Text Indexing

Lecture 02: Suffix Trees and Suffix Arrays

Florian Kurpicz
Open Question from Last Lecture

- two-leveled index $O(m + \lg \sigma)$ query time
- requires $O(N)$ words of space
- and caterpillar trees $S = \{\$, a\$, aa\$, \ldots \}$?

![Diagram of a caterpillar tree with levels and symbols]
Open Question from Last Lecture

- two-leveled index $O(m + \lg \sigma)$ query time
- requires $O(N)$ words of space
- and caterpillar trees $S = \{\$, a\$, aa\$, \ldots \}$?

Space Requirements

- $N = \sum_{i=1}^{k} i = (k^2 + k)/2 \in O(k^2)$
- fixed-size array: $O(k \cdot \sigma)$ words if $\sigma \geq k$, N increases proportional to this
- total size $O(N)$
Recap: Compact Trie

Definition: Compact Trie

- A compact trie is a trie where all branchless paths are replaced by a single edge.
- The label of the new edge is the concatenation of the replaced edges’ labels.

Next

A full-text index for a text T is

- a data structure that
- allows to answer queries on T faster than naive
- we are interested in *pattern matching* queries
- how to use tries to create full-text index
Definition: Suffix Tree [Wei73]

A suffix tree (ST) for a text T of length n is a compact trie over $S = \{ T[1..n], T[2..n], \ldots, T[n..n] \}$ where suffixes are prefix-free due to sentinel.
A suffix tree (ST) for a text T of length n is a compact trie over $S = \{T[1..n], T[2..n], \ldots, T[n..n]\}$ such that suffixes are prefix-free due to sentinel.

Let $G = (V, E)$ be a compact trie with root r and a node $v \in V$, then

- $\lambda(v)$ is the concatenation of labels from r to v
- $d(v) = |\lambda(v)|$ is the string-depth of v

String depth \neq depth
Definition: Suffix Tree [Wei73]

A suffix tree (ST) for a text T of length n is a compact trie over $S = \{T[1..n], T[2..n], \ldots, T[n..n]\}$ with suffixes being prefix-free due to sentinel.

Let $G = (V, E)$ be a compact trie with root r and a node $v \in V$, then:
- $\lambda(v)$ is the concatenation of labels from r to v.
- $d(v) = |\lambda(v)|$ is the string-depth of v.

Example:

```
<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$</td>
<td></td>
</tr>
</tbody>
</table>
```

$\lambda(\cdot) = \text{bbab}$
$d(\cdot) = 4$

$\lambda(\cdot) = \text{abba}$
$d(\cdot) = 4$
Representing Labels

- explicit edge labels require $O(n^2)$ words space
- for simplicity, we show text

Suffix Information

- label leaves with corresponding suffix
 - will be important later on
Representing Labels
- explicit edge labels require $O(n^2)$ words space
- references require only $O(n)$ words space
- for simplicity, we show text

Suffix Information
- label leaves with corresponding suffix
 ✈️ will be important later on
Suffix Tree (2/4)

Representing Labels

- explicit edge labels require $O(n^2)$ words space
- references require only $O(n)$ words space

for simplicity, we show text

Suffix Information

- label leaves with corresponding suffix

will be important later on

<table>
<thead>
<tr>
<th>9</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$</td>
</tr>
</tbody>
</table>
Representing Labels
- explicit edge labels require $O(n^2)$ words space
- references require only $O(n)$ words space

for simplicity, we show text

Suffix Information
- label leaves with corresponding suffix
 will be important later on
Pattern Matching using Suffix Trees

- Pattern \(P[1..m] \)
- start at the root and follow edges
- query time depends on representation of children

- \(O(m) \) time using \(O(n\sigma) \) words space
Pattern Matching using Suffix Trees

- Pattern $P[1..m]$
- start at the root and follow edges
- query time depends on representation of children

- $O(m)$ time using $O(n\sigma)$ words space
- $O(m \cdot \lg \sigma)$ time with $O(n)$ words space
Pattern Matching using Suffix Trees

- Pattern $P[1..m]$
- start at the root and follow edges
- query time depends on representation of children

- $O(m)$ time using $O(n\sigma)$ words space
- $O(m \cdot \lg \sigma)$ time with $O(n)$ words space
- $O(m + \lg \sigma)$ time with $O(n)$ words space
very (most?) powerful text-index
very (most?) powerful text-index

- suffix trees require \(\approx 8–20 \) bytes per character

![Suffix Tree Diagram]

1. very (most?) powerful text-index
2. suffix trees require \(\approx 8–20 \) bytes per character

next, suffix array construction

\[a \quad b \quad b \quad a \quad a \quad b \quad b \quad a \quad $ \]
very (most?) powerful text-index
- suffix trees require $\approx 8–20$ bytes per character
- efficient direct construction in $O(n)$ time [Ukk95]
- also possible for integer alphabets [Far97]
very (most?) powerful text-index
suffix trees require \(\approx 8–20\) bytes per character
efficient direct construction in \(O(n)\) time [Ukk95]
also possible for integer alphabets [Far97]
SA and LCP-array can replace suffix tree
can answer all queries in the same time
very (most?) powerful text-index
suffix trees require \(\approx 8–20\) bytes per character
efficient direct construction in \(O(n)\) time [Ukk95]
also possible for integer alphabets [Far97]
SA and LCP-array can replace suffix tree
can answer all queries in the same time
very (most?) powerful text-index

- suffix trees require ≈ 8–20 bytes per character
- efficient direct construction in $O(n)$ time [Ukk95]
- also possible for integer alphabets [Far97]
- SA and LCP-array can replace suffix tree
- can answer all queries in the same time

next, suffix array construction
Suffix Array and LCP-Array

Definition: Suffix Array [GBS92; MM93]

Given a text T of length n, the suffix array (SA) is a permutation of $[1..n]$, such that for $i \leq j \in [1..n]$

$$T[SA[i]..n] \leq T[SA[j]..n]$$
Suffix Array and LCP-Array

Definition: Suffix Array [GBS92; MM93]

Given a text T of length n, the suffix array (SA) is a permutation of $[1..n]$, such that for $i \leq j \in [1..n]$

$$T[SA[i]..n] \leq T[SA[j]..n]$$

Definition: Longest Common Prefix Array

Given a text T of length n and its SA, the LCP-array is defined as

$$LCP[i] = \begin{cases} 0 & i = 1 \\ \max\{\ell : T[SA[i]..SA[i] + \ell] = T[SA[i-1]..SA[i-1] + \ell}\} & i \neq 1 \end{cases}$$
Suffix Array and LCP-Array

Definition: Suffix Array [GBS92; MM93]
Given a text T of length n, the **suffix array** (SA) is a permutation of $[1..n]$, such that for $i \leq j \in [1..n]$

$$T[SA[i]..n] \leq T[SA[j]..n]$$

Definition: Longest Common Prefix Array
Given a text T of length n and its SA, the **LCP-array** is defined as

$$LCP[i] = \begin{cases} 0 & i = 1 \\ \max\{\ell : T[SA[i]..SA[i] + \ell) = T[SA[i - 1]..SA[i - 1] + \ell)} & i \neq 1 \end{cases}$$
Pattern Matching with the Suffix Array (1/2)

Function `SearchSA(T, SA[1..n], P[1..m])`:

1. \(\ell = 1, r = n + 1 \)
2. **while** \(\ell < r \) **do**
 3. \(i = \lfloor (\ell + r)/2 \rfloor \)
 4. **if** \(P > T[SA[i]..SA[i] + m] \) **then**
 5. \(\ell = i + 1 \)
 6. **else** \(r = i \)
8. **while** \(\ell < r \) **do**
 9. \(i = \lceil (\ell + r)/2 \rceil \)
10. **if** \(P = T[SA[i]..SA[i] + m] \) **then** \(\ell = i \)
11. **else** \(r = i - 1 \)
12. **return** \([s, r]\)

- **pattern** \(P = abc \)

Example

<table>
<thead>
<tr>
<th>(T)</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>b</th>
<th>a</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(SA)</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>$</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>c</td>
<td>c</td>
<td>$</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>$</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$</td>
<td>b</td>
<td>a</td>
<td>$</td>
<td>b</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
<td>$</td>
</tr>
</tbody>
</table>

\(T \) is the text, \(SA \) is the suffix array, \(P \) is the pattern.
Pattern Matching with the Suffix Array (1/2)

Function `SeachSA(T, SA[1..n], P[1..m])`:

1. \(\ell = 1, r = n + 1 \)
2. while \(\ell < r \) do \footnotesize Find left border
3. \(i = \lfloor (\ell + r)/2 \rfloor \)
4. if \(P > T[SA[i]..SA[i] + m] \) then
5. \(\ell = i + 1 \)
6. else \(r = i \)
7. \(s = \ell, \ell = \ell - 1, r = n \)
8. while \(\ell < r \) do
9. \(i = \lceil (\ell + r)/2 \rceil \)
10. if \(P = T[SA[i]..SA[i] + m] \) then \(\ell = i \)
11. else \(r = i - 1 \)
12. return \([s, r]\)

pattern \(P = abc \)
Function \(\text{SearchSA}(T, SA[1..n], P[1..m]) \):

1. \(\ell = 1, r = n + 1 \)
2. **while** \(\ell < r \) **do**
3. \(i = \left\lfloor (\ell + r)/2 \right\rfloor \)
4. **if** \(P > T[SA[i]..SA[i] + m] \) **then**
5. \(\ell = i + 1 \)
6. **else** \(r = i \)
7. **end while**
8. \(s = \ell, \ell = \ell - 1, r = n \)
9. **while** \(\ell < r \) **do**
10. \(i = \left\lceil (\ell + r)/2 \right\rceil \)
11. **if** \(P = T[SA[i]..SA[i] + m] \) **then** \(\ell = i \)
12. **else** \(r = i - 1 \)
13. **end while**
14. return \([s, r] \)

- pattern \(P = abc \)
Function `SeachSA(T, SA[1..n], P[1..m])`:

1. Initialize:
 - \(\ell = 1 \), \(r = n + 1 \)

2. **While** \(\ell < r \) **do**
 - \(i = \lfloor (\ell + r)/2 \rfloor \)
 - **If** \(P > T[SA[i]..SA[i] + m] \) **then**
 - \(\ell = i + 1 \)
 - **Else** \(r = i \)

3. Set:
 - \(s = \ell, \ell = \ell - 1, r = n \)

4. **While** \(\ell < r \) **do**
 - \(i = \lceil \ell + r/2 \rceil \)
 - **If** \(P = T[SA[i]..SA[i] + m] \) **then** \(\ell = i \)
 - **Else** \(r = i - 1 \)

5. **Return** \([s, r]\)

Lemma: Running Time `SeachSA`

The `SeachSA` answers counting queries in \(O(m \lg n) \) time and reporting queries in \(O(m \lg n + \text{occ}) \) time.

