Advanced Data Structures

Lecture 06: Suffix Arrays and String B-Trees

Florian Kurpicz
External Memory Model [AV88]

Definition: External Memory Model

- internal memory of M words
- instances of size $N \gg M$
- unlimited external memory
- transfer blocks of size B between memories

- measure number of blocks I/Os
- scanning N elements: $\Theta(N/B)$
- sorting N elements: $\Theta\left(\frac{N}{B} \log_{\frac{M}{B}} \frac{N}{B}\right)$
External Memory Model \[AV88\]

Definition: External Memory Model
- internal memory of \(M \) words
- instances of size \(N \gg M \)
- unlimited external memory
- transfer blocks of size \(B \) between memories
- measure number of blocks I/Os
- scanning \(N \) elements: \(\Theta(N/B) \)
- sorting \(N \) elements: \(\Theta(\frac{N}{B} \log_{\frac{M}{B}} N) \)

Set of Strings
- alphabet \(\Sigma \) of size \(\sigma \)
- \(k \) strings \(\{s_1, \ldots, s_k\} \) over the alphabet \(\Sigma \)
- total size of strings is \(N = \sum_{i=1}^{k} |s_i| \)
- queries ask for pattern \(P \) of length \(m \)
Given a set $S \subseteq \Sigma^*$ of prefix-free strings, we want to answer:
- is $x \in \Sigma^*$ in S
- add $x \notin S$ to S
- remove $x \in S$ from S
- predecessor and successor of $x \in \Sigma^*$ in S
Given a set $S \subseteq \Sigma^*$ of prefix-free strings, we want to answer:

- is $x \in \Sigma^*$ in S
- add $x \notin S$ to S
- remove $x \in S$ from S
- predecessor and successor of $x \in \Sigma^*$ in S

Definition: Trie

Given a set $S = \{S_1, \ldots, S_k\}$ of prefix-free strings, a trie is a labeled rooted tree $G = (V, E)$ with:

1. k leaves
2. $\forall S_i \in S$ there is a path from the root to a leaf, such that the concatenation of the labels is S_i
3. $\forall v \in V$ the labels of the edges (v, \cdot) are unique
Given a set $S \subseteq \Sigma^*$ of prefix-free strings, we want to answer:
- is $x \in \Sigma^*$ in S
- add $x \notin S$ to S
- remove $x \in S$ from S
- predecessor and successor of $x \in \Sigma^*$ in S

Definition: Trie
Given a set $S = \{S_1, \ldots, S_k\}$ of prefix-free strings, a trie is a labeled rooted tree $G = (V, E)$ with:

1. k leaves
2. $\forall S_i \in S$ there is a path from the root to a leaf, such that the concatenation of the labels is S_i
3. $\forall v \in V$ the labels of the edges (v, \cdot) are unique

$S = \{\text{bear, bee, cab, car}\}$
Theoretical Comparison

<table>
<thead>
<tr>
<th>Representation</th>
<th>Query Time (Contains)</th>
<th>Space in Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>arrays of variable size</td>
<td>$O(m \cdot \sigma)$</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>arrays of fixed size</td>
<td>$O(m)$</td>
<td>$O(N \cdot \sigma)$</td>
</tr>
<tr>
<td>hash tables</td>
<td>$O(m)$ w.h.p.</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>balanced search trees</td>
<td>$O(m \cdot \lg \sigma)$</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>weight-balanced search trees</td>
<td>$O(m + \lg k)$</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>two-levels with weight-balanced search trees</td>
<td>$O(m + \lg \sigma)$</td>
<td>$O(N)$</td>
</tr>
</tbody>
</table>
Theoretical Comparison

<table>
<thead>
<tr>
<th>Representation</th>
<th>Query Time (Contains)</th>
<th>Space in Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>arrays of variable size</td>
<td>$O(m \cdot \sigma)$</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>arrays of fixed size</td>
<td>$O(m)$</td>
<td>$O(N \cdot \sigma)$</td>
</tr>
<tr>
<td>hash tables</td>
<td>$O(m)$ w.h.p.</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>balanced search trees</td>
<td>$O(m \cdot \lg \sigma)$</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>weight-balanced search trees</td>
<td>$O(m + \lg k)$</td>
<td>$O(N)$</td>
</tr>
<tr>
<td>two-levels with weight-balanced search trees</td>
<td>$O(m + \lg \sigma)$</td>
<td>$O(N)$</td>
</tr>
</tbody>
</table>

