Advanced Data Structures

Lecture 04: Succinct Planar Graphs and Range Min-Max Trees

Florian Kurpicz
Recap: Succinct (Dynamic) Graphs

- dynamic bit vector
- dynamic succinct trees
- which was the easiest representation for dynamic trees

Advanced Data Structures

static/dynamic BV

static/dynamic succinct trees
Today’s Plan

- preliminaries planar graph
- succinct planar graph representation
- range min-max trees
- project
Planar Graphs (1/2)

Definition: Planar Graph

A graph $G = (V, E)$ is planar, if it
- can be drawn on the plane such that
- no edges cross each other

- drawing (planar) embedding of the graph
- not unique

a graph is planar if it has no minor \Box
- $K_{3,3}$
- K_5
embedding is defined by order of neighbors
this defines faces
must specify outer face

Now Consider Only
connected planar graphs with embedding,
multi-edges, and
self-loops appear twice in list of edges
Definition: Dual Graph

Given an embedding of a planar graph G, the dual graph G^* of G has:

- one node for each face of G and
- one edge e' for each edge e in G such that e' crosses e and is incident to the faces separated by e

- dual graph is unique for the embedding
- dual graph is planar
Spanning Trees

Definition: Spanning Tree

Given a connected graph $G = (V, E)$, a spanning tree is a tree $T = (V, E')$ with $E' \subseteq E$.

- consider spanning tree of planar graph and
- its dual graph
- trees can be represented succinctly
Recap: Balanced Parentheses

Definition: BP
Starting at the root, traverse the tree in depth-first order and append a

- left parenthesis if a node is visited the first time
- right parenthesis if a node is visited the last time to the bit vector

```
ab cd ef g h ij k
(()(()(()()))()(()()))
```

- \(\text{excess}(i) = \text{rank}^{"("}(i) - \text{rank}^{")"}(i)\)
- \(\text{fwd_search}(i, d) = \min\{j > i : \text{excess}(j) - \text{excess}(i - 1) = d\}\)
- \(\text{bwd_search}(i, d) = \max\{j < i : \text{excess}(i) - \text{excess}(j - 1) = d\}\)
- \(\text{findclose}(i) = \text{fwd_search}(i, 0)\)
- \(\text{findopen}(i) = \text{bwd_search}(i, 0)\)
- \(\text{enclose}(i) = \text{bwd_search}(i, 2)\)
Succinct Planar Graph: General Idea [Fer+20; Tur84]

- given connected planar graph G and its dual G^*
- let T be spanning tree of G
- construct complementary spanning tree T^* of G^* using only edges not crossing edges in T
- edges are stored in adjacency lists
Succinct Planar Graph: General Idea \cite{Fer+20, Tur84}

- given connected planar graph G and its dual G^*
- let T be spanning tree of G
- construct complementary spanning tree T^* of G^* using only edges not crossing edges in T

- edges are stored in adjacency lists

Definition: Incidence

Given a face f and a vertex v, an incidence of f in v is a pair of edges e, e', such that v is part of f and e, e' are incident of f and consecutive in the adjacency list of v
Lemma: Graph-Tree-Traversal

Given an embedding of G, a spanning tree T of G, and its complementary spanning tree T^* of the dual of G. When

- traversing T depth-first, starting at any node on the outer face
- processing edges in counter-clockwise order
- (for the root choose an arbitrary incidence of the outer face),

each edge not in T corresponds to the next edge visited in a depth-first traversal of T^*
Proof Graph-Tree-Traversals

- proof by induction
- correct in the beginning
- processed i edges, $(i + 1)$-th edge is (v, w)
- if (v, w) is in T, nothing changes
- example on the board
Traversal of the Graph gives Traversal of Trees (2/2)

Proof Graph-Tree-Traversal
- proof by induction
- correct in the beginning
- processed \(i\) edges, \((i + 1)\)-th edge is \((v, w)\)
- if \((v, w)\) is in \(T\), nothing changes
- example on the board

Proof Graph-Tree-Traversal
- proof by induction
- correct in the beginning
- processed \(i\) edges, \((i + 1)\)-th edge is \((v, w)\)
- if \((v, w)\) is in not \(T\), then
- visit new edge in \(T'\)
- due to counter-clockwise visiting of nodes in \(G\), going deeper in \(T^*\)
- example on the board
Succinct Planar Graph Representation

Succinct Graphs ($n = |V|$ and $m = |E|$)
- bit vector $A[0..2m)$ with $A[i] = 1 \iff$ the i-th edge processed is in T

\[
A = 0110110101110010110100010100
\]
\[
B = (())(())(())
\]
\[
B^* = ()(()(()))()()
\]
Succinct Planar Graph Representation

Succinct Graphs \((n = |V| \text{ and } m = |E|)\)