Proof (Sketch):
- Two binary searches on the `SA` in \(O(\lg n) \) time.
Function \text{SearchSA}(T, SA[1..n], P[1..m]):

1. \(\ell = 1, r = n + 1 \)
2. \[\text{while } \ell < r \text{ do} \]
3. \[i = \lfloor (\ell + r)/2 \rfloor \]
4. \[\text{if } P > T[SA[i]..SA[i] + m) \text{ then} \]
5. \[\ell = i + 1 \]
6. \[\text{else } r = i \]
7. \[s = \ell, \ell = \ell - 1, r = n \]
8. \[\text{while } \ell < r \text{ do} \]
9. \[i = \lceil \ell + r/2 \rceil \]
10. \[\text{if } P = T[SA[i]..SA[i] + m) \text{ then} \ell = i \]
11. \[\text{else } r = i - 1 \]
12. \[\text{return } [s, r] \]

Lemma: Running Time SearchSA

The SearchSA answers counting queries in \(O(m \lg n) \) time and reporting queries in \(O(m \lg n + \text{occ}) \) time.

Proof (Sketch)

Two binary searches on the SA in \(O(\lg n) \) time.
Function `SeachSA(T, SA[1..n], P[1..m])`:

1. \(\ell = 1, r = n + 1 \)
2. \(\text{while } \ell < r \text{ do} \)
 3. \(i = \lfloor (\ell + r)/2 \rfloor \)
 4. \(\text{if } P > T[SA[i]..SA[i] + m] \text{ then} \)
 \(\ell = i + 1 \)
 5. \(\text{else } r = i \)
6. \(s = \ell, \ell = \ell - 1, r = n \)
7. \(\text{while } \ell < r \text{ do} \)
 8. \(i = \lceil \ell + r/2 \rceil \)
 9. \(\text{if } P = T[SA[i]..SA[i] + m] \text{ then} \ell = i \)
 10. \(\text{else } r = i - 1 \)
11. \(\text{return } [s, r] \)

Lemma: Running Time SeachSA

The `SeachSA` answers counting queries in \(O(m \lg n) \) time and reporting queries in \(O(m \lg n + \text{occ}) \) time.

Proof (Sketch)

- Two binary searches on the `SA` in \(O(\lg n) \) time.
- Each comparison requires \(O(m) \) time.
Pattern Matching with the Suffix Array (2/2)

Function SeachSA(T, SA[1..n], P[1..m]):

1. \(\ell = 1, r = n + 1 \)
2. while \(\ell < r \) do
3. \(i = \lfloor (\ell + r)/2 \rfloor \)
4. if \(P > T[SA[i]..SA[i] + m] \) then
5. \(\ell = i + 1 \)
6. else \(r = i \)
7. \(s = \ell, \ell = \ell - 1, r = n \)
8. while \(\ell < r \) do
9. \(i = \lceil \ell + r/2 \rceil \)
10. if \(P = T[SA[i]..SA[i] + m] \) then \(\ell = i \)
11. else \(r = i - 1 \)
12. return \([s, r]\)

Lemma: Running Time SeachSA

The SeachSA answers counting queries in \(O(m \lg n) \) time and reporting queries in \(O(m \lg n + \text{occ}) \) time

Proof (Sketch)

- two binary searches on the SA in \(O(\lg n) \) time
- each comparison requires \(O(m) \) time
Pattern Matching with the Suffix Array (2/2)

Function `SearchSA(T, SA[1..n], P[1..m])`:

1. \(\ell = 1, r = n + 1 \)
2. **while** \(\ell < r \) **do**

 3. \(i = \lfloor (\ell + r)/2 \rfloor \)

 4. **if** \(P > T[SA[i]..SA[i] + m] \) **then**

 5. \(\ell = i + 1 \)

 else \(r = i \)

6. \(s = \ell, \ell = \ell - 1, r = n \)
7. **while** \(\ell < r \) **do**

 8. \(i = \lceil \ell + r/2 \rceil \)

 9. **if** \(P = T[SA[i]..SA[i] + m] \) **then** \(\ell = i \)

10. **else** \(r = i - 1 \)

11. **return** \([s, r] \)

Lemma: Running Time `SearchSA`

The `SearchSA` answers counting queries in \(O(m \log n) \) time and reporting queries in \(O(m \log n + \text{occ}) \) time.

Proof (Sketch)

- Two binary searches on the `SA` in \(O(\log n) \) time
- Each comparison requires \(O(m) \) time
- Counting in \(O(1) \) additional time
Pattern Matching with the Suffix Array (2/2)

Function SearchSA(T, SA[1..n], P[1..m]):
1. \(\ell = 1, r = n + 1 \)
2. while \(\ell < r \) do
3. \(i = \lfloor (\ell + r)/2 \rfloor \)
4. if \(P > T[SA[i]..SA[i] + m] \) then
5. \(\ell = i + 1 \)
6. else \(r = i \)
7. end if
8. end while
9. \(s = \ell, \ell = \ell - 1, r = n \)
10. while \(\ell < r \) do
11. \(i = \lceil (\ell + r)/2 \rceil \)
12. if \(P = T[SA[i]..SA[i] + m] \) then \(\ell = i \)
13. else \(r = i - 1 \)
14. end if
15. end while
16. return \([s, r]\)

Lemma: Running Time SearchSA

The SearchSA answers counting queries in \(O(m \lg n) \) time and reporting queries in \(O(m \lg n + \text{occ}) \) time.

Proof (Sketch)

- Two binary searches on the SA in \(O(\lg n) \) time
- Each comparison requires \(O(m) \) time
- Counting in \(O(1) \) additional time
Pattern Matching with the Suffix Array (2/2)

Function \text{SeachSA}(T, \ SA[1..n], P[1..m]):

\begin{align*}
 & \ell = 1, r = n + 1 \\
 & \text{while } \ell < r \text{ do} \\
 & \quad i = \lfloor (\ell + r)/2 \rfloor \\
 & \quad \text{if } P > T[\ SA[i]..\ SA[i] + m] \text{ then} \\
 & \quad \quad \ell = i + 1 \\
 & \quad \text{else } r = i \\
 & s = \ell, \ell = \ell - 1, r = n \\
 & \text{while } \ell < r \text{ do} \\
 & \quad i = \lceil \ell + r/2 \rceil \\
 & \quad \text{if } P = T[\ SA[i]..\ SA[i] + m] \text{ then} \\
 & \quad \quad \ell = i \\
 & \quad \text{else } r = i - 1 \\
 & \text{return } [s, r]
\end{align*}

Lemma: Running Time \text{SeachSA}

The SeachSA answers counting queries in $O(m \lg n)$ time and reporting queries in $O(m \lg n + \text{occ})$ time.

Proof (Sketch)

- two binary searches on the \text{SA} in $O(\lg n)$ time
- each comparison requires $O(m)$ time
- counting in $O(1)$ additional time
- reporting in $O(\text{occ})$ additional time
Function SeachSA(T, SA[1..n], P[1..m]):

1. \(\ell = 1, r = n + 1 \)

2. while \(\ell < r \) do

3. \(i = \lceil (\ell + r)/2 \rceil \)

4. if \(P > T[SA[i]..SA[i] + m] \) then

5. \(\ell = i + 1 \)

6. else \(r = i \)

7. end if

8. \(s = \ell, \ell = \ell - 1, r = n \)

9. while \(\ell < r \) do

10. \(i = \lceil \ell + r/2 \rceil \)

11. if \(P = T[SA[i]..SA[i] + m] \) then

12. \(\ell = i \)

13. else \(r = i - 1 \)

14. end if

15. end while

16. return \([s, r]\)

Lemma: Running Time SeachSA

The SeachSA answers counting queries in \(O(m \lg n) \) time and reporting queries in \(O(m \lg n + \text{occ}) \) time.

