Text Indexing

Lecture 04: Text-Compression
Florian Kurpicz
Recap: Suffix Array and LCP-Array

Definition: Suffix Array [GBS92; MM93]
Given a text \(T \) of length \(n \), the suffix array (SA) is a permutation of \([1..n]\), such that for \(i \leq j \in [1..n] \)
\[T[SA[i]..n] \leq T[SA[j]..n] \]

Definition: Longest Common Prefix Array
Given a text \(T \) of length \(n \) and its SA, the LCP-array is defined as
\[
LCP[i] = \begin{cases}
0 & \text{if } i = 1 \\
\max \{ \ell : T[SA[i]..SA[i]+\ell) = T[SA[i-1]..SA[i-1]+\ell) \} & \text{if } i \neq 1
\end{cases}
\]
Why Compression

Types of Compression

- lossy compression
 📢 audio, video, pictures, ...
- lossless compression
 📢 audio, text, ...

This Lecture

measure compressibility
different compression algorithms
both types
space/time requirements of compression
make use of known concepts
Why Compression

Types of Compression

- lossy compression
 - audio, video, pictures, ...
- lossless compression
 - audio, text, ...

- only interested in lossless compression
- faster data transfer
- cheaper storage costs
- “compress once, decompress often”
Why Compression

Types of Compression

- **lossy compression**
 - audio, video, pictures, ...
- **lossless compression**
 - audio, text, ...

- only interested in lossless compression
- faster data transfer
- cheaper storage costs
- “compress once, decompress often”

Types of Text-Compression

- **entropy coding**
 - compress characters
- **dictionary compression**
 - compress substrings
- ...

This Lecture

- measure compressibility
- different compression algorithms
- both types
- space/time requirements of compression
- make use of known concepts
Why Compression

Types of Compression

- **lossy compression**
 - audio, video, pictures, . . .
- **lossless compression**
 - audio, text, . . .

Additional Information

- only interested in lossless compression
- faster data transfer
- cheaper storage costs
- “compress once, decompress often”

Types of Text-Compression

- **entropy coding** compress characters
- **dictionary compression** compress substrings
 - . . .

This Lecture

- measure compressibility
- different compression algorithms
 - both types
- space/time requirements of compression algorithms
- make use of known concepts
k-th Order Empirical Entropy [KM99] (1/2)

Definition: Histogram

Given a text T of length n over an alphabet of size σ, a histogram $\text{Hist}[1..\sigma]$ is defined as

$$\text{Hist}[i] = |\{j \in [1, n] : T[j] = i\}|$$
Definition: Histogram

Given a text T of length n over an alphabet of size σ, a histogram $Hist[1..\sigma]$ is defined as

$$Hist[i] = |\{j \in [1, n]: T[j] = i\}|$$

Definition: 0-th Order Empirical Entropy

Given a text T of length n over an alphabet $\Sigma = [1, \sigma]$ and its histogram $Hist$, then

$$H_0(T) = \left(1/n\right) \sum_{i=1}^{\sigma} Hist[i] \log(n/\text{Hist}[i])$$
Definition: Histogram

Given a text T of length n over an alphabet of size σ, a histogram $\text{Hist}[1..\sigma]$ is defined as

$$\text{Hist}[i] = |\{j \in [1, n] : T[j] = i\}|$$

Definition: 0-th Order Empirical Entropy

Given a text T of length n over an alphabet $\Sigma = [1, \sigma]$ and its histogram Hist, then

$$H_0(T) = \frac{1}{n} \sum_{i=1}^{\sigma} \text{Hist}[i] \log(n/\text{Hist}[i])$$

Example:

- $T = \text{abbaacaaba}$
- $n = 12$
- $\text{Hist}[a] = 7$
- $\text{Hist}[b] = 3$
- $\text{Hist}[c] = 1$
- $\text{Hist}[$ = 1

$$H_0(T) = \frac{1}{12} (7 \log(12/7) + 3 \log(12/3) + 1 \log(12/1) + 1 \log(12/1)) \approx 1.55$$
k-th Order Empirical Entropy [KM99] (1/2)

