

Figure 6.9 presents how the response time of transactions in TPC-E change by optimizing
the assignment. Overall, the response time improves greatly and the variance of the
response time for a transaction type decreases. BrokerVolume shows the greatest speed-up
of response time because it contains a join across 7 tables whereas TradeLookup does not
improve much because it contains nearly no distributed queries. MarketWatch consists of
mostly joins, however it does not improve. That is the case because the initial round robin
assignment places the partitions in such a way that the joins are non distributed thus we
cannot improve the assignment for this transaction any more.

39

6. Evaluation

AP

AP

BR

BR

BR

BR

CT
CT

CT

CT

CH

CH

CH

CR

CR

CR

CO
CO

COCO CC

CC
CC

CC

CU
CU

CU

CU

CA

CA
CA

CACT

CT

CT

DM

DMDM
DM

EX EX
EXEX

FI

FI
FI

FI

HO
HO

HO
HO

HH
HS

HS HS
HS

IN
IN

IN

IN

LT

LTLT
LT

NI
NI
NI

NI
NX

NX
NX

NX

SC

SE

SE
SESE

ST

ST

ST

ST

ST
ST
ST

TA
TA

TA
TA

TR
TR
TRTR

TH

TH

TH
TH

TR

TR

TR

TR

TT

TT
TTTT

WI
WI

WIWI

WL

WL

WL WL

AP

AP

BR

BR

BR

BR

CT
CT

CT

CT

CH

CH

CH

CR

CR

CR

CO
CO

COCO CC

CC
CC

CC

CU
CU

CU

CU

CA

CA
CA

CACT

CT

CT

DM

DMDM
DM

EX EX
EXEX

FI

FI
FI

FI

HO
HO

HO
HO

HH
HS

HS HS
HS

IN
IN

IN

IN

LT

LTLT
LT

NI
NI
NI

NI
NX

NX
NX

NX

SC

SE

SE
SESE

ST

ST

ST

ST

ST
ST
ST

TA
TA

TA
TA

TR
TR
TRTR

TH

TH

TH
TH

TR

TR

TR

TR

TT

TT
TTTT

WI
WI

WIWI

WL

WL

WL WL

Host 1 2 3 4 Query

(a) Workload graph before reassignment (b) Workload graph after reassignment

Figure 6.7: Workload graph for TPC-E benchmark running on 4 Hosts. The node labels
symbolize the table of the shard.

2 Hosts 4 Hosts 8 Hosts

0 100 200 300 0 100 200 300 0 100 200 300
0.00

0.25

0.50

0.75

1.00

Time in seconds

N
or
m
al
iz
ed

Tr
ou

gh
pu

t

Before Reassignment After Reassignment

Figure 6.8: Normalized throughput (current/max) with 0.95 con�dence interval before and
after reassignment for TPC-E

40

6.3. Comparison with Current State in Vora

TradeLookup TradeOrder TradeResult TradeStatus TradeUpdate

BrokerVolume CustomerPosition MarketFeed MarketWatch SecurityDetail

0.00

0.10

0.25

0.50

0.75

1.00

0.00

0.10

0.25

0.50

0.75

1.00

Transaction type

N
or
m
al
iz
ed

re
sp
on

se
tim

e

Before Reassignment After Reassignment

Figure 6.9: Normalized response times (current/max) for each transaction type of TPC-E
on 4 hosts

41

6. Evaluation

6.4. Comparison with State-of-the-Art Approaches

This section evaluates our approach in comparison to the state-of-the-art approaches
Schism and Clay. As already mentioned in Section 4.1, SWORD uses the same workload
model as our approach, therefore we refer to our approach as SWORD in this section.

The experimental parameters are the same as in Section 6.3.

6.4.1. TPC-C

Figure 6.10 shows that the throughput of Schism is as high as the throughput of SWORD.
This is the case, because TPC-C consists mostly of simple queries that can be represented
well in a graph model, thus Schism and SWORD lead to the same shard assignment,
depicted in Figure 6.11. However, Clays result is not balanced because there are too many
shards placed on host 2. Furthermore, it stops even if there are still many distributed
queries, thus the performance is much worse compared to SWORD resulting in a speed-up
in throughput S = 1.05 whereas Schism and SWORD accomplish a speed-up in throughput
S = 1.74.

0.00

0.25

0.50

0.75

1.00

0 100 200 300
Time in seconds

N
or
m
al
iz
ed

Tr
ou

gh
pu

t

SWORD Schism Clay

Figure 6.10: Comparison of SWORD, Schism, and Clay: Normalized throughput
(current/max) with 0.95 con�dence interval after reassignment for TPC-C
on 4 hosts

42

6.4. Comparison with State-of-the-Art Approaches

C

C

C

C

D

D

D

D

I

I

I

I

N

N
N

N O

O

O

O

OL
OL

OL
OL

S

S

S

S

W

C

C

C

C

D

D

D

D

I

I

I

I

N

N
N

N O

O

O

O

OL
OL

OL
OL

S

S

S

S

W

C

C

C

C

D

D

D

D

I

I

I

I

N

N
N

N O

O

O

O

OL
OL

OL
OL

S

S

S

S

W

Host 1 2 3 4 Query

(a) SWORD’s workload graph (b) Schism’s workload graph (c) Clay’s workload graph

Figure 6.11: Comparison of SWORD, Schism, and Clay: Workload graphs after assignment
optimization for TPC-C benchmark running on 4 Hosts. The node labels
symbolize the table of the shard.