Proof (Sketch)

- Two binary searches on the SA in \(O(\lg n) \) time
- Each comparison requires \(O(m) \) time
- Counting in \(O(1) \) additional time
- Reporting in \(O(\text{occ}) \) additional time
Preview: Improving Running Time with LCP-Array

- next lecture: $O(m + \lg n)$ and $O(m + \lg n + \text{occ})$ time
- requires additional indices on LCP-array

- now: how to compute the suffix array directly without the suffix tree
Timeline Sequential Suffix Sorting

- based on [Bah+19; Bin18; Kur20; PST07]
- darker grey: linear running time
- brown: available implementation

Prefix Doubling
- [MM] original
- [LS] qsufsort
- [Sew] 1/2 copy
- [MF] deep-shallow

Induced Copying
- [IT] A/B copy
- [SS] bpr
- [MP] cache aware
- [Na] succinct
- [SS] SuifSort

Recursion
- [BW] BWT
- [BK] diffcover
- [KA] L/S split
- [Man] chains
- [Teo] A/B copy
- [IT] L/S split
- [Na] succinct
- [SS] SuifSort

Timeline:
- 1990
- 1999
- 2000
- 2002
- 2003
- 2004
- 2005
- 2006
- 2007
- 2008
- 2009
- 2011
- 2016
- 2017
- 2021

Special Mentions
- DC3 first $O(n)$ algorithm
- $O(n)$ running time and $O(1)$ space for integer alphabets possible
- until 2021: DivSufSort fastest in practice with $O(n \lg n)$ running time
- since 2021: libSAIS fastest in practice with $O(n)$ running time
Timeline Sequential Suffix Sorting
- based on \([\text{Bah}+19; \text{Bin}18; \text{Kur}20; \text{PST}07]\)
- darker grey: linear running time
- brown: available implementation

Special Mentions
- DC3 first \(O(n)\) algorithm
- \(O(n)\) running time and \(O(1)\) space for integer alphabets possible
Timeline Sequential Suffix Sorting
- based on [Bah+19; Bin18; Kur20; PST07]
- darker grey: linear running time
- brown: available implementation

Special Mentions
- DC3 first $O(n)$ algorithm
- $O(n)$ running time and $O(1)$ space for integer alphabets possible
- until 2021: DivSufSort fastest in practice with $O(n \lg n)$ running time
Timeline Sequential Suffix Sorting

- based on [Bah+19; Bin18; Kur20; PST07]
- darker grey: linear running time
- brown: available implementation

Special Mentions

- DC3 first $O(n)$ algorithm
- $O(n)$ running time and $O(1)$ space for integer alphabets possible
- until 2021: DivSufSort fastest in practice with $O(n \lg n)$ running time
- since 2021: libSAIS fastest in practice with $O(n)$ running time
The Idea: Inducing

Given a text T of length n and two positions $i, j \in [1..n]$ with $T[i] = T[j]$, then

$$T[i..n] < T[j..n] \iff T[i + 1..n] < T[j + 1..n]$$

Suffix Array Induced Sorting: Overview
The Idea: Inducing

Given a text T of length n and two positions $i, j \in [1..n]$ with $T[i] = T[j]$, then

$$T[i..n] < T[j..n] \iff T[i+1..n] < T[j+1..n]$$

Suffix Array Induced Sorting: Overview
The Idea: Inducing

Given a text T of length n and two positions $i, j \in [1..n]$ with $T[i] = T[j]$, then

$$T[i..n] < T[j..n] \iff T[i+1..n] < T[j+1..n]$$

![Example](image.png)

The Algorithm: SAIS

- using inducing for everything
- described in [NJC11]
The Idea: Inducing

Given a text T of length n and two positions $i,j \in [1..n]$ with $T[i] = T[j]$, then

$$T[i..n] < T[j..n] \iff T[i+1..n] < T[j+1..n]$$

The Algorithm: SAIS

- using inducing for everything
- described in [NZC11]

Suffix Array Construction in 3 Phases

- classification
- sort special substrings/suffixes recursively
- induce all non-sorted suffixes
Suffix Array Induced Sorting: Overview

The Idea: Inducing

Given a text T of length n and two positions $i, j \in [1..n]$ with $T[i] = T[j]$, then

$$T[i..n] < T[j..n] \iff T[i+1..n] < T[j+1..n]$$

<table>
<thead>
<tr>
<th>a</th>
<th>α</th>
</tr>
</thead>
</table>

| a | β |

The Algorithm: SAIS

- using inducing for everything
- described in [NZC11]

Suffix Array Construction in 3 Phases

- classification
- sort special substrings/suffixes recursively
- induce all non-sorted suffixes

- classification helps identifying special suffixes
- everything in linear time
The Idea: Inducing

Given a text T of length n and two positions $i, j \in [1..n]$ with $T[i] = T[j]$, then

$$T[i..n] < T[j..n] \iff T[i + 1..n] < T[j + 1..n]$$

The Algorithm: SAIS

- using inducing for everything
- described in [NZC11]

Suffix Array Construction in 3 Phases

- classification
- sort special substrings/suffixes recursively
- induce all non-sorted suffixes
- classification helps identifying special suffixes
- everything in linear time

Roadmap

- classification
- inducing
- sorting special suffixes

Suffix Array Induced Sorting: Overview
Definition: Type L/S Suffixes

Given a text T of length n and $i \in [1..n]$, then

- $T[i] < T[i + 1]$ or $i = n \Rightarrow T[i..n]$ has type S
Definition: Type L/S Suffixes

Given a text T of length n and $i \in [1..n]$, then

- $T[i] < T[i + 1]$ or $i = n \Rightarrow T[i..n]$ has **type S**
- $T[i] > T[i + 1] \Rightarrow T[i..n]$ has **type L**

Suffix Array Induced Sorting: Classification (1/2)

![Suffix Array Induced Sorting](image-url)
Definition: Type L/S Suffixes

Given a text T of length n and $i \in [1..n]$, then

- $T[i] < T[i+1]$ or $i = n \Rightarrow T[i..n]$ has **type S**
- $T[i] > T[i+1] \Rightarrow T[i..n]$ has **type L**
- $T[i] = T[i+1] \Rightarrow T[i..n]$ has $T[i+1..n]$’s type.
Definition: Type L/S Suffixes

Given a text T of length n and $i \in [1..n]$, then

- $T[i] < T[i+1]$ or $i = n \Rightarrow T[i..n]$ has type S
- $T[i] > T[i+1] \Rightarrow T[i..n]$ has type L
- $T[i] = T[i+1] \Rightarrow T[i..n]$ has $T[i+1..n]$'s type.
Suffix Array Induced Sorting: Classification (1/2)

Definition: Type L/S Suffixes

Given a text T of length n and $i \in [1..n]$, then:
- $T[i] < T[i + 1]$ or $i = n \Rightarrow T[i..n]$ has **type S**
- $T[i] > T[i + 1] \Rightarrow T[i..n]$ has **type L**
- $T[i] = T[i + 1] \Rightarrow T[i..n]$ has $T[i + 1..n]$'s type.

Scan text from right to left:
- Do not store types explicitly.
- Initially, we are only interested in LMS-suffixes.

Diagram:

```
1 2 3 4 5 6 7 8 9 10 11 12 13
a b a b c a b c a b a $`
```

Types:
```
c
b
a
$`
```

Leftmost Suffixes

Given a text T of length n, $i \in [2..n]$ such that $T[i..n]$ has type S and $T[i-1..n]$ has type L, then $T[i..n]$ is called leftmost S-suffix (LMS), denoted by $S \star$.

Scan text from right to left:
- Do not store types explicitly.
- Initially, we are only interested in LMS-suffixes.

Diagram:

```
1 2 3 4 5 6 7 8 9 10 11 12 13
a b a b c a b c a b a $`
```

Types:
```
c
b
a
$`
```

Suffix Array Induced Sorting: Classification (1/2)

Definition: Type L/S Suffixes

Given a text T of length n and $i \in [1..n]$, then:
- $T[i] < T[i + 1]$ or $i = n \Rightarrow T[i..n]$ has **type S**
- $T[i] > T[i + 1] \Rightarrow T[i..n]$ has **type L**
- $T[i] = T[i + 1] \Rightarrow T[i..n]$ has $T[i + 1..n]$'s type.

Scan text from right to left:
- Do not store types explicitly.
- Initially, we are only interested in LMS-suffixes.

Diagram:

```
1 2 3 4 5 6 7 8 9 10 11 12 13
a b a b c a b c a b a $`
```

Types:
```
c
b
a
$`
```

Leftmost Suffixes

Given a text T of length n, $i \in [2..n]$ such that $T[i..n]$ has type S and $T[i-1..n]$ has type L, then $T[i..n]$ is called leftmost S-suffix (LMS), denoted by $S \star$.

Scan text from right to left:
- Do not store types explicitly.
- Initially, we are only interested in LMS-suffixes.

Diagram:

```
1 2 3 4 5 6 7 8 9 10 11 12 13
a b a b c a b c a b a $`
```

Types:
```
c
b
a
$`
```

Suffix Array Induced Sorting: Classification (1/2)

Definition: Type L/S Suffixes

Given a text T of length n and $i \in [1..n]$, then:
- $T[i] < T[i + 1]$ or $i = n \Rightarrow T[i..n]$ has **type S**
- $T[i] > T[i + 1] \Rightarrow T[i..n]$ has **type L**
- $T[i] = T[i + 1] \Rightarrow T[i..n]$ has $T[i + 1..n]$'s type.

Scan text from right to left:
- Do not store types explicitly.
- Initially, we are only interested in LMS-suffixes.