- more details in lecture Text Indexing
Compact Trie

- Tries have unnecessary nodes
- Branchless paths can be removed
- Edge labels can consist of multiple characters
Compact Trie

- tries have unnecessary nodes
- branchless paths can be removed
- edge labels can consist of multiple characters

Definition: Compact Trie

- A compact trie is a trie where all branchless paths are replaced by a single edge.
- The label of the new edge is the concatenation of the replaced edges’ labels.
Compact Trie

- tries have unnecessary nodes
- branchless paths can be removed
- edge labels can consist of multiple characters

Definition: Compact Trie

- A compact trie is a trie where all branchless paths are replaced by a single edge.
- The label of the new edge is the concatenation of the replaced edges’ labels.
Suffix Array and LCP-Array

Definition: Suffix Array [GBS92; MM93]

Given a text T of length n, the **suffix array** (SA) is a permutation of $[1..n]$, such that for $i \leq j \in [1..n]$

$$T[SA[i]..n] \leq T[SA[j]..n]$$
Suffix Array and LCP-Array

Definition: Suffix Array [GBS92; MM93]

Given a text T of length n, the **suffix array** (SA) is a permutation of $[1..n]$, such that for $i \leq j \in [1..n]$

$$T[SA[i]..n] \leq T[SA[j]..n]$$

Definition: Longest Common Prefix Array

Given a text T of length n and its SA, the **LCP-array** is defined as

$$LCP[i] = \begin{cases} 0 & i = 1 \\ \max\{\ell : T[SA[i]..SA[i] + \ell) = T[SA[i - 1]..SA[i - 1] + \ell)\} & i \neq 1 \end{cases}$$
Suffix Array and LCP-Array

Definition: Suffix Array [GBS92; MM93]
Given a text T of length n, the suffix array (SA) is a permutation of $[1..n]$, such that for $i \leq j \in [1..n]$

$$T[SA[i]..n] \leq T[SA[j]..n]$$

Definition: Longest Common Prefix Array
Given a text T of length n and its SA, the LCP-array is defined as

$$LCP[i] = \begin{cases} 0 & i = 1 \\ \max\{\ell : T[SA[i]..SA[i] + \ell) = T[SA[i - 1]..SA[i - 1] + \ell]} & i \neq 1 \end{cases}$$
Timeline Sequential Suffix Sorting

- based on [Bah+19; Bin18; Kur20; PST07]
- darker grey: linear running time
- brown: available implementation

Prefix Doubling
- 1990: [MM] original
- 1999: [LS] qsufsort

Induced Copying
- 2000: [Sew] 1/2 copy
- 2002: [MF] deep-shallow
- 2003: [Sew] BWT
- 2004: [MF] A/B copy
- 2005: [SS] bpr
- 2006: [MP] cache aware
- 2007: [SS] DvSufSort
- 2008: [MP] cache aware
- 2009: [SS] bpr
- 2011: [MP] cache aware
- 2016: [Bai] GSACA
- 2017: [LLH] O(1) space
- 2021: [Got] O(1) space

Recursion
- 1990: [BW] BWT
- 1999: [IT] A/B copy
- 2000: [MF] deep-shallow
- 2002: [BK] diffcover
- 2004: [KA] L/S split
- 2005: [Man] chains
- 2006: [SS] bpr
- 2007: [MP] cache aware
- 2008: [SS] bpr
- 2009: [MP] cache aware
- 2011: [SS] bpr
- 2016: [Bai] GSACA
- 2017: [LLH] O(1) space
- 2021: [Got] O(1) space

Timeline Sequential Suffix Sorting based on [Bah+19; Bin18; Kur20; PST07] with darker grey indicating linear running time and brown indicating available implementation.
Timeline Sequential Suffix Sorting

- based on [Bah+19; Bin18; Kur20; PST07]
- darker grey: linear running time
- brown: available implementation

Special Mentions

- DC3 first $O(n)$ algorithm
- $O(n)$ running time and $O(1)$ space for integer alphabets possible
Timeline Sequential Suffix Sorting

- based on [Bah+19; Bin18; Kur20; PST07]
- darker grey: linear running time
- brown: available implementation

Special Mentions

- DC3 first $O(n)$ algorithm
- $O(n)$ running time and $O(1)$ space for integer alphabets possible
- until 2021: DivSufSort fastest in practice with $O(n \lg n)$ running time
Timeline Sequential Suffix Sorting
- based on [Bah+19; Bin18; Kur20; PST07]
- darker grey: linear running time
- brown: available implementation