6.4.2. TPC-E

While Schism created a good assignment for the TPC-C benchmark, it fails to create a
good assignment for the more complex TPC-E benchmark. As Figure 6.12 shows, using

0.00

0.25

0.50

0.75

1.00

0 100 200 300
Time in seconds

N
or
m
al
iz
ed

Tr
ou

gh
pu

t

SWORD Schism Clay

Figure 6.12: Comparison of SWORD, Schism, and Clay: Normalized throughput
(current/max) with 0.95 con�dence interval after reassignment for TPC-E
on 4 hosts

43

6. Evaluation

AP

AP

AP

BR
BR

BR

BR

CTCT
CT

CT

CHCH CH

CR

CR

CR

COCO
CO

CO

CC

CU

CU
CU

CU

CA
CA

CACA

CT
CT

CT
CT

DM

DM

DM

DM

EXEX
EX

EX

FI FI

FI

FI
HO

HO

HO

HO

HH

HS
HS

HS

HS

ININ ININ

LT
LT

LT
LT NI

NI

NI

NX

NXNX

NX

SCSE

SE

SE
SE

ST

ST

ST

ST

ST

ST
ST

ST

TA
TA

TATA

TR

TR
TR
TR TH

TH

TH

TH
TR

TR TR
TRTT

TTTTTT

WI

WI
WI

WI

WL

WL

WL

WL

AP

AP

AP

BR
BR

BR

BR

CTCT
CT

CT

CHCH CH

CR

CR

CR

COCO
CO

CO

CC

CU

CU
CU

CU

CA
CA

CACA

CT
CT

CT
CT

DM

DM

DM

DM

EXEX
EX

EX

FI FI

FI

FI
HO

HO

HO

HO

HH

HS
HS

HS

HS

ININ ININ

LT
LT

LT
LT NI

NI

NI

NX

NXNX

NX

SCSE

SE

SE
SE

ST

ST

ST

ST

ST

ST
ST

ST

TA
TA

TATA

TR

TR
TR
TR TH

TH

TH

TH
TR

TR TR
TRTT

TTTTTT

WI

WI
WI

WI

WL

WL

WL

WL

AP

AP

AP

BR
BR

BR

BR

CTCT
CT

CT

CHCH CH

CR

CR

CR

COCO
CO

CO

CC

CU

CU
CU

CU

CA
CA

CACA

CT
CT

CT
CT

DM

DM

DM

DM

EXEX
EX

EX

FI FI

FI

FI
HO

HO

HO

HO

HH

HS
HS

HS

HS

ININ ININ

LT
LT

LT
LT NI

NI

NI

NX

NXNX

NX

SCSE

SE

SE
SE

ST

ST

ST

ST

ST

ST
ST

ST

TA
TA

TATA

TR

TR
TR
TR TH

TH

TH

TH
TR

TR TR
TRTT

TTTTTT

WI

WI
WI

WI

WL

WL

WL

WL

Host 1 2 3 4 Query

(a) SWORD’s workload graph (b) Schism’s workload graph (c) Clay’s workload graph

Figure 6.13: Comparison of SWORD, Schism, and Clay: Workload graphs after assignment
optimization for TPC-E benchmark running on 4 Hosts. The node labels
symbolize the table of the shard.

SWORD results in a much higher throughput than using Schism or Clay. Schism results in
a speed-up in throughput S = 1.74, Clay results in S = 1.00 and SWORD in S = 3.09.

Figure 6.13 depicts the shard assignment after the optimization. Clay did not move
anything because it is designed for workloads with high skews and the blocks are balanced
under its balance de�nition, so it does not reduce any distributed queries. Because Schism
uses a graph model instead of a hypergraph model it cuts the wrong edges, resulting in a
worse performance than SWORD.

As shown in Figure A.4, the response times for the transaction MarketWatch are signi�-
cantly higher than before the optimization if Schism is used. In contrast, using SWORD
the response time is nearly the same after the optimization took place (see Figure 6.9). This
is the case because initially most of its queries are non distributed as all shards involved
in a query are placed on the same host by the round robin assignment. The involved
shards are the LastTrade (LT), Security (SE), and DailyMarket (DM) which are placed
on di�erent hosts in Schism’s optimized assignment, leading to signi�cantly worse overall
performance.

44

6.5. Evaluation of KaDaRea

6.5. Evaluation of KaDaRea

In this section we evaluate KaDaRea with its novel sliding window approach and compare
its results to SWORD. As our approach without sliding window creates the same workload
model as SWORD, this sections also compares KaDaRea with our other approach.