Diagram:

```
1 2 3 4 5 6 7 8 9 10 11 12 13
a b a b c a b c a b a $`
```

Types:
```
c
b
a
$`
```

Leftmost Suffixes

Given a text T of length n, $i \in [2..n]$ such that $T[i..n]$ has type S and $T[i-1..n]$ has type L, then $T[i..n]$ is called leftmost S-suffix (LMS), denoted by $S \star$.

Scan text from right to left:
- Do not store types explicitly.
- Initially, we are only interested in LMS-suffixes.

Diagram:

```
1 2 3 4 5 6 7 8 9 10 11 12 13
a b a b c a b c a b a $`
```

Types:
```
c
b
a
$`
```

Suffix Array Induced Sorting: Classification (1/2)

Definition: Type L/S Suffixes

Given a text T of length n and $i \in [1..n]$, then:
- $T[i] < T[i + 1]$ or $i = n \Rightarrow T[i..n]$ has **type S**
- $T[i] > T[i + 1] \Rightarrow T[i..n]$ has **type L**
- $T[i] = T[i + 1] \Rightarrow T[i..n]$ has $T[i + 1..n]$'s type.

Scan text from right to left:
- Do not store types explicitly.
- Initially, we are only interested in LMS-suffixes.

Diagram:

```
1 2 3 4 5 6 7 8 9 10 11 12 13
a b a b c a b c a b a $`
```

Types:
```
c
b
a
$`
```

Leftmost Suffixes

Given a text T of length n, $i \in [2..n]$ such that $T[i..n]$ has type S and $T[i-1..n]$ has type L, then $T[i..n]$ is called leftmost S-suffix (LMS), denoted by $S \star$.

Scan text from right to left:
- Do not store types explicitly.
- Initially, we are only interested in LMS-suffixes.

Diagram:

```
1 2 3 4 5 6 7 8 9 10 11 12 13
a b a b c a b c a b a $`
```

Types:
```
c
b
a
$`
```
Definition: Type L/S Suffixes

Given a text T of length n and $i \in [1..n]$, then:

- $T[i] < T[i + 1]$ or $i = n \Rightarrow T[i..n]$ has **type S**
- $T[i] > T[i + 1] \Rightarrow T[i..n]$ has **type L**
- $T[i] = T[i + 1] \Rightarrow T[i..n]$ has $T[i + 1..n]$'s type.

Suffix Array Induced Sorting: Classification (1/2)

The image shows a suffix array of a text, with the suffixes classified as either type L or S, and the leftmost S suffixes marked with an arrow. The text is scanned from right to left, and the types are determined without storing them explicitly.
Definition: Type L/S Suffixes

Given a text T of length n and $i \in [1..n]$, then

- $T[i] < T[i+1]$ or $i = n \Rightarrow T[i..n]$ has type S
- $T[i] > T[i+1] \Rightarrow T[i..n]$ has type L
- $T[i] = T[i+1] \Rightarrow T[i..n]$ has $T[i+1..n]$'s type.

Suffix Array Induced Sorting: Classification (1/2)
Definition: Type L/S Suffixes

Given a text T of length n and $i \in [1..n]$, then

- $T[i] < T[i + 1]$ or $i = n \Rightarrow T[i..n]$ has **type S**
- $T[i] > T[i + 1] \Rightarrow T[i..n]$ has **type L**
- $T[i] = T[i + 1] \Rightarrow T[i..n]$ has $T[i + 1..n]$’s type.

Suffix Array Induced Sorting: Classification (1/2)

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$</td>
</tr>
</tbody>
</table>

Scan text from right to left
do not store types explicitly

Initially, we are only interested in LMS-suffixes

Karlsruhe Institute of Technology

15/23 2021-10-25 Florian Kurpicz | Text Indexing | 02 Suffix Trees and Arrays
Suffix Array Induced Sorting: Classification (1/2)

Definition: Type L/S Suffixes

Given a text T of length n and $i \in [1..n]$, then

- $T[i] < T[i + 1]$ or $i = n \Rightarrow T[i..n]$ has type S
- $T[i] > T[i + 1] \Rightarrow T[i..n]$ has type L
- $T[i] = T[i + 1] \Rightarrow T[i..n]$ has $T[i + 1..n]$'s type.

Diagram: Type Classification

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$$$</td>
</tr>
</tbody>
</table>

L: Leftmost Suffixes

- $T[i] < T[i + 1]$ or $i = n \Rightarrow T[i..n]$ has type S
- $T[i] > T[i + 1] \Rightarrow T[i..n]$ has type L
- $T[i] = T[i + 1] \Rightarrow T[i..n]$ has $T[i + 1..n]$'s type.
Suffix Array Induced Sorting: Classification (1/2)

Definition: Type L/S Suffixes

Given a text \(T \) of length \(n \) and \(i \in [1..n] \), then
- \(T[i] < T[i+1] \) or \(i = n \) ⇒ \(T[i..n] \) has type \(S \)
- \(T[i] > T[i+1] \) ⇒ \(T[i..n] \) has type \(L \)
- \(T[i] = T[i+1] \) ⇒ \(T[i..n] \) has \(T[i+1..n] \)'s type.
Definition: Type L/S Suffixes

Given a text T of length n and $i \in [1..n]$, then
- $T[i] < T[i + 1]$ or $i = n \Rightarrow T[i..n]$ has type S
- $T[i] > T[i + 1] \Rightarrow T[i..n]$ has type L
- $T[i] = T[i + 1] \Rightarrow T[i..n]$ has $T[i + 1..n]$'s type.
Definition: Type \(L/S \) Suffixes

Given a text \(T \) of length \(n \) and \(i \in [1..n] \), then

- \(T[i] < T[i+1] \) or \(i = n \) \(\Rightarrow \) \(T[i..n] \) has type \(S \)
- \(T[i] > T[i+1] \) \(\Rightarrow \) \(T[i..n] \) has type \(L \)
- \(T[i] = T[i+1] \) \(\Rightarrow \) \(T[i..n] \) has \(T[i+1..n] \)'s type.
Suffix Array Induced Sorting: Classification (1/2)

Definition: Type L/S Suffixes

Given a text \(T \) of length \(n \) and \(i \in [1..n] \), then

- \(T[i] < T[i+1] \) or \(i = n \) \(\Rightarrow \) \(T[i..n] \) has type \(S \)
- \(T[i] > T[i+1] \) \(\Rightarrow \) \(T[i..n] \) has type \(L \)
- \(T[i] = T[i+1] \) \(\Rightarrow \) \(T[i..n] \) has \(T[i+1..n] \)'s type.
Suffix Array Induced Sorting: Classification (1/2)

Definition: Type L/S Suffixes

Given a text T of length n and $i \in [1..n]$, then

- $T[i] < T[i+1]$ or $i = n \Rightarrow T[i..n]$ has type S
- $T[i] > T[i+1] \Rightarrow T[i..n]$ has type L
- $T[i] = T[i+1] \Rightarrow T[i..n]$ has $T[i+1..n]$’s type.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$$</td>
<td></td>
</tr>
</tbody>
</table>

Scan text from right to left, do not store types explicitly.

Initially, we are only interested in LMS-suffixes.
Definition: Type L/S Suffixes

Given a text T of length n and $i \in [1..n]$, then

- $T[i] < T[i + 1]$ or $i = n \Rightarrow T[i..n]$ has type S
- $T[i] > T[i + 1] \Rightarrow T[i..n]$ has type L
- $T[i] = T[i + 1] \Rightarrow T[i..n]$ has $T[i + 1..n]$'s type.

Suffix Array Induced Sorting: Classification (1/2)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
</tbody>
</table>

Scan text from right to left
do not store types explicitly
initially, we are
only interested in LMS-suffixes

c
b
a
$\text{\$}$
Suffix Array Induced Sorting: Classification (1/2)

Definition: Type L/S Suffixes

Given a text T of length n and $i \in [1..n]$, then

- $T[i] < T[i + 1]$ or $i = n$ \Rightarrow $T[i..n]$ has type S
- $T[i] > T[i + 1]$ \Rightarrow $T[i..n]$ has type L
- $T[i] = T[i + 1]$ \Rightarrow $T[i..n]$ has $T[i+1..n]$'s type.

Definition: Leftmost S Suffixes

Given a text T of length n, $i \in [2..n]$ such that $T[i..n]$ has type S and $T[i-1..n]$ has type L, then $T[i..n]$ is called **leftmost S suffix (LMS)**.

- denoted by S^*
Suffix Array Induced Sorting: Classification (1/2)

Definition: Type L/S Suffixes

Given a text T of length n and $i \in [1..n]$, then
- $T[i] < T[i+1]$ or $i = n \Rightarrow T[i..n]$ has **type S**
- $T[i] > T[i+1] \Rightarrow T[i..n]$ has **type L**
- $T[i] = T[i+1] \Rightarrow T[i..n]$ has $T[i+1..n]$’s type.

Definition: Leftmost S Suffixes

Given a text T of length n, $i \in [2..n]$ such that $T[i..n]$ has type S and $T[i-1..n]$ has type L, then $T[i..n]$ is called **leftmost S suffix (LMS)**.
- denoted by S^*
Suffix Array Induced Sorting: Classification (1/2)

Definition: Type L/S Suffixes

Given a text T of length n and $i \in [1..n]$, then

- $T[i] < T[i+1]$ or $i = n \Rightarrow T[i..n]$ has type S
- $T[i] > T[i+1] \Rightarrow T[i..n]$ has type L
- $T[i] = T[i+1] \Rightarrow T[i..n]$ has $T[i+1..n]$'s type.