Special Mentions
- DC3 first $O(n)$ algorithm
- $O(n)$ running time and $O(1)$ space for integer alphabets possible
- until 2021: DivSufSort fastest in practice with $O(n \lg n)$ running time
- since 2021: libSAIS fastest in practice with $O(n)$ running time
Suffix Sorting in External Memory

- using induced copying
- $O(N/B) \log^2_{M/B}(N/B)$ I/Os
Pattern Matching with the Suffix Array (1/2)

Function SeachSA(T, SA[1..n], P[1..m]):

1. \(\ell = 1, r = n + 1 \)
2. while \(\ell < r \) do
3. \(i = \lfloor (\ell + r) / 2 \rfloor \)
4. if \(P > T[SA[i]..SA[i] + m] \) then
5. \(\ell = i + 1 \)
6. else \(r = i \)
7. s = \(\ell \), \(\ell = \ell - 1 \), \(r = n \)
8. while \(\ell < r \) do
9. \(i = \lceil (\ell + r) / 2 \rceil \)
10. if \(P = T[SA[i]..SA[i] + m] \) then \(\ell = i \)
11. else \(r = i - 1 \)
12. return \([s, r]\)

pattern \(P = abc \)
Pattern Matching with the Suffix Array (1/2)

Function SeachSA(T, $SA[1..n]$, $P[1..m]$):

1. $\ell = 1, r = n + 1$
2. while $\ell < r$ do
 3. $i = \lfloor (\ell + r)/2 \rfloor$
 4. if $P > T[SA[i]..SA[i] + m]$ then
 5. $\ell = i + 1$
 6. else $r = i$
7. $s = \ell, \ell = \ell - 1, r = n$
8. while $\ell < r$ do
 9. $i = \lceil (\ell + r)/2 \rceil$
 10. if $P = T[SA[i]..SA[i] + m]$ then $\ell = i$
 11. else $r = i - 1$
12. return $[s, r]$

pattern $P = abc$
Pattern Matching with the Suffix Array (1/2)

Function `SearchSA(T, SA[1..n], P[1..m])`:

1. \(\ell = 1, r = n + 1 \)
2. while \(\ell < r \) do
 3. \(i = \lfloor (\ell + r)/2 \rfloor \)
 4. if \(P > T[SA[i]..SA[i] + m] \) then
 5. \(\ell = i + 1 \)
 6. else \(r = i \)
7. \(s = \ell, \ell = \ell - 1, r = n \)
8. while \(\ell < r \) do
 9. \(i = \lceil (\ell + r)/2 \rceil \)
 10. if \(P = T[SA[i]..SA[i] + m] \) then \(\ell = i \)
 11. else \(r = i - 1 \)
12. return \([s, r]\)

pattern \(P = abc \)
Pattern Matching with the Suffix Array (2/2)

Function `SearchSA(T, SA[1..n], P[1..m])`:

1. \(\ell = 1, r = n + 1 \)
2. while \(\ell < r \) do
 3. \(i = \ceil{(\ell + r)/2} \)
 4. if \(P > T[SA[i]..SA[i] + m] \) then
 5. \(\ell = i + 1 \)
 6. else \(r = i \)
 7. \(s = \ell, \ell = \ell - 1, r = n \)
3. while \(\ell < r \) do
 4. \(i = \lfloor (\ell + r)/2 \rfloor \)
 5. if \(P = T[SA[i]..SA[i] + m] \) then \(\ell = i \)
 6. else \(r = i - 1 \)
5. return \([s, r]\)

Lemma: Running Time `SearchSA`

The `SearchSA` answers counting queries in \(O(m \lg n) \) time and reporting queries in \(O(m \lg n + \text{occ}) \) time.

Proof (Sketch)

- two binary searches on the `SA` in \(O(\lg n) \) time
Pattern Matching with the Suffix Array (2/2)

Function `SeachSA(T, SA[1..n], P[1..m])`:

1. \(\ell = 1, r = n + 1 \)
2. while \(\ell < r \) do
 3. \(i = \lfloor (\ell + r)/2 \rfloor \)
 4. if \(P > T[SA[i]..SA[i] + m] \) then
 5. \(\ell = i + 1 \)
 6. else \(r = i \)
 7. \(s = \ell, \ell = \ell - 1, r = n \)
3. while \(\ell < r \) do
 4. \(i = \lceil \ell + r/2 \rceil \)
 5. if \(P = T[SA[i]..SA[i] + m] \) then \(\ell = i \)
 6. else \(r = i - 1 \)
5. return \([s, r]\)

Lemma: Running Time SeachSA

The `SeachSA` answers counting queries in \(O(m \log n) \) time and reporting queries in \(O(m \log n + \text{occ}) \) time.