Definition: Histogram
Given a text T of length n over an alphabet of size σ, a histogram $Hist[1..\sigma]$ is defined as

$$Hist[i] = |\{j \in [1, n]: T[j] = i\}|$$

Definition: 0-th Order Empirical Entropy
Given a text T of length n over an alphabet $\Sigma = [1, \sigma]$ and its histogram $Hist$, then

$$H_0(T) = (1/n) \sum_{i=1}^{\sigma} Hist[i] \log(n/Hist[i])$$

- $T = abbaacaaba$
- $n = 12$
- $Hist[a] = 7$
- $Hist[b] = 3$
- $Hist[c] = 1$
- $Hist[$ = 1
Definition: Histogram
Given a text T of length n over an alphabet of size σ, a histogram $\text{Hist}[1..\sigma]$ is defined as

$$\text{Hist}[i] = |\{ j \in [1, n] : T[j] = i \}|$$

Definition: 0-th Order Empirical Entropy
Given a text T of length n over an alphabet $\Sigma = [1, \sigma]$ and its histogram Hist, then

$$H_0(T) = (1/n) \sum_{i=1}^{\sigma} \text{Hist}[i] \lg(n/\text{Hist}[i])$$

- $T = \text{abbaacaaba}$
- $n = 12$
- $\text{Hist}[a] = 7$
- $\text{Hist}[b] = 3$
- $\text{Hist}[c] = 1$
- $\text{Hist}[$ = 1
- $H_0(T) = (1/12)(7 \lg(12/7) + 3 \lg(12/3) + 1 \lg(12/1) + 1 \lg(12/1)) \approx 1.55$
Given a text T over an alphabet Σ and a string $S \in \Sigma^k$, T_S the concatenation of all characters that occur in T after S in text order.

- $T = \text{abcdabceabcd}$
- $S = \text{abc}$
- $T_S = \text{ded}$

Definition: k-th Order Empirical Entropy

Given a text T of length n over an alphabet $\Sigma = [1, \sigma]$ and its histogram Hist, then

$$H_k = \frac{1}{n} \sum_{S \in \Sigma^k} |T_S| \cdot H_0(T_S)$$
Example for \(k \)-th Order Empirical Entropy [Kur20]

<table>
<thead>
<tr>
<th>Name</th>
<th>(\sigma)</th>
<th>(n)</th>
<th>(H_0)</th>
<th>(H_1)</th>
<th>(H_2)</th>
<th>(H_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commoncrawl</td>
<td>243</td>
<td>196,885,192,752</td>
<td>6.19</td>
<td>4.49</td>
<td>2.52</td>
<td>2.08</td>
</tr>
<tr>
<td>DNA</td>
<td>4</td>
<td>218,281,833,486</td>
<td>1.99</td>
<td>1.97</td>
<td>1.96</td>
<td>1.95</td>
</tr>
<tr>
<td>Proteins</td>
<td>26</td>
<td>50,143,206,617</td>
<td>4.21</td>
<td>4.20</td>
<td>4.19</td>
<td>4.17</td>
</tr>
<tr>
<td>Wikipedia</td>
<td>213</td>
<td>246,327,201,088</td>
<td>5.38</td>
<td>4.15</td>
<td>3.05</td>
<td>2.33</td>
</tr>
<tr>
<td>SuffixArrayCC</td>
<td>(n)</td>
<td>137,438,953,472</td>
<td>37 (= (\log n))</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RussianWordBased</td>
<td>29,263</td>
<td>9,232,978,762</td>
<td>10.93</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Example for k-th Order Empirical Entropy [Kur20]

<table>
<thead>
<tr>
<th>Name</th>
<th>σ</th>
<th>n</th>
<th>H_0</th>
<th>H_1</th>
<th>H_2</th>
<th>H_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commoncrawl</td>
<td>243</td>
<td>196,885,192,752</td>
<td>6.19</td>
<td>4.49</td>
<td>2.52</td>
<td>2.08</td>
</tr>
<tr>
<td>DNA</td>
<td>4</td>
<td>218,281,833,486</td>
<td>1.99</td>
<td>1.97</td>
<td>1.96</td>
<td>1.95</td>
</tr>
<tr>
<td>Proteins</td>
<td>26</td>
<td>50,143,206,617</td>
<td>4.21</td>
<td>4.20</td>
<td>4.19</td>
<td>4.17</td>
</tr>
<tr>
<td>Wikipedia</td>
<td>213</td>
<td>246,327,201,088</td>
<td>5.38</td>
<td>4.15</td>
<td>3.05</td>
<td>2.33</td>
</tr>
<tr>
<td>SuffixArrayCC</td>
<td>n</td>
<td>137,438,953,472</td>
<td>37 ($= \lg n$)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>RussianWordBased</td>
<td>29</td>
<td>9,232,978,762</td>
<td>10.93</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

- does not measure repetitions well
- there are other measures
Huffman Coding [Huf52]

- Idea is to create a binary tree.
- Each character α is a leaf and has weight $\text{Hist}[\alpha]$.
- Create node for two nodes without parent with smallest weight.
- Give new node total weight of children.
- Repeat until only one node without parent remains.

- Label edges:
 - Left edge: 0
 - Right edge: 1
- Path to children gives code for character.

- Codes are variable length and prefix-free.
- Tree/dictionary needed for decoding.