Definition: Leftmost S Suffixes

Given a text T of length n, $i \in [2..n]$ such that $T[i..n]$ has type S and $T[i-1..n]$ has type L, then $T[i..n]$ is called leftmost S suffix (LMS).

- denoted by S^*

- scan text from right to left
- do not store types explicitly
- initially, we are only interested in LMS-suffixes
Suffix Array Induced Sorting: Classification (2/2)

- partition suffix array based text’s histogram

SA
Suffix Array Induced Sorting: Classification (2/2)

- partition suffix array based text’s histogram

<table>
<thead>
<tr>
<th>SA</th>
<th>$</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>...</th>
<th>z</th>
</tr>
</thead>
</table>
Lemma: Order of \(L/S \) Suffixes

Given a text \(T \) of length \(n \), a type \(L \) suffixes \(T[i..n] \) and a type \(S \) suffixes \(T[j..n] \) with \(\alpha = T[i] = T[i] \), then \(T[i..n] < T[j..n] \).

Proof (Sketch)

- \(T[i..n] \) has type \(L \) \(T[i..n] = \alpha \alpha ... \alpha \) \(\ell \geq 0 \) times \(\beta ... \)
- \(T[j..n] \) has type \(S \) \(T[j..n] = \alpha \alpha ... \alpha \) \(\ell' \geq 0 \) times \(\gamma ... \)

- if \(\ell < \ell' \) then \(\alpha < \gamma \) and \(T[i..n] < T[j..n] \)
- if \(\ell = \ell' \) then \(\beta < \gamma \) and \(T[i..n] < T[j..n] \)
- if \(\ell > \ell' \) then \(\beta < \alpha \) and \(T[i..n] < T[j..n] \)
Suffix Array Induced Sorting: Classification (2/2)

- partition suffix array based text’s histogram
- use types of suffixes to partition suffix array

![Suffix Array SA](image)

Lemma: Order of L/S Suffixes

Given a text T of length n, a type L suffix $T[i..n]$ and a type S suffix $T[j..n]$ with $\alpha = T[i] = T[i]$, then $T[i..n] < T[j..n]$.

Proof (Sketch)

1. $T[i..n]$ has type L $T[i..n] = \alpha\alpha...\alpha$ $\ell \geq 0$ times $\beta...

2. $T[j..n]$ has type S $T[j..n] = \alpha\alpha...\alpha$ $\ell' \geq 0$ times $\gamma...

3. If $\ell < \ell'$ then $\alpha < \gamma$ and $T[i..n] < T[j..n]$.

4. If $\ell = \ell'$ then $\beta < \gamma$ and $T[i..n] < T[j..n]$.

5. If $\ell > \ell'$ then $\beta < \alpha$ and $T[i..n] < T[j..n]$.
Suffix Array Induced Sorting: Classification (2/2)

- partition suffix array based text’s histogram
- use types of suffixes to partition suffix array

Lemma: Order of L/S Suffixes

Given a text T of length n, a type L suffixes $T[i..n]$ and a type S $T[j..n]$ with $\alpha = T[i] = T[i]$, then

$$T[i..n] < T[j..n]$$
Suffix Array Induced Sorting: Classification (2/2)

- partition suffix array based text’s histogram
- use types of suffixes to partition suffix array

<table>
<thead>
<tr>
<th>SA</th>
<th>$</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>...</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>L</td>
<td>S</td>
<td>L</td>
<td>S</td>
<td>L</td>
<td>S</td>
</tr>
</tbody>
</table>

Lemma: Order of L/S Suffixes

Given a text T of length n, a type L suffixes $T[i..n]$ and a type S $T[j..n]$ with $\alpha = T[i] = T[i]$, then

$$T[i..n] < T[j..n]$$

Proof (Sketch)

- $T[i..n]$ has type L
 - $T[i..n] = \alpha \alpha \ldots \alpha \beta \ldots \$\ \ell \geq 0 \text{ times}$
 - with $\beta < \alpha$

- $T[j..n]$ has type S
Lemma: Order of L/S Suffixes

Given a text T of length n, a type L suffixes $T[i..n]$ and a type S $T[j..n]$ with $\alpha = T[i] = T[j]$, then

$$T[i..n] < T[j..n]$$

Proof (Sketch)

- $T[i..n]$ has type L
 - $T[i..n] = \underbrace{\alpha \alpha \ldots \alpha}_\ell \beta \ldots \underbrace{\$ \ldots \$}_0$ with $\beta < \alpha$
 - $\ell \geq 0$

- $T[j..n]$ has type S
 - $T[j..n] = \underbrace{\alpha \alpha \ldots \alpha}_\ell' \gamma \ldots \underbrace{\$ \ldots \$}_0$ with $\alpha < \gamma$
 - $\ell' \geq 0$

- With $\ell < \ell'$ then $\beta < \alpha$
- With $\ell = \ell'$ then $\beta < \gamma$
- With $\ell > \ell'$ then $\beta < \alpha$
Suffix Array Induced Sorting: Classification (2/2)

- partition suffix array based text’s histogram
- use types of suffixes to partition suffix array

![Suffix Array SA](image)

Lemma: Order of L/S Suffixes

Given a text T of length n, a type L suffixes $T[i..n]$ and a type S $T[j..n]$ with $\alpha = T[i] = T[j]$, then

$$T[i..n] < T[j..n]$$

Proof (Sketch)

- $T[i..n]$ has type L
 - $T[i..n] = \alpha \alpha \ldots \alpha \beta \ldots \$ with $\beta < \alpha$

- $T[j..n]$ has type S
 - $T[j..n] = \alpha \alpha \ldots \alpha \gamma \ldots \$ with $\alpha < \gamma$

- if $\ell < \ell'$ then $\alpha < \gamma$ and $T[i..n] < T[j..n]$
Lemma: Order of L/S Suffixes

Given a text T of length n, a type L suffixes $T[i..n]$ and a type S $T[j..n]$ with $\alpha = T[i] = T[j]$, then

$$T[i..n] < T[j..n]$$

Proof (Sketch)

- $T[i..n]$ has type L
 - $T[i..n] = \alpha \alpha \ldots \alpha \beta \ldots \$\\text{with } \beta < \alpha$
 - $T[j..n]$ has type S
 - $T[j..n] = \alpha \alpha \ldots \alpha \gamma \ldots \$\\text{with } \alpha < \gamma$
- if $\ell < \ell'$ then $\alpha < \gamma$ and $T[i..n] < T[j..n]$
- if $\ell = \ell'$ then $\beta < \gamma$ and $T[i..n] < T[j..n]$
Lemma: Order of L/S Suffixes

Given a text T of length n, a type L suffixes $T[i..n]$ and a type S suffixes $T[j..n]$ with $\alpha = T[i] = T[i]$, then

$T[i..n] < T[j..n]$
Lemma: Inducing

If $T[i+1..n] < T[j+1..n]$ and $T[i] = T[j]$ then

$T[i..n] < T[j..n]$
Lemma: Inducing

If $T[i+1..n] < T[j+1..n]$ and $T[i] = T[j]$ then

$T[i..n] < T[j..n]$
Lemma: Inducing

If $T[i+1..n] < T[j+1..n]$ and $T[i] = T[j]$ then

$T[i..n] < T[j..n]$
Lemma: Inducing

If $T[i+1..n] < T[j+1..n]$ and $T[i] = T[j]$ then

$T[i..n] < T[j..n]$
Lemma: Inducing

If $T[i+1..n] < T[j+1..n]$ and $T[i] = T[j]$ then

$T[i..n] < T[j..n]$
Lemma: Inducing

If $T[i+1..n] < T[j+1..n]$ and $T[i] = T[j]$ then

$T[i..n] < T[j..n]$

Proof (Sketch)

- similar to order of L/S suffixes
- there is a leftmost character where $T[i+1..n]$ and $T[j+1..n]$ differ
- $T[i..n]$ and $T[j..n]$ differ at the same character
Inducing in SAIS

- Initialization
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets
Inducing in SAIS

- **Initialization**
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets

Suffix Array Induced Sorting: Inducing (2/2)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$ $</td>
</tr>
<tr>
<td>S</td>
<td>$</td>
<td>L</td>
<td>$</td>
<td>S*</td>
<td>S</td>
<td>L</td>
<td>$</td>
<td>S</td>
<td>L</td>
<td>$</td>
<td>S*</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
</tbody>
</table>
Suffix Array Induced Sorting: Inducing (2/2)

Inducing in SAIS

- Initialization
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets
Suffix Array Induced Sorting: Inducing (2/2)

Inducing in SAIS

- **Initialization**
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets
- **Scan Left to Right** ($i = 1, 2, \ldots, n$)
 - if $SA[i] \neq −$ and $T[SA[i] − 1..n]$ is L-type
 - then put $SA[i] − 1$ at beginning of bucket

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>s</td>
<td>L</td>
<td>S*</td>
<td>S</td>
<td>L</td>
<td>S*</td>
<td>S</td>
<td>L</td>
<td>S*</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>S*</td>
</tr>
<tr>
<td>$$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>13</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Inducing in SAIS

- **Initialization**
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets

- **Scan Left to Right** ($i = 1, 2, \ldots, n$)
 - if $SA[i] \neq −$ and $T[SA[i]−1..n]$ is L-type
 - then put $SA[i] − 1$ at beginning of bucket
Suffix Array Induced Sorting: Inducing (2/2)