- Bit vector \(A[0..2m]\) with \(A[i] = 1 \iff \text{the } i\text{-th edge processed is in } T\)

- \(A = 01101101011100101100010100\)

A = 01101101011100101100010100

B = (()())(())()

\(B^* = ()(()(()))()()\)
Succinct Graphs \((n = |V| \text{ and } m = |E|)\)

- bit vector \(A[0..2m] \text{ with } A[i] = 1 \iff \text{the } i\text{-th edge processed is in } T\)
- bit vector \(B[0..2(n - 1)] \text{ with } B[i] = "(" \iff \text{i-th time an edge in } T \text{ is processed is the first time that edge is processed}

- \(A = 01101101011100101100010100\)

Succinct Planar Graph Representation
Succinct Planar Graph Representation

Succinct Graphs \((n = |V|\) and \(m = |E|\))

- bit vector \(A[0..2m]\) with \(A[i] = 1 \iff \) the \(i\)-th edge processed is in \(T\)
- bit vector \(B[0..2(n - 1)]\) with \(B[i] = "(" \iff \(i\)-th time an edge in \(T\) is processed is the first time that edge is processed

- \(A = 01101101011100101100010100\)
- \(B = (())(())(())(())(())(())(())(())(())(())(())(())\)
Succinct Planar Graph Representation

Succinct Graphs \((n = |V| \text{ and } m = |E|) \)

- bit vector \(A[0..2m] \) with \(A[i] = 1 \) \iff \(i \)-th edge processed is in \(T \)
- bit vector \(B[0..2(n - 1)] \) with \(B[i] = \) "(" \iff \(i \)-th time an edge in \(T \) is processed is the first time that edge is processed
- bit vector \(B^*[0..2(m - n + 1)] \) with \(B^*[i] = \) "(" \iff \(i \)-th time an edge not in \(T \) is processed is the first time that edge is processed

\[
A = 01101101011100101100010100 \\
B = (())(())(())()()
\]
Succinct Planar Graph Representation

Succinct Graphs \((n = |V| \text{ and } m = |E|)\)

- bit vector \(A[0..2m)\) with \(A[i] = 1 \iff \text{the } i\text{-th edge processed is in } T\)
- bit vector \(B[0..2(n - 1))\) with \(B[i] = "(\) \iff \text{the } i\text{-th time an edge in } T \text{ is processed is the first time that edge is processed}\)
- bit vector \(B^*[0..2(m - n + 1))\) with \(B^*[i] = "(\) \iff \text{the } i\text{-th time an edge not in } T \text{ is processed is the first time that edge is processed}\)

- \(A = 0110110101110010100010100\)
- \(B = (())(())(())(())(())\)
- \(B^* = (())(())(())(())(())(())\)
Simple Planar Succinct Graph Operations (1/2)

- $first(v)$ return i such that the first edge processed when visiting v is processed i-th during traversal
- $next(i)$ return j such that next edge that is processed when visiting v by i-th edge is processed j-th during traversal
- $mate(i)$ return j such that edge is processed i-th and j-th during traversal
- $vertex(i)$ return node v that is visited when processing i-th edge during traversal
all operations work in $O(1)$ time
- using rank and select queries on A
- using BP representation of T and T^*
all operations work in $O(1)$ time
- using rank and select queries on A
- using BP representation of T and T^*

$A = 01101101011100101100010100$
$B = (())(())(())(())(())$
$B^* = (())(())(())(())(())$

$\text{first}(0) = 0 \quad \text{mate}(0) = 3 \quad \text{vertex}(3) = 2$
$\text{next}(0) = 1 \quad \text{mate}(1) = 9 \quad \text{vertex}(9) = 1$
$\text{next}(1) = 10 \quad \text{mate}(10) = 16 \quad \text{vertex}(16) = 4$
$\text{next}(10) = 17 \quad \text{mate}(17) = 25 \quad \text{vertex}(25) = 6$

example on the board
Getting the Degree

- while node has \textit{next}
- increase counter and go to \textit{next}
- return counter
Getting the Degree

- while node has next
- increase counter and go to next
- return counter

- running time depends of degree of node
- better running time preferable
Getting the Degree

- while node has next
- increase counter and go to next
- return counter

- running time depends on degree of node
- better running time preferable

- speed up queries using $o(m)$ additional bits
- let $f(m) \in \omega(m)$
- mark in $D[0..m]$ nodes with degree $> f(m)$
 - at most $m/f(m)$ ones (sparse)
- for these nodes store degree unary in $E[0..2m]$
 - also sparse
- compressed sparse bit vectors require $o(m)$ space
Getting the Degree

- while node has \textit{next}
- increase counter and go to \textit{next}
- return counter

