Text Indexing

Lecture 08: LZ and BWT Compressed Indeces
Florian Kurpicz

The slides are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License ©️: www.creativecommons.org/licenses/by-sa/4.0 | commit 224e27c compiled at 2022-12-19-13:21
Recap: FM-Index and r-Index

- based on backwards-search
- used to answer rank-queries on BWT

FM-Index
- build wavelet tree directly on BWT
- wavelet tree can be H_0 compressed
- blind to repetitions

r-Index
- many arrays with r entries
- build wavelet tree on one of these arrays
- size in numbers of BWT runs r

Function BackwardsSearch($P[1..n], C, rank$):

1. $s = 1, e = n$
2. for $i = m, \ldots, 1$ do
3. $s = C[P[i]] + rank_{P[i]}(s - 1) + 1$
4. $e = C[P[i]] + rank_{P[i]}(e)$
5. if $s > e$ then
6. return \emptyset
7. return $[s, e]$
Different Types of Compression

<table>
<thead>
<tr>
<th>Statistical Coding</th>
<th>LZ-Compression</th>
<th>BWT-Compression</th>
</tr>
</thead>
<tbody>
<tr>
<td>based on frequencies of characters</td>
<td>references to previous occurrences</td>
<td>used in powerful index</td>
</tr>
<tr>
<td>results in size $</td>
<td>T</td>
<td>\cdot H_k(T)$</td>
</tr>
<tr>
<td>k-th order empirical entropy</td>
<td>good for repetitions</td>
<td></td>
</tr>
<tr>
<td>good if frequencies are skewed</td>
<td>index in this lecture</td>
<td></td>
</tr>
<tr>
<td>blind to repetitions $</td>
<td>T \ldots T</td>
<td>\cdot H_k(T \ldots T) \approx</td>
</tr>
<tr>
<td>$\ell</td>
<td>T</td>
<td>\cdot H_k(T)$</td>
</tr>
</tbody>
</table>
LZ-Compressed Index

Definition: LZ77 Factorization [ZL77]

Given a text T of length n over an alphabet Σ, the **LZ77 factorization** is
- a set of z factors $f_1, f_2, \ldots, f_z \in \Sigma^+$, such that
- $T = f_1 f_2 \ldots f_z$ and for all $i \in [1, z] f_i$ is
- single character not occurring in $f_1 \ldots f_{i-1}$ or
- longest substring occurring ≥ 2 times in $f_1 \ldots f_i$

Now

- LZ-compressed replacement for wavelet trees
- *rank* and *access* queries select also supported
- LZ-compression better than H_k-compression

$T = \text{abababbbbaba}\$

- $f_1 = a$
- $f_2 = b$
- $f_3 = \text{abab}$
- $f_4 = \text{bbb}$
- $f_5 = \text{aba}$
- $f_6 = \$
Block Trees [Bel+21] (1/4)

Definition: Block Tree (1/4)

Given a text T of length n over an alphabet of size σ

- $\tau, s \in \mathbb{N}$ greater 1
- assume that $n = s \cdot \tau^h$ for some $h \in \mathbb{N}$
 - append s until n has this form

A **block tree** is a

- perfectly balanced tree with height h
- that may have leaves at higher levels
 such that
 - the root has s children,
 - each other inner node has τ children
In a block tree, leaves at
- the last level store characters or substrings of T
- at higher levels store special leftward pointer

Each node u
- represents a block B^u
- which is a substring of T identified by a position

The root represents T and its children consecutive blocks of T of size n/s
Block Trees (3/4)

Definition: Block Tree (3/4)

Let ℓ_u be the level (depth) of node u
- the level of the root is 0

Let B_1, B_2, \ldots be the blocks represented at level ℓ_u from left to right
- for any i, B_i and B_{i+1} are consecutive in T
- if $B_i B_{i+1}$ are the leftmost occurrence in T, the nodes representing the blocks are marked
Block Trees (4/4)

Definition: Block Tree (4/4)

If node u is marked, then

- it is an internal node
- with τ children

otherwise, if node u is not marked, then

- u is a leaf storing
- pointers to nodes v_i, v_{i+1} at the same level
 - that represent blocks B_i and B_{i+1}
 - covering the leftmost occurrence of B^u
- offset to the occurrence of B^u in B_iB_{i+1}

leaves on last level store text explicitly

- $|B^u| = \frac{n}{(s\tau^\ell_u - 1)}$
- if $|B^u|$ is small enough, store text explicitly
- $|B^u| \in \Theta(\lg_\sigma n)$
- PINGO how many blocks are there per level?
Lemma: Number of Blocks per Level

The number of blocks in any level \(\ell > 0 \) in the block tree is at most \(3\tau z \).

- \(O(\tau z) \) blocks per level
- unmarked block requires \(O(\lg n) \) bits of space
- marked block requires \(O(\tau \lg n) \) bits of space
- charged to child
- last level has \(O(\tau z) \) blocks with plain text
 - \(O(\lg_{\sigma} n) \) symbols of \(\lceil \lg n \rceil \) bits
 - requiring \(O(\lg \sigma) \) bits per block
- \(h = \lg_{\tau} \frac{n \lg \sigma}{s \lg n} \) and \(O(s) \) pointers to top level
- rounding up length adds \(\leq O(\tau) \) blocks per level

Proof (Sketch)

Let \(\ell > 0 \) be a level in the block tree and
- \(C = B_{i-1}B_iB_{i+1} \) a concatenation of three consecutive blocks at level \(\ell - 1 \)
- not containing the end of an LZ factor
- thus a leftwards occurrence in \(T \)

\(B_{i-1} \) and \(B_{i+1} \) can only be marked if \(B_i \) is marked
- \(B_i \) is marked if it contains end of LZ factor
- there are only \(z \) LZ factors

Each marked block results in \(\tau \) children
Lemma: Space Requirements of Block Trees

Given a text T of length n over an alphabet of size σ and integers $s, \tau > 1$, a block tree of T has height $h = \lg_{\tau} \frac{n \lg \sigma}{s \lg n}$. The block tree requires

$$O((s + z \tau \lg_{\tau} \frac{n \lg \sigma}{s \lg n}) \lg n)$$

bits of space, where z is the number of LZ77 factors of T.