Proof (Sketch)

two binary searches on the `SA` in \(O(\log n) \) time
Pattern Matching with the Suffix Array (2/2)

Function `SeachSA(T, SA[1..n], P[1..m])`:

1. \(\ell = 1, r = n + 1 \)
2. **while** \(\ell < r \) **do**
 3. \(i = \lfloor (\ell + r)/2 \rfloor \)
 4. if \(P > T[SA[i]..SA[i] + m] \) then
 5. \(\ell = i + 1 \)
 6. else \(r = i \)
 7. \(s = \ell, \ell = \ell - 1, r = n \)
3. **while** \(\ell < r \) **do**
 4. \(i = \lceil \ell + r/2 \rceil \)
 5. if \(P = T[SA[i]..SA[i] + m] \) then \(\ell = i \)
 6. else \(r = i - 1 \)
5. return \([s, r] \)

Lemma: Running Time SeachSA

The `SeachSA` answers counting queries in \(O(m \lg n) \) time and reporting queries in \(O(m \lg n + \text{occ}) \) time.

Proof (Sketch)

- Two binary searches on the `SA` in \(O(\lg n) \) time
- Each comparison requires \(O(m) \) time

PINGO 11/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees Institute of Theoretical Informatics, Algorithm Engineering
Function: `SeachSA(T, SA[1..n], P[1..m]):`

1. \(\ell = 1, r = n + 1 \)
2. while \(\ell < r \) do
 3. \(i = \left\lfloor \frac{\ell + r}{2} \right\rfloor \)
 4. if \(P > T[SA[i..SA[i] + m)] \) then
 5. \(\ell = i + 1 \)
 6. else \(r = i \)
 7. \(s = \ell, \ell = \ell - 1, r = n \)
3. while \(\ell < r \) do
 4. \(i = \left\lceil \frac{\ell + r}{2} \right\rceil \)
 5. if \(P = T[SA[i..SA[i] + m)] \) then \(\ell = i \)
 6. else \(r = i - 1 \)
5. return \([s, r] \)

Lemma: Running Time SeachSA

The SeachSA answers counting queries in \(O(m \lg n) \) time and reporting queries in \(O(m \lg n + \text{occ}) \) time.

Proof (Sketch)
- Two binary searches on the SA in \(O(\lg n) \) time
- Each comparison requires \(O(m) \) time
Pattern Matching with the Suffix Array (2/2)

```
Function SearchSA(T, SA[1..n], P[1..m]):
    \ell = 1, r = n + 1
    while \ell < r do
        i = \lfloor (\ell + r)/2 \rfloor
        if P > T[SA[i]..SA[i] + m] then
            \ell = i + 1
        else
            r = i
    s = \ell, \ell = \ell - 1, r = n
    while \ell < r do
        i = \lceil \ell + r/2 \rceil
        if P = T[SA[i]..SA[i] + m] then \ell = i
        else
            r = i - 1
    return [s, r]
```

Lemma: Running Time SearchSA

The SearchSA answers counting queries in $O(m \log n)$ time and reporting queries in $O(m \log n + occ)$ time.

Proof (Sketch)

- two binary searches on the SA in $O(\log n)$ time
- each comparison requires $O(m)$ time
- counting in $O(1)$ additional time
Function `SeachSA(T, SA[1..n], P[1..m])`:

1) \(\ell = 1, r = n + 1 \)

2) while \(\ell < r \)

 3) \(i = \lfloor (\ell + r)/2 \rfloor \)

 4) if \(P > T[SA[i]..SA[i] + m] \)

 \(\ell = i + 1 \)

 else \(r = i \)

5) \(s = \ell, \ell = \ell - 1, r = n \)

6) while \(\ell < r \)

 7) \(i = \lceil \ell + r/2 \rceil \)

 8) if \(P = T[SA[i]..SA[i] + m] \)

 \(\ell = i \)

 else \(r = i - 1 \)

9) return \([s, r]\)

Lemma: Running Time `SeachSA`

The `SeachSA` answers counting queries in \(O(m \log n) \) time and reporting queries in \(O(m \log n + \text{occ}) \) time.