$T = \text{cbcacaa}$

- $\{a, b, c\} : 7$
- $\{a, b\} : 4$
- $\{a\} : 3$
- $\{b\} : 1$
- $\{c\} : 3$

$T = \text{cbcacaa}$

- $\{a, b, c\} : 7$
- $\{a, b\} : 4$
- $\{a\} : 3$
- $\{b\} : 1$
- $\{c\} : 3$
Huffman Coding [Huf52]

- Idea is to create a binary tree
- Each character α is a leaf and has weight $Hist[\alpha]$
- Create node for two nodes without parent with smallest weight
- Give new node total weight of children
- Repeat until only one node without parent remains

- Label edges:
 - Left edge: 0
 - Right edge: 1
- Path to children gives code for character

- Codes are variable length and prefix-free
- Tree/dictionary needed for decoding

$T = \text{cbcacaa}$
Canonical Huffman Coding

- start with Huffman codes, code word 0, and length 1
- to get canonical code for current length, then add 1 to code word
- to update length add 1 and append required amount of zeros to code word
Canonical Huffman Coding

- Start with Huffman codes, code word 0, and length 1
- To get canonical code for current length, then add 1 to code word
- To update length add 1 and append required amount of zeros to code word

Continue From Last Slide

- Length 1: c
- Length 2: a, b
Canonical Huffman Coding

- start with Huffman codes, code word 0, and length 1
- to get canonical code for current length, then add 1 to code word
- to update length add 1 and append required amount of zeros to code word

Continue From Last Slide

- length 1: c
- length 2: a, b
- start with 0 → code for c
Canonical Huffman Coding

- start with Huffman codes, code word 0, and length 1
- to get canonical code for current length, then add 1 to code word
- to update length add 1 and append required amount of zeros to code word

Continue From Last Slide

- length 1: c
- length 2: a, b
- start with 0 → code for c
- add 1 and append 0
Canonical Huffman Coding

- start with Huffman codes, code word 0, and length 1
- to get canonical code for current length, then add 1 to code word
- to update length add 1 and append required amount of zeros to code word

Continue From Last Slide

- length 1: c
- length 2: a, b
- start with 0 → code for c
- add 1 and append 0
- 10 → code for a
start with Huffman codes, code word 0, and length 1

to get canonical code for current length, then add 1 to code word

to update length add 1 and append required amount of zeros to code word

Continue From Last Slide

- length 1: c
- length 2: a, b
- start with 0 → code for c
- add 1 and append 0
- 10 → code for a
- add 1
Canonical Huffman Coding

- Start with Huffman codes, code word 0, and length 1.
- To get canonical code for current length, add 1 to code word.
- To update length add 1 and append required amount of zeros to code word.

Continue From Last Slide

- Length 1: c
- Length 2: a, b
- Start with 0 → code for c
- Add 1 and append 0
- 10 → code for a
- Add 1
- 11 → code for b
Canonical Huffman Coding

- start with Huffman codes, code word 0, and length 1
- to get canonical code for current length, then add 1 to code word
- to update length add 1 and append required amount of zeros to code word

- all codes of same length are increasing
- required for Huffman-shaped wavelet trees

😊 will be discussed in a later lecture

Continue From Last Slide

- length 1: c
- length 2: a, b
- start with 0 → code for c
- add 1 and append 0
- 10 → code for a
- add 1
- 11 → code for b
Canonical Huffman Coding

- Start with Huffman codes, code word 0, and length 1
- To get canonical code for current length, then add 1 to code word
- To update length add 1 and append required amount of zeros to code word

- All codes of same length are increasing
- Required for Huffman-shaped wavelet trees

- Will be discussed in a later lecture

Continue From Last Slide

- Length 1: c
- Length 2: a, b
- Start with 0 → code for c
- Add 1 and append 0
- 10 → code for a
- Add 1
- 11 → code for b

- Still variable length and prefix-free
- Instead of tree only require lengths’ of codes and corresponding characters
Shannon-Fano Coding [Fan49; Sha48]

- given a text T of length n over an alphabet Σ and its histogram $hist$
- each character $\alpha \in \Sigma$ receives a code of length
 $$\ell_\alpha = \lceil \lg \frac{n}{\text{Hist}[\alpha]} \rceil$$
Shannon-Fano Coding [Fan49; Sha48]

- given a text T of length n over an alphabet Σ and its histogram $hist$
- each character $\alpha \in \Sigma$ receives a code of length $\ell_\alpha = \lceil \lg \frac{n}{Hist[\alpha]} \rceil$

- show that there always exists such a code
- assume a complete binary tree of depth $\ell_{\text{max}} = \max_{\alpha \in \Sigma} \ell_\alpha$ with all free nodes
- left edges labeled 0, right edges labeled 1
- characters ordered by frequency ($\ell_1 \geq \ell_2 \geq \cdots \geq \ell_\sigma$)
- assign characters the leftmost free node
- mark all nodes above and below as non-free (chalkboard-teacher)
Shannon-Fano Coding \([\text{Fan49; Sha48}]\)