We use the same experimental setup and parameters as in the previous section, besides
that we con�gure the imbalance parameter ε to be 0.1 if KaDaRea is used and the TPC-E
benchmark is executed. Furthermore, we con�gure the sliding window to have a size of
50 seconds and a step of 20 seconds.

We reduce the imbalance parameter for KaDaRea because we observed that the imbal-
ance of the assignment increases in some cases, e.g. the imbalance for TPC-C stayed at
0.25 but for TPC-E it increased to 0.52 if an imbalance parameter of ε = 0.25 is used. The
imbalance can increase because if a shard is assigned to multiple blocks during KaDaRea,
we assign them to the block that has the highest rating. This increases the imbalance by
leading to a higher weight of the block it is �nally assigned to and a lower weight on
the blocks it is not assigned to. To allow a fair comparison between the approaches we
con�gure the imbalance value to be ε = 0.1 instead of ε = 0.25 if KaDaRea is used and the
TPC-E benchmark is executed. Thus, the resulting imbalance is between 0.2 and 0.25 in all
cases. Future work could look into it and improve our approach to create a more balanced
assignment while maintaining the solution quality regarding throughput.

First, we show that KaDaRea performs as good as SWORD for workloads that neither
contain peaks nor changing workload patterns. Then we show that KaDaRea performs
better in those cases and thus performs also better as our other approach without using a
sliding window.

6.5.1. Non Changing Workload

Table 6.4 shows that there is no di�erence in terms of speed-up in throughput S and share
of distributed queries D between SWORD and KaDaRea if the intensity or mixture of the
workload does not change. This means that KaDaRea can be generally used even in cases
where changing workload patterns and workload peaks are not present.

Table 6.4: Evaluation of KaDaRea with non changing workload regarding speed-up in
throughput S and weighted share of distributed queries D on 4 hosts

TPC-C TPC-E
Method S D S D

KaDaRea 1.75 0.04 3.11 0.10
SWORD 1.78 0.03 3.09 0.11

45

6. Evaluation

6.5.2. Peak Workload

If there are peaks in the workload where the load is much higher compared to other
parts of the workload we assume that KaDaRea performs signi�cantly better during the
peak times. To evaluate this behavior we modi�ed the TPC-C and TPC-E benchmarks to
simulate peak times.

We modi�ed the TPC-C benchmark so that a single client runs 4 of the 5 transactions for
most of time which simulates the low load that is present most of the day. Then a peak is
simulated where the system is fully utilized and clients trigger only the other transaction
for 30 seconds.

In a similar way we modi�ed the TPC-E benchmark: A single client runs 7 of 10
transaction types most of the time and during the 30 seconds peak time the system is fully
utilized by executing the other 3 transactions.

Figure 6.14 depicts the normalized throughput if the assignment is optimized using
SWORD and KaDaRea. Due the low load KaDaRea has less throughput than SWORD
which does not optimize for peaks: 33% for TPC-C and 36% less for TPC-E. But, during the
peak load KaDaRea processes much more transactions than SWORD: 27% for TPC-C and
42% for TPC-E.

The di�erence in the optimized shard assignment for TPC-C is shown in Figure 6.15,
during the peak the shards Warehouse (W) and Customer (C) are queried together, thus
they are placed on the same host if the assignment is optimized using KaDaRea but not if
SWORD is used.

TPC-C TPC-E

0 100 200 300 400 0 100 200 300 400
0.00

0.25

0.50

0.75

1.00

Time in seconds

N
or
m
al
iz
ed

Tr
ou

gh
pu

t

SWORD KaDaRea

Figure 6.14: Optimizing assignment for peak workload on 4 hosts using modi�ed TPC-
C/E benchmarks: Normalized throughput (current/max) with 0.95 con�dence
interval for SWORD and KaDaRea

46

6.5. Evaluation of KaDaRea

C

C

C

C

D

D

D
D

I

I

I

I

N

NN
N

OO

OO

OL

OL

OL

OLS

S

S

S

W

C

C

C

C

D

D

D
D

I

I

I

I

N

NN
N

OO

OO

OL

OL

OL

OLS

S

S

S

W

Host 1 2 3 4 Query

(a) SWORD’s workload graph (b) KaDaRea’s workload graph

Figure 6.15: Comparison of workload graphs for peak load using SWORD and KaDaRea
for TPC-C. The node labels symbolize the table of the shard.

Figure 6.16 depicts the optimized assignment for TPC-E. During the peak the highlighted
shards are queried a lot, which are placed on one host by KaDaRea but on di�erent hosts
if SWORD is used.

During low load times the system can handle the load even without advanced reassign-
ment techniques so the smaller throughput speed-up for this time is not a big disadvantage.
But more importantly during high load the increased throughput results that the 27% or
42% more customers can use the system without the system getting unresponsive.