Proof (Sketch)

- Two binary searches on the `SA` in \(O(\log n) \) time
- Each comparison requires \(O(m) \) time
- Counting in \(O(1) \) additional time

Pattern Matching with the Suffix Array (2/2)
Pattern Matching with the Suffix Array (2/2)

Function SeachSA(T, SA[1..n], P[1..m]):

1. \(\ell = 1, r = n + 1 \)
2. while \(\ell < r \) do
 3. \(i = \lceil (\ell + r)/2 \rceil \)
 4. if \(P > T[SA[i]..SA[i] + m] \) then
 5. \(\ell = i + 1 \)
 6. else \(r = i \)

7. \(s = \ell, \ell = \ell - 1, r = n \)
8. while \(\ell < r \) do
 9. \(i = \lceil \ell + r/2 \rceil \)
 10. if \(P = T[SA[i]..SA[i] + m] \) then \(\ell = i \)
 11. else \(r = i - 1 \)

12. return \([s, r]\)

Lemma: Running Time SeachSA

The SeachSA answers counting queries in \(O(m \lg n) \) time and reporting queries in \(O(m \lg n + \text{occ}) \) time.

Proof (Sketch)

- two binary searches on the SA in \(O(\lg n) \) time
- each comparison requires \(O(m) \) time
- counting in \(O(1) \) additional time
- reporting in \(O(\text{occ}) \) additional time

11/23 2022-05-30 Florian Kurpicz | Advanced Data Structures | 06 Suffix Arrays & String B-Trees

Institute of Theoretical Informatics, Algorithm Engineering
Function SeachSA(T, SA[1..n], P[1..m]):
\[
\begin{align*}
\ell &= 1, r = n + 1 \\
\text{while } \ell < r \text{ do} & \\
& \quad i = \lfloor (\ell + r)/2 \rfloor \\
& \quad \text{if } P > T[SA[i]..SA[i] + m) \text{ then} \\
& \quad \quad \ell = i + 1 \\
& \quad \text{else } r = i \\
& \quad s = \ell, \ell = \ell - 1, r = n \\
\text{while } \ell < r \text{ do} & \\
& \quad i = \lceil \ell + r/2 \rceil \\
& \quad \text{if } P = T[SA[i]..SA[i] + m) \text{ then} \\
& \quad \quad \ell = i \\
& \quad \text{else } r = i - 1 \\
\text{return } [s, r]
\end{align*}
\]

Lemma: Running Time SeachSA

The SeachSA answers counting queries in \(O(m \lg n)\) time and reporting queries in \(O(m \lg n + \text{occ})\) time.

Proof (Sketch)

- two binary searches on the SA in \(O(\lg n)\) time
- each comparison requires \(O(m)\) time
- counting in \(O(1)\) additional time
- reporting in \(O(\text{occ})\) additional time
Function SeachSA(T, SA[1..n], P[1..m]):
1 \(\ell = 1, r = n + 1 \)
2 while \(\ell < r \) do
3 \(i = \lceil (\ell + r) / 2 \rceil \)
4 if \(P > T[SA[i]..SA[i] + m] \) then
5 \(\ell = i + 1 \)
6 else \(r = i \)
7 \(s = \ell, \ell = \ell - 1, r = n \)
8 while \(\ell < r \) do
9 \(i = \lfloor (\ell + r) / 2 \rfloor \)
10 if \(P = T[SA[i]..SA[i] + m] \) then \(\ell = i \)
11 else \(r = i - 1 \)
12 return \([s, r]\)

Lemma: Running Time SeachSA
The SeachSA answers counting queries in \(O(m \lg n) \) time and reporting queries in \(O(m \lg n + \text{occ}) \) time.