- given a text \(T\) of length \(n\) over an alphabet \(\Sigma\) and its histogram \(hist\)
- each character \(\alpha \in \Sigma\) receives a code of length
 \[\ell_\alpha = \lceil \lg \frac{n}{\text{Hist}[\alpha]} \rceil\]
- show that there always exists such a code
- assume a complete binary tree of depth
 \(\ell_{\text{max}} = \max_{\alpha \in \Sigma} \ell_\alpha\) with all free nodes
- left edges labeled 0, right edges labeled 1
- characters ordered by frequency
 \((\ell_1 \geq \ell_2 \geq \cdots \geq \ell_\sigma)\)
- assign characters the leftmost free node
- mark all nodes above and below as non-free

Proof there are enough free nodes (Sketch)

- a code \(\ell_\alpha\) marks \(2^{\ell_{\text{max}} - \ell_\alpha}\) nodes
- total number of marked leafs is
 \[
 \sum_{\alpha \in \Sigma} 2^{\ell_{\text{max}} - \ell_\alpha} = 2^{\ell_{\text{max}}} \sum_{\alpha \in \Sigma} 2^{-\ell_\alpha}
 \leq 2^{\ell_{\text{max}}} \sum_{\alpha \in \Sigma} 2^{-\lceil \lg \frac{n}{\text{Hist}[\alpha]} \rceil}
 \leq 2^{\ell_{\text{max}}} \sum_{\alpha \in \Sigma} \frac{\text{Hist}[\alpha]}{n}
 = 2^{\ell_{\text{max}}}
 \]
Optimality of Both

- H_0 gives average number of bits needed to encode character
- $nH_0(T)$ is lower bound for compression without context
Optimality of Both

- H_0 gives average number of bits needed to encode character
- $nH_0(T)$ is lower bound for compression without context
- one can show that no fixed-letter code can be better than Huffman
- Shannon-Fano codes can be slightly longer than Huffman
- even Shannon-Fano achieves H_0-compression
Optimality of Both

- H_0 gives average number of bits needed to encode character
- $nH_0(T)$ is lower bound for compression without context
- One can show that no fixed-letter code can be better than Huffman
- Shannon-Fano codes can be slightly longer than Huffman
- Even Shannon-Fano achieves H_0-compression

Proof

- Let T be a text of length n over an alphabet Σ with histogram $Hist$
- Let T_{SF} be the Shannon-Fano encoded text
- Average length of encoded character is

\[
\frac{1}{n} |T_{SF}| = \frac{1}{n} \sum_{\alpha \in \Sigma} Hist[\alpha] \left\lceil \log_2 \frac{n}{Hist[\alpha]} \right\rceil \\
\leq \sum_{\alpha \in \Sigma} \frac{Hist[\alpha]}{n} \left(\log_2 \frac{n}{Hist[\alpha]} + 1 \right) \\
= \sum_{\alpha \in \Sigma} \frac{Hist[\alpha]}{n} \log_2 \frac{n}{Hist[\alpha]} + \sum_{\alpha \in \Sigma} \frac{Hist[\alpha]}{n} \\
= H_0(T) + 1
\]
does not work well with repetitions
- better encode $605 \times a$
Lempel-Ziv 77 \([\text{ZL77}]\)

Definition: LZ77 Factorization

Given a text \(T\) of length \(n\) over an alphabet \(\Sigma\), the **LZ77 factorization** is

- a set of \(z\) factors \(f_1, f_2, \ldots, f_z \in \Sigma^+\), such that
- \(T = f_1 f_2 \ldots f_z\) and for all \(i \in [1, z]\)
- \(f_i\) is a single character not occurring in \(f_1 \ldots f_{i-1}\) or
- the longest substring that occurs at least twice in \(f_1 \ldots f_i\)
Lempel-Ziv 77 [ZL77]

Definition: LZ77 Factorization

Given a text T of length n over an alphabet Σ, the **LZ77 factorization** is

- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1 f_2 \ldots f_z$ and for all $i \in [1,z]$
- f_i is a single character not occurring in $f_1 \ldots f_{i-1}$
- or
- the longest substring that occurs at least twice in $f_1 \ldots f_i$

$T = \text{abababbbaba}$

$T = \text{aaa} \ldots \text{aa}$ $n-1$ times

$T = \text{aaa} \ldots \text{aa}$ $n-2$ times

$T = \text{}$
Definition: LZ77 Factorization

Given a text T of length n over an alphabet Σ, the LZ77 factorization is

- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1 f_2 \ldots f_z$ and for all $i \in [1, z]$
- f_i is a single character not occurring in $f_1 \ldots f_{i-1}$ or
- the longest substring that occurs at least twice in $f_1 \ldots f_i$
Lempel-Ziv 77 [ZL77]