- $s = z$ results in a tree of height $O(\lg_{\tau} \frac{n \lg \sigma}{z \lg n})$.
- Space requirements $O(z \tau \lg_{\tau} \frac{n \lg \sigma}{z \lg n} \lg n)$ bits.
- However, z not known.
Access Queries in Block Trees

- queries are easy to realize
- if not supported directly, additional information can be stored for blocks

Access Query

Given position i return $T[i]$

- follow nodes that represent block containing $T[i]$
- of not marked follow pointer and consider offset
- at leaf, if last level, return character
- else, follow pointer and continue

- time $O(\lg \tau \cdot \frac{n \lg \sigma}{s \lg n})$

- example on the board

PINGO can we answer rank queries the same way?
Rank Queries in Block Trees

- for each block add histogram $Hist_{B_u}$ for prefix of T up to block (not containing)
- $O(\sigma (s + z\tau \lg n n \lg n) \lg n)$ bits of space

Rank Query

Given position i and character α return $rank_\alpha(T, i)$

- follow nodes that represent block containing $T[i]$
- remember $Hist_{B_u}[\alpha]$
- of not marked follow pointer and consider offset
- at leaf, if last level, compute local rank 1 binary rank for each character
- else, follow pointer and continue

- time $O(\lg n \frac{n \lg \sigma}{s \lg n})$

- example on the board

PINGO what can be problematic with block tree construction?
Construction of Block Trees

<table>
<thead>
<tr>
<th>$O(n)$ Working Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>- build Aho-Corasick automaton for containing all pairs of consecutive unmarked blocks</td>
</tr>
<tr>
<td>- identify unmarked blocks on next level</td>
</tr>
<tr>
<td>- $O(n(1 + \lg \frac{z}{s}))$ time and $O(n)$ space</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$O(s + z\tau)$ Working Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>- replace Aho-Corasick automaton with Karp-Rabin fingerprints</td>
</tr>
<tr>
<td>- validate if matching fingerprints due to matching strings Monte Carlo algorithm</td>
</tr>
<tr>
<td>- $O(n(1 + \lg \frac{z}{s}))$ expected time and $O(n)$ space</td>
</tr>
<tr>
<td>- only expected construction time!</td>
</tr>
</tbody>
</table>

Pruning

- size of block tree can be reduced further
- some blocks not necessary
- those blocks can easily be identified

- queries very fast in practice
- construction very slow in practice
- good topic for thesis 😊
- space-efficient construction of block trees
Let T be a text, then
- $r(T)$ is number of BWT runs of T
- $z(T)$ is number of LZ77 factors of T

Definition: Burrows-Wheeler Transform [BW94]

Given a text T of length n and its suffix array SA, for $i \in [1, n]$ the Burrows-Wheeler transform is

$$BWT[i] = \begin{cases} T[SA[i] - 1] & SA[i] > 0 \\ \$ & SA[i] = 0 \end{cases}$$

<table>
<thead>
<tr>
<th>i</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>c</td>
<td>a</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>$$</td>
</tr>
<tr>
<td>SA</td>
<td>13</td>
<td>12</td>
<td>1</td>
<td>9</td>
<td>6</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>LCP</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>BWT</td>
<td>a</td>
<td>b</td>
<td>$$</td>
<td>c</td>
<td>c</td>
<td>b</td>
<td>b</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>b</td>
</tr>
</tbody>
</table>
Lemma: Number of BWT Runs

Let T be a text of length n, then

$$r(T) \in O(z(T) \lg^2 n)$$

- $LCP[i]$ is irreducible if $i = 1$ or $BWT[i] \neq BWT[i - 1]$
- number of irreducible LCP-values is $r(T)$

Lemma: Sum of Irreducible LCP-Values

The number of irreducible LCP-Values in $[\ell, 2\ell)$ is in $O(z\ell \lg n)$

Proof (Sketch)

- $T^\infty[i] = T[i\%n]$
- $S_m = \{S \in \Sigma^m : S$ is substring of $T^\infty\}$
- $|S_m| \leq mz$
- for irreducible $LCP[i] \in [\ell, 2\ell)$ charge ℓ characters in $S_{3\ell}$
- each string is charged at most $2 \lg n$ time

- apply lemma for $[2^i, 2^{i+1})$ for $i \in [0, \lfloor \lg n \rfloor]$
- number of $LCP[i] = 0$ entries is $\sigma \leq z$
Lemma: Number of Occurrences of Substrings

For any $\ell > 1$, the number of distinct substrings of T of length ℓ is $\leq z\ell$

Proof (Sketch)
- consider any substring of length $\ell > 1$
- if substrings is contained in LZ factor, there is previous occurrence
- distinct substrings overlap LZ factors
- there are at most ℓ substring per end of LZ factor

- use number of distinct substrings
- to show that the number of irreducible LCP-values
- is limited as stated in lemma
Conclusion and Outlook

This Lecture
- block trees
- \(r \in O(z \lg^2 n) \)

Open Questions
- efficient block tree construction
- linear time block tree construction

Next Lecture
- suffix array construction in different models of computation

Linear Time Construction

- ST
- SA
- WT
- LZ
- LCP
- BWT
- FM-Index
- \(r \)-Index
Bibliography I