Proof (Sketch)
- two binary searches on the SA in \(O(\lg n) \) time
- each comparison requires \(O(m) \) time
- counting in \(O(1) \) additional time
- reporting in \(O(\text{occ}) \) additional time

how can this be improved?
Speeding Up Pattern Matching with the LCP-Array (1/4)

- remember how many characters of the pattern and suffix match
- identify how long the prefix of the old and next suffix is
- do so using the LCP-array and range minimum queries

Definition: Range Minimum Queries
Given an array $A[1..m]$, a **range minimum query** for a range $\ell \leq r \in [1, n)$ returns

$$RMQ_A(\ell, r) = \arg \min \{A[k] : k \in [\ell, r]\}$$

- $lcp(i, j) = \max\{k : T[i..i + k)\}$
- $lcp(i, j) = T[j..j + k) = LCP[RMQ_{LCP}(i + 1, j)]$
- RMQs can be answered in $O(1)$ time and require $O(n)$ space
during binary search matched
- λ characters with left border ℓ and ρ characters with right border r
- w.l.o.g. let $\lambda \geq \rho$

middle position i
- decide if continue in $[\ell, i]$ or $[i, r]$

let $\xi = lcp(SA[\ell], SA[i]) \in O(1)$ time with RMQs
Speeding Up Pattern Matching with the LCP-Array (3/4)

- let $\xi = \text{lcp}(SA[\ell], SA[i])$

\[
\begin{array}{|c|c|c|}
\hline
\ell & i & r \\
\hline
\vdots & \vdots & \vdots \\
\lambda & P[3] & \rho \\
\vdots & \vdots & \vdots \\
\perp & P[\lambda] & \perp \\
\hline
\end{array}
\]
Speeding Up Pattern Matching with the LCP-Array (3/4)

- Let $\xi = \text{lcp}(SA[\ell], SA[i])$

 - $\xi > \lambda$
 - $P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$
 - $\ell = i$ without character comparison

<table>
<thead>
<tr>
<th>ℓ</th>
<th>i</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P[1]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P[2]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P[3]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P[\rho]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\perp</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
let $\xi = \text{lcp}(SA[\ell], SA[i])$

$\xi > \lambda$

- $P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$
- $\ell = i$ without character comparison
- Let $\xi = \text{lcp}(SA[\ell], SA[i])$

$\xi > \lambda$

- $P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$
- $\ell = i$ without character comparison

<table>
<thead>
<tr>
<th>ℓ</th>
<th>i</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P[1]$</td>
<td>$P[3]$</td>
<td>ρ</td>
</tr>
<tr>
<td>$P[2]$</td>
<td>$P[\rho]$</td>
<td>\perp</td>
</tr>
<tr>
<td>λ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\perp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P[\lambda]$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\xi < \lambda$

$\xi \geq \rho$ and $P[\xi + 1] < T[SA[i] + \xi]$

$r = i$ and $\rho = \xi$ without character comparison
Speeding Up Pattern Matching with the LCP-Array (3/4)

- let $\xi = lcp(SA[\ell], SA[i])$

$\xi > \lambda$
- $P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$
- $\ell = i$ without character comparison

$\xi = \lambda$
- compare as before
Speeding Up Pattern Matching with the LCP-Array (3/4)

- let $\xi = lcp(SA[\ell], SA[i])$

$\xi > \lambda$
- $P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$
- $\ell = i$ without character comparison

$\xi = \lambda$
- compare as before
Speeding Up Pattern Matching with the LCP-Array (3/4)

- Let $\xi = lcp(SA[\ell], SA[i])$

$\xi > \lambda$
- $P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$
- $\ell = i$ without character comparison

$\xi = \lambda$
- compare as before
Speeding Up Pattern Matching with the LCP-Array (3/4)

- let $\xi = \text{lcp}(SA[\ell], SA[i])$

$\xi > \lambda$
- $P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$
- $\ell = i$ without character comparison

$\xi = \lambda$
- compare as before

$\xi < \lambda$
- $\xi \geq \rho$ and $P[\xi + 1] < T[SA[i] + \xi]$
- $r = i$ and $\rho = \xi$ without character comparison
Speeding Up Pattern Matching with the LCP-Array (3/4)

- let $\xi = \text{lcp}(SA[\ell], SA[i])$

$\xi > \lambda$
- $P[\lambda + 1] > T[SA[\ell] + \lambda] = T[SA[i] + \lambda]$
- $\ell = i$ without character comparison

$\xi = \lambda$
- compare as before

$\xi < \lambda$
- $\xi \geq \rho$ and $P[\xi + 1] < T[SA[i] + \xi]$
- $r = i$ and $\rho = \xi$ without character comparison
Lemma:

Using RMQs, SeachSA answers counting queries in $O(m + \lg n)$ time and reporting queries in $O(m + \lg n + \text{occ})$ time.
Lemma:

Using RMQs, SeachSA answers counting queries in $O(m + \lg n)$ time and reporting queries in $O(m + \lg n + \text{occ})$ time.