Definition: LZ77 Factorization

Given a text T of length n over an alphabet Σ, the **LZ77 factorization** is

- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1 f_2 \ldots f_z$ and for all $i \in [1, z]$
- f_i is a single character not occurring in $f_1 \ldots f_{i-1}$ or
- the longest substring that occurs at least twice in $f_1 \ldots f_i$

$$T = \text{abababbbbbaba}$$

- $f_1 = \text{a}$
- $f_2 = \text{b}$
Lempel-Ziv 77 [ZL77]

Definition: LZ77 Factorization
Given a text T of length n over an alphabet Σ, the LZ77 factorization is

- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1 f_2 \ldots f_z$ and for all $i \in [1, z]$
- f_i is a single character not occurring in $f_1 \ldots f_{i-1}$ or
- the longest substring that occurs at least twice in $f_1 \ldots f_i$

$T = \text{abababbbaba}$

- $f_1 = a$
- $f_2 = b$
- $f_3 = \text{abab}$
Definition: LZ77 Factorization

Given a text T of length n over an alphabet Σ, the LZ77 factorization is

- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1 f_2 \ldots f_z$ and for all $i \in [1, z]$,
- f_i is a single character not occurring in $f_1 \ldots f_{i-1}$ or
- the longest substring that occurs at least twice in $f_1 \ldots f_i$.

Example:

$T = \text{abababbbabab}\$

- $f_1 = a$
- $f_2 = b$
- $f_3 = \text{abab}$
- $f_4 = \text{bbb}$

$Lempel-Ziv 77 [ZL77]$
Definition: LZ77 Factorization

Given a text T of length n over an alphabet Σ, the **LZ77 factorization** is

- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1 f_2 \ldots f_z$ and for all $i \in [1, z]$;
- f_i is a single character not occurring in $f_1 \ldots f_{i-1}$ or
- the longest substring that occurs at least twice in $f_1 \ldots f_i$

Example:

$T = \text{abababbbaba}$

- $f_1 = a$
- $f_2 = b$
- $f_3 = \text{abab}$
- $f_4 = \text{bbb}$
- $f_5 = \text{aba}$
Lempel-Ziv 77 [ZL77]

Definition: LZ77 Factorization

Given a text T of length n over an alphabet Σ, the \textbf{LZ77 factorization} is

- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1 f_2 \ldots f_z$ and for all $i \in [1, z]$
- f_i is a single character not occurring in $f_1 \ldots f_{i-1}$ or
- the longest substring that occurs at least twice in $f_1 \ldots f_i$

$T = \text{abababbbababa}$

- $f_1 = a$
- $f_2 = b$
- $f_3 = \text{abab}$
- $f_4 = \text{bbb}$
- $f_5 = \text{aba}$
- $f_6 = \$
Definition: LZ77 Factorization

Given a text T of length n over an alphabet Σ, the LZ77 factorization is

- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that $T = f_1 f_2 \ldots f_z$ and for all $i \in [1, z]$ f_i is a single character not occurring in $f_1 \ldots f_{i-1}$ or
- the longest substring that occurs at least twice in $f_1 \ldots f_i$

$Lempel-Ziv 77 \,[ZL77]$
Representation of Factors

- Factors can be represented as tuple
 \((\ell_i, p_i)\)

- \(\ell_i = 0\)
 - Factor is a single character
 - Encode character in \(p_i\)

- \(\ell_i > 0\)
 - Factor is a length-\(\ell_i\) substring
 - \(f_i = T[p_i..p_i + \ell_i]\)
Representation of Factors

- factors can be represented as tuple (ℓ_i, p_i)

- $\ell_i = 0$
 - factor is a single character
 - encode character in p_i

- $\ell_i > 0$
 - factor is a length-ℓ_i substring
 - $f_i = T[p_i..p_i+\ell_i)$

$T = \text{abababbbaba}\$

- $f_1 = \text{a}$
- $f_2 = \text{b}$
- $f_3 = \text{abab}$
- $f_4 = \text{bbb}$
- $f_5 = \text{aba}$
- $f_6 = \$$
Representation of Factors

- Factors can be represented as tuple (ℓ_i, p_i)

- $\ell_i = 0$
 - Factor is a single character
 - Encode character in p_i

- $\ell_i > 0$
 - Factor is a length-ℓ_i substring
 - $f_i = T[p_i..p_i + \ell_i]$

- $T = \text{abababbbababa}$
 - $f_1 = a = (0, a)$
 - $f_2 = b = (0, b)$
 - $f_3 = \text{abab} = (4, 1)$
 - $f_4 = \text{bbb} = (3, 6)$
 - $f_5 = \text{aba} = (3, 1) = (3, 3)$
 - $f_6 = \$ = (0, \$)
Representation of Factors

