Lecture 07: FM-Index and r-Index
Florian Kurpicz
https://pingo.scc.kit.edu/022183
Recap: Wavelet Trees

![Wavelet Tree Diagram]

- The wavelet tree is a data structure used for representing a sequence of characters, typically for exact string matching.
- It supports several operations efficiently, such as rank queries, which count the number of occurrences of a pattern in the sequence up to a given position.
- The diagram illustrates how the wavelet tree is constructed and how rank queries can be performed using the tree.

Rank$_6$(9) illustrates the process of finding the rank of the 9th character in the sequence.
Recap: Compressed Wavelet Trees

- build wavelet tree for compressed text
- compress text using bit-wise negated canonical Huffman-codes
- intervals are only missing to the right (white space)
- no holes allow for easy querying
- can a wavelet tree be compressed further?
- PINGO are there compressed bit vectors with $O(1)$ access time?
Bit Vector Compression (1/2)

- compress (sparse) bit vectors
- bit vector contains k one bits
- use $O(k \log \frac{n}{k}) + o(n)$ bits
- retrieve $\Theta(\log n)$ bits at the same time
- similar to rank data structure

- split bit vector into (super-)blocks
- blocks of size $s = \frac{\log n}{2}$
- super-blocks of size $s' = s^2$

Array C
- number of ones in i-th block

Lookup-Tables L_i
- for $i \in [0, s]$ store lookup-table containing all bit vectors with i one bits
- use variable-length codes to identify content of block
- concatenate all codes in bit vector V

Bit Vector V
- let k_i be number of ones in i-th block
- use $\lceil \log \binom{s}{k_i} \rceil$ bits to encode block position in lookup-table
- concatenate all codes
Bit Vector Compression (2/2)

Array $SBlock$
- for every super-block i, $SBlock[i]$ contains position of encoding of first block in i-th super-block in V
- $\lceil \lg n \rceil$ bits per entry

Array $Block$
- for every block i, $Block[i]$ contains position of encoding of i-th block in V relative to its super-block
- $O(\lg \lg n)$ bits per entry

Lemma: Compressed Bit Vectors
A bit vector of size n containing k ones can be represented using $O(k \lg \frac{n}{k}) + o(n)$ bits allowing $O(1)$ time access to individual bits

Proof (Sketch space requirements)
- $|C| = O\left(\frac{n}{s} \lg s\right) = o(n)$ bits
- $|SBlock| = O\left(\frac{n}{s} \lg n\right) = o(n)$ bits
- $|Block| = O\left(\frac{n}{s} \lg s\right) = o(n)$ bits
- $\sum_{k=0}^{s} L_k \leq (s + 1)2^s s = o(n)$ bits
- $|V| = \sum_{i=1}^{[n/s]} \lceil \lg \left(\frac{s}{k_i}\right) \rceil \leq \lg \left(\frac{n}{k}\right) + \frac{n}{s} \leq \lg((n/k)^k) + \frac{n}{s} = k \lg \frac{n}{k} + O\left(\frac{n}{\lg n}\right)$ bits
Recap: Backwards Search in the BWT

Function $\text{BackwardsSearch}(P[1..n], C, rank)$:

1. $s = 1$, $e = n$
2. for $i = m, \ldots, 1$ do
3. $s = C[P[i]] + rank_{P[i]}(s - 1) + 1$
4. $e = C[P[i]] + rank_{P[i]}(e)$
5. if $s > e$ then
6. return \emptyset
7. return $[s, e]$

- no access to text or SA required
- no binary search
- existential queries are easy
- counting queries are easy
- reporting queries require additional information
- example on the board
The FM-Index [FM00]

Building Blocks of FM-Index
- wavelet tree on BWT providing \textit{rank}-function
- \textit{C}-array
- sampled suffix array with sample rate \(s\)
- bit vector marking sampled suffix array positions

Space Requirements
- wavelet tree: \(n \lceil \lg \sigma \rceil (1 + o(1))\) bits
- \textit{C}-array: \(\sigma \lceil \lg n \rceil\) bits \(\Theta n (1 + o(1))\) bits if \(\sigma \geq \frac{n}{\lg n}\)
- sampled suffix array: \(\frac{n}{s} \lceil \lg n \rceil\) bits
- bit vector: \(n(1 + o(1))\) bits

Lemma: FM-Index
Given a text \(T\) of length \(n\) over an alphabet of size \(\sigma\), the FM-index requires \(O(n \lg \sigma)\) bits of space and can answer counting queries in \(O(m \lg \sigma)\) time and reporting queries in \(O(occ + m \lg \sigma)\) time

- space and time bounds can be achieved with
 \(s = \lg_\sigma n\)
Conclusion FM-Index

- FM-index is easy to compress
- wavelet tree on BWT can be compressed
- bit vector can be compressed
- very small in comparison with suffix tree or suffix array
- compression does not make use of structure of BWT wavelet trees are compressed using Huffman-codes

Definition: Run (simplified, recap)

Given a text T of length n, we call its substring $T[i..j]$ a run, if

- $T[k] = T[\ell]$ for all $k, \ell \in [i, j]$ and
- $T[i - 1] \neq T[i]$ and $T[j + 1] \neq T[j]$

(To be more precise, this is a definition for a run of a periodic substring with smallest period 1, but this is not important for this lecture)
Motivation: \(r \)-Index

- next: compressed index
- how to measure compressibility?