47

6. Evaluation

AP

AP

AP

BR

BR
BR

BR

CT

CT

CT

CT

CH

CH

CH

CR

CR

CR

CO
CO
CO

CO

CC

CC
CC

CC CU
CUCU

CU

CACA
CACA

CT
CT

CT

DM

DM

DM
DM

EX

EX
EX

EX

FIFI

FI
FI

HO

HO
HO

HO

HH

HS

HS

HS
HS

IN
IN IN

IN

LT

LT

LT LT

NI
NI NI

NI

NX
NX

NX
NX

SC

SE
SE

SESE

ST

ST

ST

ST

ST

ST

ST

ST

TA

TA
TA

TA

TRTR
TR

TR

TH

TH

TH

TH
TR

TR

TR

TR

TT TTTT
TT

WIWI
WIWI

WL
WL

WL
WL

AP

AP

AP

BR

BR
BR

BR

CT

CT

CT

CT

CH

CH

CH

CR

CR

CR

CO
CO
CO

CO

CC

CC
CC

CC CU
CUCU

CU

CACA
CACA

CT
CT

CT

DM

DM

DM
DM

EX

EX
EX

EX

FIFI

FI
FI

HO

HO
HO

HO

HH

HS

HS

HS
HS

IN
IN IN

IN

LT

LT

LT LT

NI
NI NI

NI

NX
NX

NX
NX

SC

SE
SE

SESE

ST

ST

ST

ST

ST

ST

ST

ST

TA

TA
TA

TA

TRTR
TR

TR

TH

TH

TH

TH
TR

TR

TR

TR

TT TTTT
TT

WIWI
WIWI

WL
WL

WL
WL

Host 1 2 3 4 Query

(a) SWORD’s workload graph (b) KaDaRea’s workload graph

Figure 6.16: Comparison of workload graphs for peak load using SWORD and KaDaRea
for TPC-E. The node labels symbolize the table of the shard.

6.5.3. Workload Changing in Patterns

To simulate a multi-tenant workload where teams from di�erent regions are working on
the same database, we created a new benchmark by �rst running the TPC-C benchmark
for 300 seconds and afterwards the TPC-E benchmark for 150 seconds.

If the resulting workload hypergraph is partitioned using SWORD, it will place most
shards of TPC-C on one host and most of TPC-E on another, in order to eliminate nearly
all distributed queries. This can be seen in Figure 6.18 where the highlighted regions are
clusters of TPC-C and TPC-E shards. Using SWORD one cluster is placed on one host,
leading to no distributed queries. However, this partitioning result is highly imbalanced for
all points in time, thus the performance is much worse than partitioning it using KaDaRea,
which is depicted in Figure 6.17. As one can see, the throughput of the assignment created
by KaDaRea is much higher, because it distributes the shards of both benchmarks on
several hosts, resulting on a good utilization of the hosts at any time. During the execution
of TPC-C the throughput is a factor of 1.06 higher as SWORD which does not use a using
sliding window, while during the execution of TPC-E it is a factor of 1.92 higher.

48

6.5. Evaluation of KaDaRea

0.00

0.25

0.50

0.75

1.00

0 100 200 300 400
Time in seconds

N
or
m
al
iz
ed

Tr
ou

gh
pu

t

SWORD KaDaRea

Figure 6.17: Optimizing assignment for workload changing in patterns on 4 hosts: Nor-
malized throughput (current/max) with 0.95 con�dence interval for SWORD
and KaDaRea.

AP

AP

AP

BR

BR

BRBR

CTCT

CT

CT

CH

CH

CH

CR
CR

CR

COCOCO
CO

CC
CC

CC
CC

CU

CU

CU
CU

C2
C2

C2
C2

CA
CA

CA

CA

CT

CT

CT

CT
DM

DM

DM

DM
DI

DI

DI
DI

EX
EX

EX
EX

FI

FI

FI

FI

HO

HOHO
HO

HH

HH

HS
HS

HS
HS

IN
IN

IN
IN IT

IT

IT

IT

LT

LTLT LT

NI
NI

NI NI

NX
NX

NX

NX

NO

NO NO

NO

OR OR

OR
OR

OL

OL

OL

OL

SC

SE
SESESE

ST

ST

ST

ST

ST
ST

ST

ST

ST

ST

ST

ST

TATA
TATA

TR

TR

TR

TR

TH

TH

TH

TH

TR

TR

TR
TR

TTTT
TTTT

WA

WI

WI

WI
WI

WL

WL

WL
WL

AP

AP

AP

BR

BR

BRBR

CTCT

CT

CT

CH

CH

CH

CR
CR

CR

COCOCO
CO

CC
CC

CC
CC

CU

CU

CU
CU

C2
C2

C2
C2

CA
CA

CA

CA

CT

CT

CT

CT
DM

DM

DM

DM
DI

DI

DI
DI

EX
EX

EX
EX

FI

FI

FI

FI

HO

HOHO
HO

HH

HH

HS
HS

HS
HS

IN
IN

IN
IN IT

IT

IT

IT

LT

LTLT LT

NI
NI

NI NI

NX
NX

NX

NX

NO

NO NO

NO

OR OR

OR
OR

OL

OL

OL

OL

SC

SE
SESESE

ST

ST

ST

ST

ST
ST

ST

ST

ST

ST

ST

ST

TATA
TATA

TR

TR

TR

TR

TH

TH

TH

TH

TR

TR

TR
TR

TTTT
TTTT

WA

WI

WI

WI
WI

WL

WL

WL
WL

Host ● ● ● ● ●1 2 3 4 Query

HH

NO

DI

(a) SWORD’s workload graph (b) KaDaRea’s workload graph

Figure 6.18: Comparison of workload graphs for workload changing in patterns for SWORD
and KaDaRea. The node labels symbolize the table of the shard.