- Factors can be represented as tuple (ℓ_i, p_i).
- $\ell_i = 0$
 - Factor is a single character.
 - Encode character in p_i.
- $\ell_i > 0$
 - Factor is a length-ℓ_i substring.
 - $f_i = T[p_i..p_i + \ell_i]$

$T = \text{ababbbbbaba}$

- $f_1 = a = (0, a)$
- $f_2 = b = (0, b)$
- $f_3 = \text{abab} = (4, 1)$
- $f_4 = \text{bbb} = (3, 6)$
- $f_5 = \text{aba} = (3, 1) = (3, 3)$
- $f_6 = \$ = (0, \$)$
Representation of Factors

- factors can be represented as tuple
 \((\ell_i, p_i)\)
- \(\ell_i = 0\)
 - factor is a single character
 - encode character in \(p_i\)
- \(\ell_i > 0\)
 - factor is a length-\(\ell_i\) substring
 - \(f_i = T[p_i..p_i + \ell_i]\)

\[T = \text{abababbbababa}$\]

- \(f_1 = a = (0, a)\)
- \(f_2 = b = (0, b)\)
- \(f_3 = abab = (4, 1)\)
- \(f_4 = bbb = (3, 6)\)
- \(f_5 = aba = (3, 1) = (3, 3)\)
- \(f_6 = \$ = (0, \$)\)

- finding the right-most reference is hard
Definition: Previous and Next Smaller Value Arrays

Let $A[1..n]$ be an integer array, then

- $PSV[i] = \max\{j \in [1, i) : A[j] < A[i]\}$
- $NSV[i] = \min\{j \in (i, n] : A[j] < A[i]\}$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$$$</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>PSV</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>NSV</td>
<td>2</td>
<td>3</td>
<td>∞</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>∞</td>
<td>10</td>
<td>11</td>
<td>∞</td>
<td>13</td>
<td>∞</td>
</tr>
<tr>
<td>LCP</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
Definition: Previous and Next Smaller Value Arrays

Let $A[1..n]$ be an integer array, then

- $PSV[i] = \max\{j \in [1, i) : A[j] < A[i]\}$
- $NSV[i] = \min\{j \in (i, n] : A[j] < A[i]\}$

In the Context of SA

- close to the suffix in SA
- longest possible common prefix
- before the suffix in text order

<table>
<thead>
<tr>
<th>T</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>a</th>
<th>b</th>
<th>a</th>
<th>$$$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>PSV</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>NSV</td>
<td>2</td>
<td>3</td>
<td>∞</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>∞</td>
<td>10</td>
<td>11</td>
<td>∞</td>
<td>13</td>
</tr>
<tr>
<td>LCP</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>
both arrays can be computed in linear time

- consider the PSV array
 - NSV works analogously
- prepend $-\infty$ at index 0

Function ComputePSV(SA with $-\infty$):

1. for $i = 1, \ldots, n$ do
2. $j = i - 1$
3. while $j \geq 1$ and $SA[i] < SA[j]$ do
4. $j = PSV[j]$
5. $PSV[i] = j$
6. return PSV
both arrays can be computed in linear time
consider the PSV array
NSV works analogously
prepend $-\infty$ at index 0

Function ComputePSV(SA with $-\infty$):

1. for $i = 1, \ldots, n$ do
2. \hspace{1em} $j = i - 1$
3. \hspace{1em} while $j \geq 1$ and $SA[i] < SA[j]$ do
4. \hspace{2em} $j = PSV[j]$
5. \hspace{1em} $PSV[i] = j$
6. return PSV

follow already computed values
nothing in between can be PSV
compare each element at most twice
compute PSV and NSV in $O(n)$ time
element on the board
Recap: Range Minimum Queries

- for a range $[\ell..r]$, return the position of the smallest entry in an array in that range
- query time: $O(1)$ using $O(n)$ space
- can be used to compute the lcp-value of any two suffixes using the LCP-array

- use all arrays to find lexicographically closest suffixes
- that occur before current suffix in text order

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$$$</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>PSV</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>3</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>NSV</td>
<td>2</td>
<td>3</td>
<td>∞</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>8</td>
<td>∞</td>
<td>10</td>
<td>11</td>
<td>∞</td>
<td>13</td>
<td>∞</td>
</tr>
<tr>
<td>LCP</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>
Function $LZ77(SA, ISA, LCP, RMQ, PSV, NSV)$:

1. $pos = 1$
2. while $pos \leq n$ do
3. $psv = SA[PSV[ISA[pos]]]$
4. $nsv = SA[NSV[ISA[pos]]]$
5. if $lcp(pos, psv + 1) > lcp(pos + 1, nsv)$ then
6. $\ell = lcp(pos, psv + 1)$ and $p = psv$
7. else
8. $\ell = lcp(pos + 1, nsv)$ and $p = nsv$
9. if $\ell = 0$ then $p = pos$
10. new factor (ℓ, p)
11. $pos = pos + \max\{\ell, 1\}$
Lemma: LZ77 Running Time