Proof (Sketch):
- either halve the range in the suffix array ($\xi \neq \lambda$)
- or
- compare characters of the pattern (at most m)
(Recap) B-Trees

- search tree with out-degree in \([b, 2b]\)
- works well in external memory
- uses separators to find subtree
- can be dynamic
- who knows B-trees?

Example on the board

From Atomic Values to Strings

- strings take more time to compare
- load as few strings from disk as possible
String B-Tree [FG99]

- Strings are stored in EM
- Strings are identified by starting positions
- B-tree layout for sorted suffixes identified by position
- At least $b = \Theta(B)$ children
- Tree height $O(\log_B N)$

- Given node v with children v_0, \ldots, v_k with $k \in [b, 2b)$
- Inner: store separators $L(v_0), R(v_0), \ldots, L(v_k), R(v_k)$
- Leaf: store strings and link leaves

- Given node v
 - $L(v)$ is lexicographically smallest string at v
 - $R(v)$ is lexicographically largest string at v
Search in String B-Tree

- task: find all occurrences of pattern P
- two traversals of String B-Tree
- identify leftmost/rightmost occurrence
- output all strings in $O(\text{occ}/B)$

Lemma: String B-Tree

Using a String B-tree, a pattern P can be found in a set of strings with total length N in $O(|P|/B \log N)$ I/Os

Proof (Sketch)

- String B-Tree has height $\log_B N$
- load separators of node: $O(1)$ I/O
- load strings for binary search: $O(|P|/B)$ I/Os
- total: $O(\log_B N \cdot \log B \cdot |P|/B) = O(|P|/B \log N)$ I/Os
Improving String B-Tree with Patricia Tries (1/2)

Patricia Trie

- for strings $S = \{S_0, \ldots, S_{k-1}\}$
- a compact trie where only branching characters are stored
- additionally the string depth is stored
- size $O(k)$ for k strings
Patricia Trie

- for strings $S = \{ S_0, \ldots, S_{k-1} \}$
- a compact trie where only branching characters are stored
- additionally the string depth is stored
- size $O(k)$ for k strings

Search requires two steps:
- first blind search using only trie
- blind search can result in false matches
- second a comparison with resulting string

How do Patricia tries help?
Improving String B-Tree with Patricia Tries (1/2)

Patricia Trie

- for strings $S = \{S_0, \ldots, S_{k-1}\}$
- a compact trie where only branching characters are stored
- additionally the string depth is stored
- size $O(k)$ for k strings

- search requires two steps
 - first **blind search** using only trie
 - blind search can result in false matches
 - second a comparison with resulting string
 - use any leaf after matching pattern
Improving String B-Tree with Patricia Tries (1/2)

Patricia Trie
- for strings $S = \{ S_0, \ldots, S_{k-1} \}$
- a compact trie where only branching characters are stored
- additionally the string depth is stored
- size $O(k)$ for k strings

- search requires two steps
 - first blind search using only trie
 - blind search can result in false matches
 - second a comparison with resulting string
 - use any leaf after matching pattern

How do Patricia tries help?

PINGO
in each inner node build Patricia trie for separators
if blind search finds leaf \(w\)
compute \(L = \text{lcp}(P, w)\)
let \(u\) be first node on root-to-\(w\) path with \(d \geq L\)
Improving String B-Tree with Patricia Tries (2/2)

- in each inner node build Patricia trie for separators
- if blind search finds leaf w
- compute $L = lcp(P, w)$
- let u be first node on root-to-w path with $d \geq L$

$d = L$

- find matching children v_i and v_{i+1} of w with
- branching characters $c_i < P[L + 1] < c_{i+1}$
- example on the board 📚
in each inner node build Patricia trie for separators
if blind search finds leaf w
compute $L = lcp(P, w)$
let u be first node on root-to-w path with $d \geq L$

$d > L$
- consider next branching character c on path
- if $P[L + 1] < c$ continue in leftmost leaf
- if $P[L + 1] > c$ continue in rightmost leaf

d = L
- find matching children v_i and v_{i+1} of w with
- branching characters $c_i < P[L + 1] < c_{i+1}$
- example on the board 📚
Searching in Improved String B-Tree

- at every node with children v_0, \ldots, v_k
- load Patricia trie for $L(v_0), \ldots, R(v_k)$
- search Patricia trie for w (result of blind search)
- load one string and compare with P
- identify child and continue
Searching in Improved String B-Tree