Measure for Compressibility

- \(k \)-th order empirical entropy \(H_k \)
- number of LZ factors \(z \)
- number of BWT runs \(r \)

- \(z \) and \(r \) not blind to repetitions
- how do they relate?

Lemma: BWT runs and LZ factors [KK20]

Given a text \(T \) of length \(n \). Let \(z \) be the number of LZ77 factors and \(r \) the number of runs in \(T \)'s BWT, then

\[r \in O(z \lg^2 n) \]

more details in next lecture
Main Part of Backwards-Search

Function $\text{BackwardsSearch}(P[1..n], C, rank)$:

1. $s = 1, e = n$
2. for $i = m, \ldots, 1$ do
3. \hspace{1em} $s = C[P[i]] + \text{rank}_{P[i]}(s - 1) + 1$
4. \hspace{1em} $e = C[P[i]] + \text{rank}_{P[i]}(e)$
5. \hspace{1em} if $s > e$ then
6. \hspace{2em} return \emptyset
7. return $[s, e]$

Goals

- simulate BWT and rank on BWT in $O(r \lg n)$ bits of space
The r-Index [GNP20] (1/3)

Given a text T of length n over an alphabet Σ and its BWT, the r-index of this text consists of the following data structures:

- **Array I**
 - $I[i]$ stores position of i-th run in BWT

- **Array L'**
 - $L'[i]$ stores character of i-th run in BWT
 - build wavelet tree for L'

- **Array R**
 - lengths of BWT runs stably sorted by runs’ characters
 - accumulate for each character by performing exclusive prefix sum over run lengths’

- **Array C'**
 - $C'[^{\alpha}]$ stores the start of the run lengths in R for each character $\alpha \in \Sigma$ starting at 0

- **Bit Vector B**
 - compressed bit vector of length n containing ones at positions where BWT runs start and rank-support
The r-Index (2/3)

$\text{rank}_\alpha (BWT, i)$ with r-Index

- compute number j of run ($j = \text{rank}_1 (B, i)$)
- compute position k in R ($k = C'[\alpha]$)
- compute number ℓ of α runs before the j-th run ($\ell = \text{rank}_\alpha (L', j - 1)$)
- compute number k of αs before the j-th run ($k = R[k + \ell]$)
- compute character β of run ($\beta = L'[j]$)
- if $\alpha \neq \beta$ return k \(\triangleright\) i is not in the run
- else return $k + i - I[j] + 1$ \(\triangleright\) i is in the run
Lemma: Space Requirements \(r \)-Index

Given a text \(T \) of length \(n \) over an alphabet of size \(\sigma \) that has \(r \) BWT runs, then its \(r \)-index requires

\[
O(r \lg n) \text{bits}
\]

and can answer rank-queries on the BWT in \(O(\lg \sigma) \).

Given a pattern of length \(m \), the \(r \)-index can answer pattern matching queries in time

\[
O(m \lg \sigma)
\]

what about reporting queries?
Locating Occurrences (Sketch)

- modify backwards-search that it maintains \(\text{SA}[e] \)
- after backwards-search output \(\text{SA}[e], \text{SA}[e-1], \ldots, \text{SA}[s] \)
- in \(O(r \log n) \) bits and \(O(\text{occ} \cdot \log \log r) \) time

Output Result
- following LF not possible \(\text{dings} \) unbounded
- deduce \(\text{SA}[i-1] \) from \(\text{SA}[i] \)
- character in \(L \) and \(F \) in same order
- only beginning of runs complicated
- for every character build predecessor data structure over sampled \(\text{SA} \)-values at end of runs
- associate with \(\langle i, \text{SA}[i] \rangle \)

Maintaining \(\text{SA}[e] \)
- sample \(\text{SA} \) positions at ends of runs
- if next character is \(\text{BWT}[e] \), then next \(\text{SA}[e'] \) is \(\text{SA}[e] - 1 \)
- otherwise locate end of run and extract sample

PINGO why can’t we sample the SA as we did in the FM-index?
From the Suffix Tree to the r-Index—Questions?
Bibliography I