The LZ77 factorization of a text of length n can be computed in $O(n)$ time

Proof (Sketch)

- $SA, LCP, PSV, NSV, RMQ_{LCP}$ can be computed in $O(n)$ time
- for each text position only $O(1)$ time
Definition: LZ78 Factorization

Given a text T of length n over an alphabet Σ, the **LZ78 factorization** is:

- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1 f_2 \ldots f_z$, $f_0 = \epsilon$ and for all $i \in [1, z]$
- if $f_1 \ldots f_{i-1} = T[1..j - 1]$, then f_i is the longest prefix of $T[j..n]$, such that

$$\exists k \in [0, i), \alpha \in \Sigma \cup \{\$\} : f_k = f_i \alpha$$
Definition: LZ78 Factorization

Given a text T of length n over an alphabet Σ, the **LZ78 factorization** is

- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1f_2\ldots f_z$, $f_0 = \epsilon$ and for all $i \in [1, z]$
- if $f_1 \ldots f_{i-1} = T[1..j - 1]$, then f_i is the longest prefix of $T[j..n]$, such that

$$\exists k \in [0, i), \alpha \in \Sigma \cup \{\$\}: f_k = f_i\alpha$$

$L = abababbbaba$
Definition: LZ78 Factorization

Given a text T of length n over an alphabet Σ, the **LZ78 factorization** is

- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1 f_2 \ldots f_z$, $f_0 = \epsilon$ and for all $i \in [1, z]$
- if $f_1 \ldots f_{i-1} = T[1..j - 1]$, then f_i is the longest prefix of $T[j..n]$, such that

$$\exists k \in [0, i), \alpha \in \Sigma \cup \{\$\}: f_k = f_i \alpha$$

$Lempel-Ziv$ 78 $[ZL78]$

$T = abababbbaba$

- $f_1 = a$
Definition: LZ78 Factorization

Given a text T of length n over an alphabet Σ, the **LZ78 factorization** is

- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1 f_2 \ldots f_z$, $f_0 = \epsilon$ and for all $i \in [1, z]$,
- if $f_1 \ldots f_{i-1} = T[1..j - 1]$, then f_i is the longest prefix of $T[j..n]$, such that

$$\exists k \in [0, i), \alpha \in \Sigma \cup \{\$\} : f_k = f_i \alpha$$

Example

$T = \text{abababbbaba}$

- $f_1 = a$
- $f_2 = b$
Lempel-Ziv 78 [ZL78]

Definition: LZ78 Factorization

Given a text T of length n over an alphabet Σ, the LZ78 factorization is

- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1 f_2 \ldots f_z$, $f_0 = \epsilon$ and for all $i \in [1, z]$ if $f_1 \ldots f_{i-1} = T[1..j - 1]$, then f_i is the longest prefix of $T[j..n]$, such that

$$\exists k \in [0, i), \alpha \in \Sigma \cup \{$$: f_k = f_i\alpha$$

$T = \text{abababbbababa}$

- $f_1 = a$
- $f_2 = b$
- $f_3 = ab$
Definition: LZ78 Factorization

Given a text T of length n over an alphabet Σ, the **LZ78 factorization** is

- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1 f_2 \ldots f_z$, $f_0 = \epsilon$ and for all $i \in [1, z]$
- if $f_1 \ldots f_{i-1} = T[1..j - 1]$, then f_i is the longest prefix of $T[j..n]$, such that

$$\exists k \in [0, i), \alpha \in \Sigma \cup \{\$\} : f_k = f_i \alpha$$

Example:

$T = \text{abababbbaba}$

- $f_1 = a$
- $f_2 = b$
- $f_3 = ab$
- $f_4 = abb$
Definition: LZ78 Factorization

Given a text T of length n over an alphabet Σ, the LZ78 factorization is

- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1 f_2 \ldots f_z$, $f_0 = \epsilon$ and for all $i \in [1, z]$
- if $f_1 \ldots f_{i-1} = T[1..j - 1]$, then f_i is the longest prefix of $T[j..n]$, such that

$$\exists k \in [0, i), \alpha \in \Sigma \cup \{\}$, such that $f_k = f_i \alpha$$

$T = abababbbababa$

- $f_1 = a$
- $f_2 = b$
- $f_3 = ab$
- $f_4 = abb$
- $f_5 = bb$
Definition: LZ78 Factorization

Given a text \(T \) of length \(n \) over an alphabet \(\Sigma \), the **LZ78 factorization** is