- at every node with children v_0, \ldots, v_k
- load Patricia trie for $L(v_0), \ldots, R(v_k)$
- search Patricia trie for w result of blind search
- load one string and compare with P
- identify child and continue

Lemma: String B-Tree with PTs

Using a string B-tree with Patricia tries, a pattern P can be found in a set of strings with total length N with $O(|P|/B \log_B N)$ I/Os
Searching in Improved String B-Tree

- at every node with children v_0, v_1, ..., v_k
- load Patricia trie for $L(v_0)$, $L(v_1)$, ..., $L(v_k)$
- search Patricia trie for w (result of blind search)
- load one string and compare with P
- identify child and continue

Lemma: String B-Tree with PTs

Using a string B-tree with Patricia tries, a pattern P can be found in a set of strings with total length N with $O(|P|/B \log_B N)$ I/Os

Proof (Sketch)

- loading PT: $O(1)$ I/Os
- blind search: no I/Os
- loading one string: $O(|P|/B)$ I/Os
- identify child: no I/Os
- total $O(|P|/B \log_B N)$ I/Os
Searching in Improved String B-Tree

- at every node with children \(v_0, \ldots, v_k\)
- load Patricia trie for \(L(v_0), \ldots, R(v_k)\)
- search Patricia trie for \(w\) result of blind search
- load one string and compare with \(P\)
- identify child and continue

Lemma: String B-Tree with PTs

Using a string B-tree with Patricia tries, a pattern \(P\) can be found in a set of strings with total length \(N\) with \(O(|P|/B \log_B N)\) I/Os

Proof (Sketch)
- loading PT: \(O(1)\) I/Os
- blind search: no I/Os
- loading one string: \(O(|P|/B)\) I/Os
- identify child: no I/Os
- total \(O(|P|/B \log_B N)\) I/Os

How can this be improved even further?

PINGO
Improving Search with LCP-Values

- search for pattern in nodes
- path in String B-tree \(p_0, p_1, p_2, \ldots \)
- in Patricia tries \(PT_{p_i} \), compute \(L = lcp(P, w) \)
- all strings in \(p_i \) have prefix \(P[0..L) \)
- do not compare previously matched characters
- load only \(|P| - L \) characters at next node
- pass \(L \) down the String B-tree
Improving Search with LCP-Values

- search for pattern in nodes
- path in String B-tree \(p_0, p_1, p_2, \ldots \)
- in Patricia tries \(PT_{p_i} \), compute \(L = lcp(P, w) \)
- all strings in \(p_i \) have prefix \(P[0..L) \)
- do not compare previously matched characters
- load only \(|P| - L \) characters at next node
- pass \(L \) down the String B-tree

Lemma: String B-Tree with PTs and LCP

Using a String B-tree with Patricia tries and passing down the LCP-value, a pattern \(P \) can be found in a set of strings with total length \(N \) in \(O(|P|/B + \log_B N) \) I/Os.
Improving Search with LCP-Values

- search for pattern in nodes
- path in String B-tree \(p_0, p_1, p_2, \ldots \)
- in Patricia tries \(PT_p \), compute \(L = lcp(P, w) \)
- all strings in \(p_i \) have prefix \(P[0..L] \)
- do not compare previously matched characters
- load only \(|P| - L \) characters at next node
- pass \(L \) down the String B-tree

Lemma: String B-Tree with PTs and LCP

Using a String B-tree with Patricia tries and passing down the LCP-value, a pattern \(P \) can be found in a set of strings with total length \(N \) in
\[O(|P|/B + \log_B N) \] I/Os

Proof (Sketch)

- passing down LCP-value: no I/Os
- telescoping sum \(\sum_{i \leq h} \frac{L_i - L_{i-1}}{B} \)
- \(h = \log_B N \) \(\circ \) height of String B-tree
- \(L_i \) is LCP-value on Level \(i \)
- \(L_0 = 0 \) and \(L_h \leq |P| \)
- total: \(O(|P|/B + \log_B N) \) I/Os
Conclusion and Outlook

This Lecture
- suffix array and LCP array
- String B-tree

Advanced Data Structures

String B-tree
SA & LCP
Successor
RMQ
static/dynamic
BV
static/dynamic
succ. trees
range min-max tree
succ. graphs
Bibliography I

Bibliography II