- running time depends of degree of node
- better running time preferable

- speed up queries using $o(m)$ additional bits
- let $f(m) \in \omega(m)$
- mark in $D[0..m]$ nodes with degree $> f(m)$
 - at most $m/f(m)$ ones (sparse)
- for these nodes store degree unary in $E[0..2m]$
 - also sparse
- compressed sparse bit vectors require $o(m)$ space

- degree queries require only $O(f(m))$ time
- example on the board 📚
Lemma: Succinct Planar Graphs

Storing an embedding of a connected planar graph with m edges requires $4m + o(m)$ bits and all nodes incident to a node can be iterated over in (counter-)clockwise order in constant time per edge. Finding the degree of a node can be done in $O(f(m))$ time for any function $f(m) \in \omega(1)$.

Conclusion Succinct Planar Graphs
Definition: Range Min-Max Tree

Given a bit vector B of length n and a block size b, store for each consecutive block (from s to e) of BV

- total excess in block:
 $$\text{excess}(e) - \text{excess}(s - 1)$$

- minimum left-to-right excess in block:
 $$\min\{\text{excess}(p) - \text{excess}(s - 1) : p \in [s, e]\}$$

and build a binary tree over these blocks, where each node stores the same total information for blocks in all its leaves.
Definition: Range Min-Max Tree
Given a bit vector B of length n and a block size b, store for each consecutive block (from s to e) of BV
- total excess in block:
 $\text{excess}(e) - \text{excess}(s - 1)$
- minimum left-to-right excess in block:
 $\min\{\text{excess}(p) - \text{excess}(s - 1) : p \in [s, e]\}$
and build a binary tree over these blocks, where each node stores the same total information for blocks in all its leaves

Lemma: Range Min-Max Tree Space
A range min-max tree with block size b for a bit vector of size n requires $n + O((n/b) \log n)$ bits of space
fwdsearch in a Range Min-Max Tree

- scan block
- if not found traverse tree
- identify block in tree
- scan block
fwdsearch in a Range Min-Max Tree

- scan block
- if not found traverse tree
- identify block in tree
- scan block

- process c bits at a time
- first align with next c bits
- requires $O(c + b/c)$ time
fwdsearch in a Range Min-Max Tree

- scan block
- if not found traverse tree
- identify block in tree
- scan block

- process c bits at a time
- first align with next c bits
- requires $O(c + b/c)$ time

- going up and down tree in $O(\log(n/b))$ time
- scanning last block requires $O(c + b/c)$ time
Range Min-Max Trees (2/2)

fwdsearch in a Range Min-Max Tree
- scan block
- if not found traverse tree
- identify block in tree
- scan block

- process c bits at a time
- first align with next c bits
- requires $O(c + b/c)$ time

- going up and down tree in $O(\log(n/b))$ time
- scanning last block requires $O(c + b/c)$ time

- by choosing $b = c \log n$ this requires

 - $O(\log n)$ time and
 - $n + O(n/(c \log n)) = n + o(n)$ bits space
fwdsearch in a Range Min-Max Tree

- scan block
- if not found traverse tree
- identify block in tree
- scan block

- process c bits at a time
- first align with next c bits
- requires $O(c + b/c)$ time

- going up and down tree in $O(\log(n/b))$ time
- scanning last block requires $O(c + b/c)$ time

- by choosing $b = c \log n$ this requires $O(\log n)$ time and

 $n + O(n/(c \log n)) = n + o(n)$ bits space

Improvements

- two level approach
- build range min-max trees for chunks of size $\Theta(\log^3 n)$
- $O(\log \log n)$ query time inside a chunk
- can result in total query time of $O(\log \log n)$
Conclusion and Outlook

This Lecture
- succinct planar graphs
- range min-max trees

Advanced Data Structures
- static/dynamic BV
- static/dynamic succ. trees
- range min-max tree
- succ. graphs

Next Lecture
- predecessor data structures
- introduction to range minimum queries
Conclusion and Outlook

This Lecture
- succinct planar graphs
- range min-max trees

- no live lecture next week
- video only
- will start half an hour earlier on 30.05. for questions

Advanced Data Structures
- static/dynamic BV
- static/dynamic succ. trees
- range min-max tree
- succ. graphs
Conclusion and Outlook

This Lecture
- succinct planar graphs
- range min-max trees

- no live lecture next week
- video only
- will start half an hour earlier on 30.05. for questions

Next Lecture
- predecessor data structures
- introduction to range minimum queries

Advanced Data Structures

- static/dynamic BV
- static/dynamic succ. trees
- range min-max tree
- succ. graphs
Project

- detailed information on the homepage
- implement dynamic bit vectors and BP
- deadline: 15.07.2022
- present results in 5 minutes on 25.07.2022
Bibliography I