- a set of \(z \) factors \(f_1, f_2, \ldots, f_z \in \Sigma^+ \), such that
- \(T = f_1 f_2 \ldots f_z \), \(f_0 = \epsilon \) and for all \(i \in [1, z] \)
- if \(f_1 \ldots f_{i-1} = T[1..j-1] \), then \(f_i \) is the longest prefix of \(T[j..n] \), such that

\[
\exists k \in [0, i), \alpha \in \Sigma \cup \{\$\} : f_k = f_i \alpha
\]

Example:

\(T = \text{abababbba}\)aba$\$

- \(f_1 = a \)
- \(f_2 = b \)
- \(f_3 = ab \)
- \(f_4 = abb \)
- \(f_5 = bb \)
- \(f_6 = aba \)
Lempel-Ziv 78 [ZL78]

Definition: LZ78 Factorization

Given a text T of length n over an alphabet Σ, the **LZ78 factorization** is

- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1 f_2 \ldots f_z$, $f_0 = \epsilon$ and for all $i \in [1, z]$
- if $f_1 \ldots f_{i-1} = T[1..j-1]$, then f_i is the longest prefix of $T[j..n]$, such that

$$\exists k \in [0, i), \alpha \in \Sigma \cup \{$$: f_k = f_i \alpha$$

$$T = \text{abababbbababa}$

- $f_1 = a$
- $f_2 = b$
- $f_3 = ab$
- $f_4 = abb$
- $f_5 = bb$
- $f_6 = aba$
- $f_7 = $
Lempel-Ziv 78 [ZL78]

Definition: LZ78 Factorization

Given a text T of length n over an alphabet Σ, the **LZ78 factorization** is

- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1 f_2 \ldots f_z$, $f_0 = \epsilon$ and for all $i \in [1, z]$
- if $f_1 \ldots f_i-1 = T[1..j - 1]$, then f_i is the longest prefix of $T[j..n]$, such that

\[
\exists k \in [0, i), \alpha \in \Sigma \cup \{$: f_k = f_i\alpha
\]

\[
T = \text{abababbba}ba$
\]

- $f_1 = a$
- $f_2 = b$
- $f_3 = ab$
- $f_4 = abb$
- $f_5 = bb$
- $f_6 = aba$
- $f_7 = \$$

\[
T = \text{abababbba}ba$
\]
LZ78 Factorization using a Dynamic Trie

- use dynamic trie to hold computed factors
- our fastest easy to use dynamic trie is?
LZ78 Factorization using a Dynamic Trie

- use dynamic trie to hold computed factors
- our fastest easy to use dynamic trie is?
- using arrays of fixed size
LZ78 Factorization using a Dynamic Trie

- use dynamic trie to hold computed factors
- our fastest easy to use dynamic trie is?
- using arrays of fixed size

$$T = \text{abababbababa}$$.

- $f_1 = a$
- $f_2 = b$
- $f_3 = ab$
- $f_4 = abb$
- $f_5 = bb$
- $f_6 = aba$
- $f_7 = $
Lemma:
The LZ78 factorization of a text of length n can be computed in $O(n)$ time
Lemma:
The LZ78 factorization of a text of length n can be computed in $O(n)$ time

Proof (Sketch)
- search each character of the text at most once (in the trie)
- insert each character of the text at most once (in the trie)
memory usage of the LZ78 factorization very high. Using arrays of fixed size does not help.

- Consider only a sliding window of the text.
- Only factors in the window are found.
- Space/compression rate trade-off.
- Used in practice.
Conclusion and Outlook

This Lecture
- different compression methods for texts
- entropy coding
- dictionary compression

Linear Time Construction

Diagram:

- ST
- SA
- LZ
- LCP

LZ77 and LZ78 have been generalized, improved, and combined. The next lecture will discuss easy to compress index structures.
Conclusion and Outlook

This Lecture
- different compression methods for texts
- entropy coding
- dictionary compression

- LZ77 and LZ78 have been generalize, improved, and combined: a lot!
- LZ77
 - LZSS, LZB, LZR, LZH, . . .
- LZ78
 - LZC, LZY, LZW, LZFG, LZMW, LZJ, . . .

Linear Time Construction

ST -- SA
 LZ
 LCP
Conclusion and Outlook

This Lecture

- different compression methods for texts
- entropy coding
- dictionary compression

- LZ77 and LZ78 have been generalize, improved, and combined: a lot!
- LZ77
 - LZSS, LZB, LZR, LZH, ...
- LZ78
 - LZC, LZY, LZW, LZFG, LZW, LZJ, ...

Linear Time Construction

Next Lecture

- easy to compress index
One More Thing: 1/3-Evaluation

- finished $\approx 1/3$ of lectures
- short feedback round
- self evaluation
- what did you like
- what can be improved
- what is missing
Bibliography I

Bibliography II