49

7. Conclusion

In this thesis we successfully integrated a workload-aware reassignment technique based
on hypergraph partitioning for OLTP workloads into the commercial enterprise database
system SAP Vora. This technique aims to increase the throughput of the system by reducing
the number of distributed queries while keeping the load across the hosts balanced. To
realize this, it places frequently co-accessed shards on the same host which eliminates
communication overhead and multiple processing of the queries on each involved host.

It is the �rst time that such an approach is integrated into a commercial enterprise
system and it shows a huge performance improvement regarding throughput and response
time for the TPC-C and TPC-E benchmarks. For example, the throughput increased 1.78
times on 4 hosts and 1.94 times on 8 hosts for the TPC-C benchmark. For the more complex
TPC-E benchmark the speed-up is even larger: 3.09 times on 4 hosts and 5.11 times on
8 hosts. Another insight is that to make Vora scalable, one has to optimize the shard
assignment otherwise there is little to no e�ect of adding hosts to the cluster.

Furthermore, we proposed our novel sliding window based approach for solving the
assignment problem, called KaDaRea. KaDaRea considers the time of execution of queries
by splitting the workload into time slices and partition each of it. This enables KaDaRea
to optimize the assignment for peaks in the workload and to create a better assignment
in presence of changes in the workload patterns. The evaluation shows that KaDaRea is
generally usable, as it leads to same improvement than an approach that does not use a
sliding window for steady workloads, but outperforms other state-of-the-art techniques if
peaks or workload changes are present. In these cases, it leads to 46% more throughput
during peak times and up to 92% more throughput if the workload patterns change
compared to approaches that do not use a sliding window.

Additionally, we experimented with various hypergraph partitioning parameters and
evaluated the e�ects of using di�erent object metrics, weight policies, and imbalance
values because previous papers lack a detailed examination of them. These experiments
show that using the connectivity metric, the frequency weight policy and an imbalance
parameter depending on the number of hosts lead to the best performing assignments.
Also, we showed that our approach is able to create good working workload models in the
presence of sampling, so we do not need to monitor all queries to build a good performing
workload model which could be expensive in some systems.

Finally, we can conclude that optimizing the shard assignment in SAP Vora based on
hypergraph partitioning results in a huge performance improvement by increasing the
throughput up to 5 times and enables the system to be scalable. Furthermore, KaDaRea out-
performs other state-of-the-art techniques for changing workload patterns and workload
peaks.

51

8. Future Work

Future work could focus on the integration of replication into our approach to reduce the
number of distributed queries even further. This could be solved creating a number of
replicas for each shard depending on how frequent the shard is part of distributed queries
and how many hosts they span. These replicated shards are then assigned to hyperedges
in the hypergraph model by splitting the heaviest hyperedge that contains the original
shard [26]. After partitioning the hypergraph, the original shard is replicated to all hosts
which its replicas are assigned to.

Also, instead of triggering the reassignment via a SQL command it could be triggered
automatically by Vora. To implement this, one could create a monitor that monitors
the number of distributed queries and triggers the reassignment if they cross a certain
threshold, like SWORD did [26].

Currently, computing load in terms of frequency of queries is the only constraint when
partitioning the hypergraph. Thus, one could add additional constraints like disk space or
memory when optimizing the assignment. This leads to the multi constrained hypergraph
partitioning problem which is already solved in hypergraph partitioning [2].

Additionally, future work could incorporate the migration costs into the hypergraph
model to decide if its worth to move a shard. To realize that one could follow the approach
of Catalyurek et al. [4] which adds a �xed vertex per host and connects this vertex with
all shards that are placed on this host. The weight of these edges represent the data size of
a shard and thus the cost of migrating it.

In the evaluation we observed that KaDaRea creates well performing assignments,
but it can lead to solutions with a higher imbalance than the con�gured imbalance pa-
rameter ε . To improve our approach KaDaRea could be modi�ed to satisfy this balance
constraint. However, the modi�cation should be implemented in a way that does not a�ect
the throughput negatively. For example, implementing a simple greedy algorithm that
orders the shards by their rating and assigns shards to hosts as long as the balance con-
straint is ful�lled would not work out, as groups of shards which are frequently accessed
together could then be separated. This would lead to a worse throughput and therefore
a�ect the assignment quality negatively. Additionally, it is questionable if the current
imbalance de�nition is the correct metric when using KaDaRea as the workload changes
over time. For example, in Section 6.5.3 we showed that the partitioning result over the
complete hypergraph is balanced even if the assignment is not balanced in any point in
time. Therefore, we propose an average imbalance over time which computes the average
imbalance for each time slice.