Inducing in SAIS

- **Initialization**
 - Initialize each entry in SA with “−”
 - Put sorted \(LMS\)-suffixes at the end of buckets
- **Scan Left to Right (\(i = 1, 2, \ldots, n\))**
 - If \(SA[i] \neq −\) and \(T[SA[i] − 1..n]\) is \(L\)-type
 - Then put \(SA[i] − 1\) at beginning of bucket

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>S</td>
<td>L</td>
<td>S*</td>
<td>S</td>
<td>L</td>
<td>S*</td>
<td>S</td>
<td>L</td>
<td>S*</td>
<td>L</td>
<td>L</td>
<td>S*</td>
<td></td>
</tr>
</tbody>
</table>

\[13\]
\[12\]
Inducing in SAIS

- Initialization
 - initialize each entry in SA with "−"
 - put sorted LMS-suffixes at the end of buckets
- Scan Left to Right ($i = 1, 2, \ldots, n$)
 - if $SA[i] \neq −$ and $T[SA[i] − 1..n]$ is L-type
 - then put $SA[i] − 1$ at beginning of bucket
Inducing in SAIS

- Initialization
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets
- Scan Left to Right ($i = 1, 2, \ldots, n$)
 - if $SA[i] \neq −$ and $T[SA[i] − 1..n]$ is L-type
 - then put $SA[i] − 1$ at beginning of bucket

Suffix Array Induced Sorting: Inducing (2/2)

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>L</td>
<td>S*</td>
<td>S</td>
<td>L</td>
<td>S*</td>
<td>S</td>
<td>L</td>
<td>S*</td>
<td>L</td>
<td>L</td>
<td>S*</td>
<td></td>
</tr>
</tbody>
</table>

- $13 \rightarrow 12$
Inducing in SAIS

- **Initialization**
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets
- **Scan Left to Right ($i = 1, 2, \ldots, n$)**
 - if $SA[i] \neq -$ and $T[SA[i]−1..n]$ is L-type
 - then put $SA[i]−1$ at beginning of bucket

Suffix Array Induced Sorting: Inducing (2/2)
Inducing in SAIS

- **Initialization**
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets
- **Scan Left to Right ($i = 1, 2, \ldots, n$)**
 - if $SA[i] \neq −$ and $T[SA[i] − 1..n]$ is L-type
 - then put $SA[i] − 1$ at beginning of bucket

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$$</td>
</tr>
<tr>
<td>L</td>
<td>s*</td>
<td>s</td>
<td>s*</td>
<td>s</td>
<td>L</td>
<td>s*</td>
<td>L</td>
<td>L</td>
<td>s*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$S*$</td>
<td></td>
<td>9</td>
<td>6</td>
<td>3</td>
<td></td>
<td>11</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Suffix Array Induced Sorting: Inducing (2/2)
Inducing in SAIS

- **Initialization**
 - Initialize each entry in SA with “−”
 - Put sorted LMS-suffixes at the end of buckets

- **Scan Left to Right** ($i = 1, 2, \ldots, n$)
 - If $SA[i] \neq -$ and $T[SA[i] − 1..n]$ is L-type
 - Then put $SA[i] − 1$ at beginning of bucket

Example

<table>
<thead>
<tr>
<th>S</th>
<th>L</th>
<th>S^*</th>
<th>S</th>
<th>L</th>
<th>S^*</th>
<th>L</th>
<th>L</th>
<th>S^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Suffix Array Induced Sorting: Inducing (2/2)
Inducing in SAIS

- **Initialization**
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets

- **Scan Left to Right** ($i = 1, 2, \ldots, n$)
 - if $SA[i] \neq -$ and $T[SA[i] - 1..n]$ is L-type
 - then put $SA[i] - 1$ at beginning of bucket
Suffix Array Induced Sorting: Inducing (2/2)

Inducing in SAIS

- Initialization
 - initialize each entry in SA with ‘−’
 - put sorted LMS-suffixes at the end of buckets
- Scan Left to Right \((i = 1, 2, \ldots, n)\)
 - if \(SA[i] \neq −\) and \(T[SA[i] − 1..n]\) is L-type
 - then put \(SA[i] − 1\) at beginning of bucket
Inducing in SAIS

- **Initialization**
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets

- **Scan Left to Right** \((i = 1, 2, \ldots, n)\)
 - if \(SA[i] \neq −\) and \(T[SA[i] – 1..n]\) is L-type
 - then put \(SA[i] – 1\) at beginning of bucket

Suffix Array Induced Sorting: Inducing (2/2)

```plaintext
\[
\begin{array}{ccccccccccccc}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
\hline
a & b & a & b & c & a & b & c & a & b & b & a & $ \\
\hline
S & L & S^* & S & L & S^* & S & L & S^* & L & L & L & S^* \\
\hline
13 & 12 & 9 & 6 & 3 & 11 & & & & & & 8 & 5 \\
\end{array}
\]
```
Inducing in SAIS

- **Initialization**
 - Initialize each entry in SA with “−”
 - Put sorted LMS-suffixes at the end of buckets
- **Scan Left to Right** \(i = 1, 2, \ldots, n \)
 - If \(SA[i] \neq − \) and \(T[SA[i]−1..n] \) is L-type
 - Then put \(SA[i]−1 \) at beginning of bucket

Suffix Array Induced Sorting: Inducing (2/2)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>(S)</td>
<td>L</td>
<td>S*</td>
<td>S</td>
<td>L</td>
<td>S*</td>
<td>S</td>
<td>L</td>
<td>S*</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>S*</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Inducing in SAIS

- **Initialization**
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets
- **Scan Left to Right** \((i = 1, 2, \ldots, n)\)
 - if \(SA[i] \neq −\) and \(T[SA[i] − 1..n]\) is \(L\)-type
 - then put \(SA[i] − 1\) at beginning of bucket
Inducing in SAIS

- **Initialization**
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets
- **Scan Left to Right** ($i = 1, 2, \ldots, n$)
 - if $SA[i] \neq −$ and $T[SA[i] − 1..n]$ is L-type
 - then put $SA[i] − 1$ at beginning of bucket
Suffix Array Induced Sorting: Inducing (2/2)

Inducing in SAIS

- **Initialization**
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets
- **Scan Left to Right ($i = 1, 2, \ldots, n$)**
 - if $SA[i] \neq -$ and $T[SA[i] - 1..n]$ is L-type
 - then put $SA[i] - 1$ at beginning of bucket

```
Inducing in SAIS

Initialization
- initialize each entry in SA with “−”
- put sorted $LMS$-suffixes at the end of buckets

Scan Left to Right ($i = 1, 2, \ldots, n$)
- if $SA[i] \neq -$ and $T[SA[i] - 1..n]$ is $L$-type
- then put $SA[i] - 1$ at beginning of bucket

```

Diagram:

[Diagram showing the process of inducing suffixes using SAIS.]
Suffix Array Induced Sorting: Inducing (2/2)

Inducing in SAIS

- Initialization
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets
- Scan Left to Right \((i = 1, 2, \ldots, n)\)
 - if \(SA[i] \neq −\) and \(T[SA[i] − 1..n]\) is \(L\)-type
 - then put \(SA[i] − 1\) at beginning of bucket
Suffix Array Induced Sorting: Inducing (2/2)

Inducing in SAIS

- **Initialization**
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets

- **Scan Left to Right** ($i = 1, 2, \ldots, n$)
 - if $SA[i] \neq −$ and $T[SA[i] − 1..n]$ is L-type
 - then put $SA[i] − 1$ at beginning of bucket

![Diagram](https://example.com/diagram.png)
Inducing in SAIS

- **Initialization**
 - initialize each entry in SA with "−"
 - put sorted LMS-suffixes at the end of buckets

- **Scan Left to Right** \((i = 1, 2, \ldots, n)\)
 - if \(SA[i] \neq −\) and \(T[SA[i] − 1..n]\) is L-type
 - then put \(SA[i] − 1\) at beginning of bucket
Suffix Array Induced Sorting: Inducing (2/2)

Inducing in SAIS

- Initialization
 - initialize each entry in SA with "−"
 - put sorted LMS-suffixes at the end of buckets
- Scan Left to Right ($i = 1, 2, \ldots, n$)
 - if $SA[i] \neq −$ and $T[SA[i]−1..n]$ is L-type
 - then put $SA[i]−1$ at beginning of bucket
- Scan Right to Left ($i = n, n−1, \ldots, 1$)
 - if $SA[i] \neq −$ and $T[SA[i]−1..n]$ is S-type
 - then put $SA[i]−1$ at end of bucket
Suffix Array Induced Sorting: Inducing (2/2)

Inducing in SAIS

- **Initialization**
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets

- **Scan Left to Right** ($i = 1, 2, \ldots, n$)
 - if $SA[i] \neq -$ and $T[SA[i] − 1..n]$ is L-type
 - then put $SA[i] − 1$ at beginning of bucket

- **Scan Right to Left** ($i = n, n − 1, \ldots, 1$)
 - if $SA[i] \neq -$ and $T[SA[i] − 1..n]$ is S-type
 - then put $SA[i] − 1$ at end of bucket
Inducing in SAIS

- **Initialization**
 - initialize each entry in SA with “−”
 - put sorted \(LMS \)-suffixes at the end of buckets

- **Scan Left to Right** \((i = 1, 2, \ldots, n) \)
 - if \(SA[i] \neq − \) and \(T[SA[i] − 1..n] \) is \(L \)-type
 - then put \(SA[i] − 1 \) at beginning of bucket

