Advanced Data Structures

Lecture 00: Course Overview

Florian Kurpicz
Organizational Matters

Lectures

- Monday 09:45–11:14 (50.34, -120)
- lecture only

Project (mandatory)

topics will be handed out 16.05.2022

coding project and small presentation

20% of the final grade

requires additional registration

Oral Exam

20 minutes

80% of the final grade

pizza marks content not relevant for exam

Office Hours (Room 210)

Monday 14:15–15:00 (lecture period)

by appointment (otherwise)
Organizational Matters

Lectures
- Monday 09:45–11:14 (50.34, -120)
- lecture only

Project (mandatory)
- topics will be handed out 16.05.2022
- coding project and small presentation
- 20% of the final grade
- requires additional registration
Organizational Matters

<table>
<thead>
<tr>
<th>Lectures</th>
<th>Oral Exam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday 09:45–11:14 (50.34, -120)</td>
<td>20 minutes</td>
</tr>
<tr>
<td>lecture only</td>
<td>80 % of the final grade</td>
</tr>
<tr>
<td></td>
<td>pizza marks content not relevant for exam</td>
</tr>
</tbody>
</table>

Project (mandatory)
- topics will be handed out 16.05.2022
- coding project and small presentation
- 20 % of the final grade
- requires additional registration
Organizational Matters

Lectures
- Monday 09:45–11:14 (50.34, -120)
- lecture only

Project (mandatory)
- topics will be handed out 16.05.2022
- coding project and small presentation
- 20% of the final grade
- requires additional registration

Oral Exam
- 20 minutes
- 80% of the final grade
- pizza marks content not relevant for exam

Office Hours (Room 210)
- Monday 14:15–15:00 (lecture period)
- by appointment (otherwise)
Materials

Slides
- published before the lecture
 (https://algo2.iti.kit.edu/lehre_4264.php)
- before means like 10 to 15 minutes before

Recordings
- testing to record the lecture
Materials

<table>
<thead>
<tr>
<th>Slides</th>
</tr>
</thead>
</table>
| • published before the lecture
 (https://algo2.iti.kit.edu/lehre_4264.php) |
| • before means like 10 to 15 minutes before |

<table>
<thead>
<tr>
<th>Recordings</th>
</tr>
</thead>
<tbody>
<tr>
<td>• testing to record the lecture</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Additional Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>• references to literature included</td>
</tr>
<tr>
<td>• most likely no script</td>
</tr>
</tbody>
</table>
| • MIT course (some topics match)
 https://ocw.mit.edu/courses/
 6-851-advanced-data-structures-spring-2012/ |
Content

<table>
<thead>
<tr>
<th>Trees/Graphs</th>
<th>Integers</th>
<th>Strings</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit vectors and succinct trees</td>
<td>range minimum queries (lowest common ancestor queries)</td>
<td>string B-trees and suffix arrays</td>
</tr>
<tr>
<td>dynamic bit vectors and succinct trees</td>
<td>predecessor queries</td>
<td>compressed suffix array and suffix tree</td>
</tr>
<tr>
<td>succinct graphs</td>
<td>vEB-tree and fusion trees</td>
<td></td>
</tr>
</tbody>
</table>

External Memory		

cache-oblivious B-trees		
buffer trees and EM lookup		
Content

Trees/Grahps
- bit vectors and succinct trees
- dynamic bit vectors and succinct trees
- succinct graphs

External Memory
- cache-oblivious B-trees
- buffer trees and EM lookup

Integers
- range minimum queries (lowest common ancestor queries)
- predecessor queries
- vEB-tree and fusion trees

Strings
- string B-trees and suffix arrays
- compressed suffix array and suffix tree
Gap Between Theory and Practice (Lecture AE Sanders)

Different Viewpoints

<table>
<thead>
<tr>
<th>Theory</th>
<th>Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>simple</td>
<td>application model</td>
</tr>
<tr>
<td>simple</td>
<td>machine model</td>
</tr>
<tr>
<td>complex</td>
<td>algorithms</td>
</tr>
<tr>
<td>advanced</td>
<td>data structures</td>
</tr>
<tr>
<td>worst case</td>
<td>complexity measure</td>
</tr>
<tr>
<td>asymptotic</td>
<td>efficiency</td>
</tr>
</tbody>
</table>

Notes:
- Advanced data structures include arrays,
- Best case complexity measure is often used in practice for efficiency.