Finally, future work could also look into the support of OLAP workloads. To support
OLAP workloads, one should create a join graph similar to the one presented in Section 3.7
and use it to �nd a better partitioning of tables. The tables that are most frequent joint are
partitioned by their join predicate and co-located across the hosts. This allows parallelized

53

8. Future Work

local processing of queries without communication overhead. Furthermore, one could
also create an automated workload classi�cation which decides if the current workload
is rather an OLTP or OLAP workload based on the execution time of queries and load of
the system because OLAP queries are rather long running and less frequent compared to
OLTP queries. This information can then be used to choose the best �tting reassignment
strategy and optimize the assignment accordingly.

54

Bibliography

[1] Yaroslav Akhremtsev et al. “Engineering a direct k-way hypergraph partitioning
algorithm”. In: 2017 Proceedings of the NinteenthWorkshop on Algorithm Engineering
and Experiments (ALENEX). SIAM. 2017, pp. 28–42.

[2] Cevdet Aykanat, B. Barla Cambazoglu, and Bora Uçar. “Multi-level direct k-way
hypergraph partitioning with multiple constraints and �xed vertices”. In: Journal of
Parallel and Distributed Computing 68.5 (2008), pp. 609–625.

[3] Martin Boissier and Kurzynski Daniel. “Workload-driven horizontal partitioning
and pruning for large HTAP systems”. In: 2018 IEEE 34th International Conference
on Data Engineering Workshops (ICDEW). IEEE. 2018, pp. 116–121.

[4] Umit V. Catalyurek et al. “Hypergraph-based dynamic load balancing for adaptive
scienti�c computations”. In: Parallel and Distributed Processing Symposium, 2007.
IPDPS 2007. IEEE International. IEEE. 2007, pp. 1–11.

[5] Surajit Chaudhuri and Umeshwar Dayal. “An overview of data warehousing and
OLAP technology”. In: ACM Sigmod record 26.1 (1997), pp. 65–74.

[6] Shimin Chen et al. “TPC-E vs. TPC-C: characterizing the new TPC-E benchmark
via an I/O comparison study”. In: ACM SIGMOD Record 39.3 (2011), pp. 5–10.

[7] Yong-Qing Cheng et al. “Maximum-weight bipartite matching technique and its
application in image feature matching”. In: Visual Communications and Image Pro-
cessing’96. Vol. 2727. International Society for Optics and Photonics. 1996, pp. 453–
463.

[8] Carlo Curino et al. “Schism: a workload-driven approach to database replication
and partitioning”. In: Proceedings of the VLDB Endowment 3.1-2 (2010), pp. 48–57.

[9] Karen D. Devine et al. “Parallel hypergraph partitioning for scienti�c computing”.
In: Proceedings 20th IEEE International Parallel & Distributed Processing Symposium.
IEEE. 2006, 10–pp.

[10] Said Elna�ar and Pat Martin. “Characterizing computer systems’ workloads”. In:
Submitted to ACM Computing Surveys Journal (2002).

[11] Anil K. Goel et al. “Towards scalable real-time analytics: an architecture for scale-out
of OLxP workloads”. In: Proceedings of the VLDB Endowment 8.12 (2015), pp. 1716–
1727.

[12] Tobias Heuer. “High quality hypergraph partitioning via max-�ow-min-cut compu-
tations”. MA thesis. KIT, 2018.

55

Bibliography

[13] Tobias Heuer, Peter Sanders, and Sebastian Schlag. “Network �ow-based re�ne-
ment for multilevel hypergraph partitioning”. In: 17th International Symposium on
Experimental Algorithms (SEA 2018). 2018, 1:1–1:19.

[14] Tobias Heuer and Sebastian Schlag. “Improving coarsening schemes for hypergraph
partitioning by exploiting community structure”. In: 16th International Symposium
on Experimental Algorithms (SEA 2017). 2017, 21:1–21:19.

[15] T.C. Hu and K. Moerder. “Multiterminal �ows in a hypergraph”. In: VLSI circuit
layout: theory and design (1985), pp. 87–93.

[16] Edmund Ihler, Dorothea Wagner, and Frank Wagner. “Modeling hypergraphs by
graphs with the same mincut properties”. In: Information Processing Letters 45.4
(1993), pp. 171–175.

[17] George Karypis et al. “Multilevel hypergraph partitioning: applications in VLSI
domain”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems 7.1
(1999), pp. 69–79.

[18] Naoki Katoh, Akiyoshi Shioura, and Toshihide Ibaraki. “Resource allocation prob-
lems”. In: Handbook of combinatorial optimization (2013), pp. 2897–2988.

[19] Harold W. Kuhn. “The Hungarian method for the assignment problem”. In: Naval
research logistics quarterly 2.1-2 (1955), pp. 83–97.