- **Scan Right to Left** \((i = n, n − 1, \ldots, 1) \)
 - if \(SA[i] \neq − \) and \(T[SA[i] − 1..n] \) is \(S \)-type
 - then put \(SA[i] − 1 \) at end of bucket
Inducing in SAIS

- **Initialization**
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets
- **Scan Left to Right** \((i = 1, 2, \ldots, n)\)
 - if \(SA[i] \neq −\) and \(T[SA[i] − 1..n]\) is L-type
 - then put \(SA[i] − 1\) at beginning of bucket
- **Scan Right to Left** \((i = n, n − 1, \ldots, 1)\)
 - if \(SA[i] \neq −\) and \(T[SA[i] − 1..n]\) is S-type
 - then put \(SA[i] − 1\) at end of bucket
Suffix Array Induced Sorting: Inducing (2/2)

Inducing in SAIS

- **Initialization**
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets
- **Scan Left to Right** \((i = 1, 2, \ldots, n)\)
 - if \(SA[i] \neq −\) and \(T[SA[i] − 1..n]\) is \(L\)-type
 - then put \(SA[i] − 1\) at beginning of bucket
- **Scan Right to Left** \((i = n, n − 1, \ldots, 1)\)
 - if \(SA[i] \neq −\) and \(T[SA[i] − 1..n]\) is \(S\)-type
 - then put \(SA[i] − 1\) at end of bucket
Suffix Array Induced Sorting: Inducing (2/2)

Inducing in SAIS

- Initialization
 - initialize each entry in SA with "−"
 - put sorted LMS-suffixes at the end of buckets
- Scan Left to Right ($i = 1, 2, \ldots, n$)
 - if $SA[i] \neq −$ and $T[SA[i] − 1\ldots n]$ is L-type
 - then put $SA[i] − 1$ at beginning of bucket
- Scan Right to Left ($i = n, n − 1, \ldots, 1$)
 - if $SA[i] \neq −$ and $T[SA[i] − 1\ldots n]$ is S-type
 - then put $SA[i] − 1$ at end of bucket
Inducing in SAIS

- **Initialization**
 - initialize each entry in SA with "−"
 - put sorted LMS-suffixes at the end of buckets

- **Scan Left to Right** ($i = 1, 2, \ldots, n$)
 - if $SA[i] \neq −$ and $T[SA[i] − 1..n]$ is L-type
 - then put $SA[i] − 1$ at beginning of bucket

- **Scan Right to Left** ($i = n, n − 1, \ldots, 1$)
 - if $SA[i] \neq −$ and $T[SA[i] − 1..n]$ is S-type
 - then put $SA[i] − 1$ at end of bucket

Suffix Array Induced Sorting: Inducing (2/2)
Suffix Array Induced Sorting: Inducing (2/2)

Inducing in SAIS

- **Initialization**
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets

- **Scan Left to Right ($i = 1, 2, \ldots, n$)**
 - if $SA[i] \neq −$ and $T[SA[i] − 1..n]$ is L-type
 - then put $SA[i] − 1$ at beginning of bucket

- **Scan Right to Left ($i = n, n − 1, \ldots, 1$)**
 - if $SA[i] \neq −$ and $T[SA[i] − 1..n]$ is S-type
 - then put $SA[i] − 1$ at end of bucket
Suffix Array Induced Sorting: Inducing (2/2)

Inducing in SAIS

- Initialization
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets

- Scan Left to Right ($i = 1, 2, \ldots, n$)
 - if $SA[i] \neq -$ and $T[SA[i] − 1..n]$ is L-type
 - then put $SA[i] − 1$ at beginning of bucket

- Scan Right to Left ($i = n, n − 1, \ldots, 1$)
 - if $SA[i] \neq -$ and $T[SA[i] − 1..n]$ is S-type
 - then put $SA[i] − 1$ at end of bucket
Inducing in SAIS

- Initialization
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets
- Scan Left to Right ($i = 1, 2, \ldots, n$)
 - if $SA[i] \neq −$ and $T[SA[i]−1..n]$ is L-type
 - then put $SA[i]−1$ at beginning of bucket
- Scan Right to Left ($i = n, n−1, \ldots, 1$)
 - if $SA[i] \neq −$ and $T[SA[i]−1..n]$ is S-type
 - then put $SA[i]−1$ at end of bucket
Inducing in SAIS

- Initialization
 - initialize each entry in SA with "−"
 - put sorted LMS-suffixes at the end of buckets
- Scan Left to Right ($i = 1, 2, \ldots, n$)
 - if $SA[i] \neq −$ and $T[SA[i] − 1..n]$ is L-type
 - then put $SA[i] − 1$ at beginning of bucket
- Scan Right to Left ($i = n, n − 1, \ldots, 1$)
 - if $SA[i] \neq −$ and $T[SA[i] − 1..n]$ is S-type
 - then put $SA[i] − 1$ at end of bucket
Inducing in SAIS

Initialization
- initialize each entry in SA with “−”
- put sorted LMS-suffixes at the end of buckets

Scan Left to Right (i = 1, 2, \ldots, n)
- if \(SA[i] \neq −\) and \(T[SA[i]−1..n]\) is L-type
- then put \(SA[i]−1\) at beginning of bucket

Scan Right to Left (i = n, n−1, \ldots, 1)
- if \(SA[i] \neq −\) and \(T[SA[i]−1..n]\) is S-type
- then put \(SA[i]−1\) at end of bucket
Suffix Array Induced Sorting: Inducing (2/2)

Inducing in SAIS

- Initialization
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets
- Scan Left to Right \((i = 1, 2, \ldots, n)\)
 - if \(SA[i] \neq −\) and \(T[SA[i] − 1..n]\) is L-type
 - then put \(SA[i] − 1\) at beginning of bucket
- Scan Right to Left \((i = n, n − 1, \ldots, 1)\)
 - if \(SA[i] \neq −\) and \(T[SA[i] − 1..n]\) is S-type
 - then put \(SA[i] − 1\) at end of bucket
Suffix Array Induced Sorting: Inducing (2/2)

Inducing in SAIS

- **Initialization**
 - Initialize each entry in SA with "−".
 - Put sorted LMS-suffixes at the end of buckets.

- **Scan Left to Right** ($i = 1, 2, \ldots, n$)
 - If $SA[i] \neq −$ and $T[SA[i]−1..n]$ is L-type
 - Then put $SA[i]−1$ at beginning of bucket

- **Scan Right to Left** ($i = n, n−1, \ldots, 1$)
 - If $SA[i] \neq −$ and $T[SA[i]−1..n]$ is S-type
 - Then put $SA[i]−1$ at end of bucket
Suffix Array Induced Sorting: Inducing (2/2)

Inducing in SAIS

- Initialization
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets
- Scan Left to Right \((i = 1, 2, \ldots, n)\)
 - if \(SA[i] \neq −\) and \(T[SA[i] − 1..n]\) is L-type
 - then put \(SA[i] − 1\) at beginning of bucket
- Scan Right to Left \((i = n, n − 1, \ldots, 1)\)
 - if \(SA[i] \neq −\) and \(T[SA[i] − 1..n]\) is S-type
 - then put \(SA[i] − 1\) at end of bucket
Suffix Array Induced Sorting: Inducing (2/2)

Inducing in SAIS

- Initialization
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets
- Scan Left to Right \((i = 1, 2, \ldots, n)\)
 - if \(SA[i] \neq −\) and \(T[SA[i] − 1..n]\) is \(L\)-type
 - then put \(SA[i] − 1\) at beginning of bucket
- Scan Right to Left \((i = n, n−1, \ldots, 1)\)
 - if \(SA[i] \neq −\) and \(T[SA[i] − 1..n]\) is \(S\)-type
 - then put \(SA[i] − 1\) at end of bucket
Inducing in SAIS

- **Initialization**
 - Initialize each entry in SA with “−”
 - Put sorted LMS-suffixes at the end of buckets

- **Scan Left to Right** ($i = 1, 2, \ldots, n$)
 - If $SA[i] \neq −$ and $T[SA[i] − 1..n]$ is L-type
 - Then put $SA[i] − 1$ at beginning of bucket

- **Scan Right to Left** ($i = n, n − 1, \ldots, 1$)
 - If $SA[i] \neq −$ and $T[SA[i] − 1..n]$ is S-type
 - Then put $SA[i] − 1$ at end of bucket

Suffix Array Induced Sorting: Inducing (2/2)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>S^*</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>S^*</td>
<td></td>
</tr>
</tbody>
</table>

Figure: Inducing in SAIS with a suffix array example.
Inducing in SAIS

- **Initialization**
 - Initialize each entry in SA with ‘−’
 - Put sorted LMS-suffixes at the end of buckets
- **Scan Left to Right** ($i = 1, 2, \ldots, n$)
 - If $SA[i] \neq -$ and $T[SA[i] - 1..n]$ is L-type
 - Then put $SA[i] - 1$ at beginning of bucket
- **Scan Right to Left** ($i = n, n-1, \ldots, 1$)
 - If $SA[i] \neq -$ and $T[SA[i] - 1..n]$ is S-type
 - Then put $SA[i] - 1$ at end of bucket
Inducing in SAIS

- **Initialization**
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets

- **Scan Left to Right** \((i = 1, 2, \ldots, n)\)
 - if \(SA[i] \neq − \) and \(T[SA[i] − 1..n]\) is \(L\)-type
 - then put \(SA[i] − 1\) at beginning of bucket

- **Scan Right to Left** \((i = n, n − 1, \ldots, 1)\)
 - if \(SA[i] \neq − \) and \(T[SA[i] − 1..n]\) is \(S\)-type
 - then put \(SA[i] − 1\) at end of bucket
Inducing in SAIS

- **Initialization**
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets

- **Scan Left to Right** ($i = 1, 2, \ldots, n$)
 - if $SA[i] \neq −$ and $T[SA[i] − 1..n]$ is L-type
 - then put $SA[i] − 1$ at beginning of bucket

- **Scan Right to Left** ($i = n, n−1, \ldots, 1$)
 - if $SA[i] \neq −$ and $T[SA[i] − 1..n]$ is S-type
 - then put $SA[i] − 1$ at end of bucket

- are all suffixes induced?