[20] Thomas Lengauer. Combinatorial algorithms for integrated circuit layout. Springer
Science & Business Media, 2012.

[21] Scott T. Leutenegger and Daniel Dias. A modeling study of the TPC-C benchmark.
Vol. 22. 2. ACM, 1993.

[22] Yoon-Min Nam, Min-Soo Kim, and Donghyoung Han. “A Graph-based Database
Partitioning Method for Parallel OLAP Query Processing”. In: 2018 IEEE 34th Inter-
national Conference on Data Engineering (ICDE). IEEE. 2018, pp. 1025–1036.

[23] Oracle. Database VLDB and partitioning guide. url: https://docs.oracle.com/
database/121/VLDBG/toc.htm (visited on 03/26/2019).

[24] M. Tamer Özsu and Patrick Valduriez. Principles of distributed database systems.
Springer Science & Business Media, 2011.

[25] Andy Pavlo. H-Store documentation. url: http://hstore.cs.brown.edu/document
ation/ (visited on 03/20/2019).

[26] Abdul Quamar, K. Ashwin Kumar, and Amol Deshpande. “SWORD: scalable
workload-aware data placement for transactional workloads”. In: Proceedings of
the 16th International Conference on Extending Database Technology. ACM. 2013,
pp. 430–441.

[27] Sebastian Schlag et al. “k-way hypergraph partitioning via n-level recursive bisec-
tion”. In: 2016 Proceedings of the Eighteenth Workshop on Algorithm Engineering and
Experiments (ALENEX). SIAM. 2016, pp. 53–67.

56

https://docs.oracle.com/database/121/VLDBG/toc.htm
https://docs.oracle.com/database/121/VLDBG/toc.htm
http://hstore.cs.brown.edu/documentation/
http://hstore.cs.brown.edu/documentation/

Bibliography

[28] SAP SE. SAP Vora developer guide. url: https://help.sap.com/doc/d873bf7ac
8e14a7eb7a1ab686d3028a7/2.4.latest/en-US/loiod873bf7ac8e14a7eb7a1ab686d

3028a7.pdf (visited on 03/19/2019).
[29] Marco Sera�ni et al. “Clay: �ne-grained adaptive partitioning for general database

schemas”. In: Proceedings of the VLDB Endowment 10.4 (2016), pp. 445–456.
[30] TPC. TPC-C database schema. url: http://www.tpc.org/information/sessions/

sigmod/img009.jpg (visited on 03/21/2019).
[31] Ata Turk et al. “Temporal workload-aware replicated partitioning for social net-

works”. In: IEEE Transactions on knowledge and Data Engineering 26.11 (2014),
pp. 2832–2845.

[32] Wenyin Yang et al. “HEPart: A balanced hypergraph partitioning algorithm for big
data applications”. In: Future Generation Computer Systems 83 (2018), pp. 250–268.

[33] Xiaoyan Yang, Cecilia M. Procopiuc, and Divesh Srivastava. “Summarizing relational
databases”. In: PVLDB 2 (2009), pp. 634–645.

[34] Boyang Yu and Jianping Pan. “Location-aware associated data placement for geo-
distributed data-intensive applications”. In: Computer Communications (INFOCOM),
2015 IEEE Conference on. IEEE. 2015, pp. 603–611.

57

https://help.sap.com/doc/d873bf7ac8e14a7eb7a1ab686d3028a7/2.4.latest/en-US/loiod873bf7ac8e14a7eb7a1ab686d3028a7.pdf
https://help.sap.com/doc/d873bf7ac8e14a7eb7a1ab686d3028a7/2.4.latest/en-US/loiod873bf7ac8e14a7eb7a1ab686d3028a7.pdf
https://help.sap.com/doc/d873bf7ac8e14a7eb7a1ab686d3028a7/2.4.latest/en-US/loiod873bf7ac8e14a7eb7a1ab686d3028a7.pdf
http://www.tpc.org/information/sessions/sigmod/img009.jpg
http://www.tpc.org/information/sessions/sigmod/img009.jpg

A. Appendix

A.1. Database Schema of TPC-E

COMPANY COMPETITORINDUSTRY

NEWS ITEM

NEWS XREF

LAST TRADE COMPANYSECTORSECURITY

WATCH ITEM

WATCH LIST

DAILY MARKET

FINANCIALTAX RATE EXCHANGE

TRADE REQUEST

STATUS TYPE

CUSTOMER TAXRATE CUSTOMER ACCOUNT BROKER

ACCOUNT PERMISSION

HOLDING SUMMARY

HOLDING CASH TRANSACTION

ZIP CODE ADDRESS

CUSTOMER SETTLEMENT TRADE

TRADE TYPE TRADE HISTORY

HOLDING HISTORYCOMMISSION RATE CHARGE

Figure A.1: TPC-E database schema (adapted from [33])