Suffix Array Induced Sorting: Inducing (2/2)
Inducing in SAIS

- Initialization
 - initialize each entry in SA with “−”
 - put sorted LMS-suffixes at the end of buckets

- Scan Left to Right ($i = 1, 2, \ldots, n$)
 - if $SA[i] \neq −$ and $T[SA[i]−1..n]$ is L-type
 - then put $SA[i]−1$ at beginning of bucket

- Scan Right to Left ($i = n, n−1, \ldots, 1$)
 - if $SA[i] \neq −$ and $T[SA[i]−1..n]$ is S-type
 - then put $SA[i]−1$ at end of bucket

- are all suffixes induced?
- now we only need to sort S^* suffixes
Suffix Array Induced Sorting: LMS-Substrings (1/2)

- how to sort S^* suffixes?
- slightly adopt algorithm
how to sort S^* suffixes?
- slightly adopt algorithm

Definition: LMS-Prefix

Let $i < j$ or $i = j = n$ be text positions, such that $\nexists k \in (i, j)$ with $T[k..n]$ is LMS, then we call $T[i..j]$ LMS-prefix
Suffix Array Induced Sorting: LMS-Substrings (1/2)

- how to sort S^* suffixes?
- slightly adopt algorithm

Definition: LMS-Prefix

Let $i < j$ or $i = j = n$ be text positions, such that \(\nexists k \in (i, j) \) with $T[k..n]$ is LMS, then we call $T[i..j]$ an **LMS-prefix**

Definition: LMS-Substring

Let $T[i..j]$ be an LMS-prefix and $T[i..n]$ be LMS, then $T[i..j]$ is an **LMS-substring**
Suffix Array Induced Sorting: LMS-Substrings (1/2)

- how to sort S^* suffixes?
- slightly adopt algorithm

Definition: LMS-Prefix

Let $i < j$ or $i = j = n$ be text positions, such that $\nexists k \in (i, j)$ with $T[k..n]$ is LMS, then we call $T[i..j]$ **LMS-prefix**

Definition: LMS-Substring

Let $T[i..j]$ be an LMS-prefix and $T[i..n]$ be LMS, then $T[i..j]$ is an **LMS-substring**

Inducing LMS-Substrings

- **Initialization**
 - initialize each entry in SA with “–”
 - put LMS-suffixes in text order at the end of buckets
- **Scan Left to Right ($i = 1, 2, \ldots, n$)**
 - if $SA[i] \neq –$ and $T[SA[i]−1..n]$ is L-type
 - then put $SA[i] − 1$ at beginning of bucket
- **Scan Right to Left ($i = n, n − 1, \ldots, 1$)**
 - if $SA[i] \neq –$ and $T[SA[i]−1..n]$ is S-type
 - then put $SA[i] − 1$ at end of bucket
Lemma: Inducing LMS-Prefixes

The algorithm sorts all LMS-Prefixes correctly
Lemma: Inducing LMS-Prefixes

The algorithm sorts all LMS-Prefixes correctly

Proof (Sketch)

- initially: only $T[n..n]$ sorted correctly
Lemma: Inducing LMS-Prefixes

The algorithm sorts all LMS-Prefixes correctly

Proof (Sketch)

- initially: only $T[n..n]$ sorted correctly
- L2R: L-type LMS-prefixes sorted correctly
 - only care for first character of next LMS
 - LMS in correct bucket
 - sorted correctly for first character
Lemma: Inducing LMS-Prefixes
The algorithm sorts all LMS-Prefixes correctly

Proof (Sketch)
- Initially: only $T[n..n]$ sorted correctly
- L2R: L-type LMS-prefixes sorted correctly
 - only care for first character of next LMS
 - LMS in correct bucket
 - Sorted correctly for first character
- R2L: S-type LMS-prefixes sorted correctly
 - only care for first character of next LMS
 - LMS in correct bucket
 - Sorted correct for first character
Lemma: Inducing LMS-Prefixes

The algorithm sorts all LMS-Prefixes correctly

Proof (Sketch)

- Initially: only $T[n..n]$ sorted correctly
- L2R: L-type LMS-prefixes sorted correctly
 - Only care for first character of next LMS
 - LMS in correct bucket
 - Sorted correctly for first character
- R2L: S-type LMS-prefixes sorted correctly
 - Only care for first character of next LMS
 - LMS in correct bucket
 - Sorted correct for first character
Lemma: Running Time Computation T'

Computing T' requires $O(n)$ time

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>

12345678910111213

$\begin{array}{cccccccccccc}
& 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 \\
T & a & b & a & b & c & a & b & c & a & b & b & a & $ \\
SA & 13 & 12 & 1 & 9 & 6 & 3 & 11 & 2 & 10 & 7 & 4 & 8 & 5 \\
\end{array}$

$\begin{array}{cccccccccccc}
12345678910111213
\end{array}$

suffix array induced sorting: recursion
Lemma: Running Time Computation T'

Computing T' requires $O(n)$ time

Proof (Sketch)

- find LMS-substrings in $O(1)$ time \(\heartsuit\) save S-buckets
- scan each LMS-substring twice
- each character is in at most two LMS-substrings

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

$$T' = 0122$$
Lemma: Running Time Computation T'

Computing T' requires $O(n)$ time

Proof (Sketch)

- find LMS-substrings in $O(1)$ time ☞ save S-buckets
- scan each LMS-substring twice
- each character is in at most two LMS-substrings
- construct text T' using ranks of LMS-substrings
- compare LMS-substrings character-wise

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>T'</td>
<td>$</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>c</td>
<td>$</td>
</tr>
<tr>
<td>SA'</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
</tbody>
</table>
Lemma: Running Time Computation T'

Computing T' requires $O(n)$ time

Proof (Sketch)

- find LMS-substrings in $O(1)$ time \(\circ\) save S-buckets
- scan each LMS-substring twice
- each character is in at most two LMS-substrings

- construct text T' using ranks of LMS-substrings
- compare LMS-substrings character-wise
Lemma: Running Time Computation T'
Computing T' requires $O(n)$ time

Proof (Sketch)
- find LMS-substrings in $O(1)$ time \(\bigcirc\) save S-buckets
- scan each LMS-substring twice
- each character is in at most two LMS-substrings
- construct text T' using ranks of LMS-substrings
- compare LMS-substrings character-wise

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>T</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SA</th>
<th>13</th>
<th>12</th>
<th>1</th>
<th>9</th>
<th>6</th>
<th>3</th>
<th>11</th>
<th>2</th>
<th>10</th>
<th>7</th>
<th>4</th>
<th>8</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td>$</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>c</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>a</td>
<td>$</td>
<td>$</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>$</td>
<td>$</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>a</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>c</td>
<td>a</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>b</td>
<td>c</td>
<td>a</td>
</tr>
</tbody>
</table>

$T' = 0122$
Lemma: SAIS Time Complexity

Given a text of length n, SAIS computes the suffix array in $O(n)$ time using
Lemma: SAIS Time Complexity

Given a text of length \(n \), SAIS computes the suffix array in \(O(n) \) time using

Proof (Sketch)

- classification, sorting of special suffixes, and inducing in \(O(n) \) time
- the number of \(S^* \) suffixes is at most \(\lfloor n/2 \rfloor \)
- \(T(n) = T(\lfloor n/2 \rfloor) + O(n) = O(n) \)
Lemma: SAIS Time Complexity

Given a text of length n, SAIS computes the suffix array in $O(n)$ time using

Proof (Sketch)

- classification, sorting of special suffixes, and inducing in $O(n)$ time
- the number of S^* suffixes is at most $\lfloor n/2 \rfloor$
- $T(n) = T(\lfloor n/2 \rfloor) + O(n) = O(n)$

Space Requirements

- naive: $O(n \lg n)$ bits
- better: $n \lceil \lg n \rceil + 2\sigma \lceil \lg n \rceil$ bits
Conclusion and Outlook

This Lecture
- suffix trees and suffix arrays
- linear time suffix array construction

Linear Time Construction

ST SA

LCP
Conclusion and Outlook

This Lecture

- suffix trees and suffix arrays
- linear time suffix array construction

- suffix trees require $\approx 8\text{–}20$ bytes per character
- suffix arrays require 5 bytes per character for up to $\approx 1\text{ TB}$ text
- currently fastest implementation available at https://github.com/IlyaGrebnov/ libsais

Linear Time Construction
Conclusion and Outlook

This Lecture
- suffix trees and suffix arrays
- linear time suffix array construction
- suffix trees require ≈ 8–20 bytes per character
- suffix arrays require 5 bytes per character for up to ≈ 1 TB text
- currently fastest implementation available at https://github.com/IlyaGrebnov/libsais

Next Lecture
- linear time LCP-array construction
- interesting properties of LCP-array
- computing suffix trees using suffix array and LCP-array

Linear Time Construction

ST | SA

LCP
Bibliography I

Bibliography II

Bibliography III