59

A. Appendix

A.2. Distributed Query Plots

2 Hosts 4 Hosts 8 Hosts

1 2 3 4 8 1 2 3 4 8 1 2 3 4 8
0.00

0.25

0.50

0.75

1.00

Spanned Hosts

Sh
ar
e
of

Q
ue
rie

s

Before Reassignment After Reassignment

Figure A.2: Share of distributed queries before and after reassignment for TPC-C

2 Hosts 4 Hosts 8 Hosts

1 2 3 4 5 6 8 1 2 3 4 5 6 8 1 2 3 4 5 6 8
0.00

0.25

0.50

0.75

1.00

Spanned Hosts

Sh
ar
e
of

Q
ue
rie

s

Before Reassignment After Reassignment

Figure A.3: Share of distributed queries before and after reassignment for TPC-E

60

A.3. Additional Response Time Plots

A.3. Additional Response Time Plots

TradeLookup TradeOrder TradeResult TradeStatus TradeUpdate

BrokerVolume CustomerPosition MarketFeed MarketWatch SecurityDetail

0.00

0.10

0.25

0.50

0.75

1.00

0.00

0.10

0.25

0.50

0.75

1.00

Transaction type

N
or
m
al
iz
ed

re
sp
on

se
tim

e
(c
ur
re
nt
/m

ax
)

Before Reassignment After Reassignment

Figure A.4: Normalized response times (current/max) for each transaction type of TPC-E
using Schism on 4 hosts

61

A. Appendix

TradeLookup TradeOrder TradeResult TradeStatus TradeUpdate

BrokerVolume CustomerPosition MarketFeed MarketWatch SecurityDetail

0.00

0.10

0.25

0.50

0.75

1.00

0.00

0.10

0.25

0.50

0.75

1.00

Transaction type

N
or
m
al
iz
ed

re
sp
on

se
tim

e
(c
ur
re
nt
/m

ax
)

Before Reassignment After Reassignment

Figure A.5: Normalized response times (current/max) for each transaction type of TPC-E
using Clay on 4 hosts

A.4. Increased Shard Number for Database Partitioning

We experimented with higher numbers of shards for database partitioning. This should give
the hypergraph partitioner the possibility to move shards more �ne granularly resulting
in a reduction of distributed queries and an improvement of the performance.

To evaluate this e�ect, we executed the TPC-E benchmark on 4 hosts, with an ε of 0.25
and partitioned each table into 8 shards instead of 4. Compared to 4 shards per table, the
increased shard number leads to a further reduction of the weighted distributed queries D
of 40%. However, the overhead created by the additional shards leads to a decrease of the
performance, as Figure A.6 depicts.

62

A.5. Reassignment Time

0.00

0.25

0.50

0.75

1.00

100 200
Time in seconds

N
or
m
al
iz
ed

Tr
ou

gh
pu

t

8 Shards 4 Shards

Figure A.6: Normalized throughput (current/max) with 0.95 con�dence interval for tables
partitioned into 4 and 8 shards on 4 hosts

A.5. Reassignment Time

Figure A.7 depicts the time it at takes to reassign the shards. As one can see, KaHyPar
�nishes nearly immediately and it takes the most time to move the shards in Vora. Also, the
total time is much higher for the TPC-E benchmark as it consists of more tables and thus
there are more shards to be moved. Furthermore, the total time increases with increasing
hosts because more hosts result in more shards.

TPC-C TPC-E

2 4 8 2 4 8
0

50

100

Number of Hosts

Ex
ec
ut
io
n
Ti
m
e
(s)

KaHyPar Total

Figure A.7: Reassignment times for 2, 4, and 8 hosts

63

	Abstract
	Zusammenfassung
	Introduction
	Problem Statement
	Contributions
	Outline

	Foundations
	Hypergraph Partitioning
	Hypergraphs
	Problem Definition
	Multilevel Paradigm
	Maximum Weighted Bipartite Matching Problem

	Distributed Databases
	Database Partitioning
	SAP Vora
	OLTP vs. OLAP Workloads

	Allocation Problem

	Related Work
	Schism
	SWORD
	Clay
	HEPart
	Comparison
	Other Approaches based on Hypergraph Partitioning
	Approaches for OLAP Workloads

	Integrating a Workload-Aware Reassignment Framework into SAP Vora
	Approach
	Implementation

	KaDaRea - A Peak- and Pattern-Aware Database Reassignment Technique
	Motivation
	Implementation

	Evaluation
	Experimental Setup
	Methodology
	TPC-C
	TPC-E

	Parameter-Tuning Experiments
	Imbalance
	Objective Metric
	Weight Policy
	Sampling

	Comparison with Current State in Vora
	TPC-C
	TPC-E

	Comparison with State-of-the-Art Approaches
	TPC-C
	TPC-E

	Evaluation of KaDaRea
	Non Changing Workload
	Peak Workload
	Workload Changing in Patterns

	Conclusion
	Future Work
	Bibliography
	Appendix
	Database Schema of TPC-E
	Distributed Query Plots
	Additional Response Time Plots
	Increased Shard Number for Database Partitioning
	Reassignment Time

