example inputs are online

- bv: size of initial bit vector
- tree: full tree with depth d and c children
- outputs next week(?)
- representation of nodes

insertchild(T, v, i, k)

- insert new i-th child of node v such that
- the new node becomes parent of
- the previously i-th to $(i + k - 1)$-th child of v

- boost’s dynamic bit_set? yes
- for competition: space in bits and time in ms
Lemma: Decoding Time Improved CSA

An SA value can be decoded in $O(\log \log n)$ time using the improved CSA.

Proof (Sketch)
- on each level, odd SA values can be decoded using the recursive SA
- there are at most $\log \log n$ levels
- on each level, even SA values can be decoded in one step, as the next SA value is odd
- requires rank and select data structures
Temporal Data Structures

- data structure that allows updates
- queries only on the newest version
- what happens to old versions

- keep old versions around
- in a “clever” way
- lecture based on: http://courses.csail.mit.edu/6.851/spring12/lectures/L01

Persistence
- change in the past creates new branch
- similar to version control
- everything old/new remains the same

Retroactivity
- change in the past affects future
- make change in earlier version changes all later versions
Definition: Pointer Machine

- nodes containing $d = O(1)$ fields
- one root node
- operations in $O(1)$ time
 - new node
 - $x = y.field$
 - $x.field = y$
 - $x = y + z$
- access nodes by root.$x.y$. . .

- add additional functionality to existing data structures
- is this a “useful” model? ❓
- balanced binary search tree
- linked list
- . . .

example on the board 📝
Persistence

- Keep all versions of data structure
- Never forget an old version
- Updates create new versions (e.g., insert/delete)
- All operations are relative to specific version

Definition: Partial Persistence

Only the latest version can be updated

- Versions are linearly ordered
- Old versions can still be queries

Definition: Full Persistence

Any version can be updated

- Versions form a tree
- Updates on old versions create branch

Definition: Confluent Persistence

Like full persistence, but two versions can be combined to a new version

Definition: Functional

Nodes cannot be modified, only new nodes can be created
Lemma: Making DS Partially Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made partially persistent with
- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

Proof (Sketch: Idea)
- store original data and pointer (read only)
- store back pointers to latest version
- store \(\leq 2p \) modifications to fields
 - modification = \((version, field, value)\)
- version \(\nu \): apply modification with version \(\leq \nu \)

Proof (Sketch: Functionality)
- read version \(\nu \)
 - look up all modifications \(\leq \nu \)
 - if old version go through old version pointer
- write version
 - if node is not full add modification
 - if node \(n \) is full
 - create new node \(n' \)
 - copy latest version to data fields
 - copy back pointers to \(n' \)
 - for every node \(x \) such that \(n \) points to \(x \) redirect its pack pointers to \(n' \)
 - for every node \(x \) pointing to \(n \) call recursive change of pointer to \(n' \)
Partial Persistence (2/3)

Proof (Sketch: Space)
- adding only constant number of back pointers
- adding only constant number of modifications
- total additional space is $O(1)$

Proof (Sketch: Time)
- read is constant time
- write requires amortized analysis

Proof (Sketch: Time cnt.)
- potential function Φ
- amortizes_cost(n) = cost(n) + $\Delta \Phi$

- potential
 $\Phi = c \cdot \sum \#\text{modifications in latest version}$
- change of potential by adding new modification
- change of potential by creating new node
- combined:
 $\text{amortized}_\text{cost} \leq c + c - 2cp + p \cdot \text{recursion}$
- first c: constant time checking
- second c: adding new modification
- remaining part if new node is created
- total amortized time: $O(1)$
Lemma: Making DS Partially Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made partially persistent with
- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

- possible in \(O(1) \) worst case time \([\text{Bro}96]\)

- also possible for full persistence? \(\)
Full Persistence (1/4)

Differences
- versions are no longer numbers
- versions are nodes in a tree

PINGO

- can we represent versions in a linear fashion?

```
<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>a</td>
<td>b</td>
<td>e</td>
<td>b</td>
<td>c</td>
<td>b</td>
<td>d</td>
<td>e</td>
<td>b</td>
<td>a</td>
</tr>
</tbody>
</table>
```

- versions change
- update in constant time?
Order-Maintenance Data Structure

Linked List
- insert before or after element in $O(1)$ time
- check if u is predecessor of v in n time

Balanced Search Tree
- insert before or after element in $O(\log n)$ time
- check if u is predecessor of v in $O(\log n)$ time

Order-Maintenance DS [DS87]
- insert before or after element in $O(1)$ time
- check if u is predecessor of v in $O(1)$ time
- how is

- linearized version tree in order-maintenance DS
- insert in $O(1)$ time
 - new version v of u
 - after b_u
 - before e_u
- check order of versions in $O(1)$ time
- maintain and check linearized version tree in $O(1)$ time
- important for applying modifications to fields
Lemma: Making DS Fully Persistent

Any pointer-machine data structure with $\leq p = O(1)$ pointers to any node can be made fully persistent with
- $O(1)$ amortized factor overhead and
- $O(1)$ additional space per update

Proof (Sketch: Idea)
- store original data and pointer (read only)
- store back pointers to all versions
- store $\leq 2(d + p + 1)$ modifications to fields
 - modification = (version, field, value)
- version v: look at ancestors of v

Proof (Sketch: Functionality)
- read version v
 - look up all modifications $\leq v$
 - if old version go through old version pointer
- write version
 - if node is not full add modification
 - the same if node is full? PINGO
 - if node n is full
 - split node into two
 - each new node contains half of modifications
 - modifications are tree
 - partition tree
 - apply all modifications to “subtree”
 - recursively update pointers
Full Persistence (3/4)

Proof (Sketch: Space)
- if no split no additional memory
- if split $O(1)$ memory

Proof (Sketch: Time)
- applying versions in $O(1)$ time
- there are $\leq 2(d + p) + 1$ recursive pointer updates
- potential

$$\Phi = -c \cdot \sum \#\text{empty modification slots}$$

Proof (Sketch: Time cnt.)
- if node is split $\Delta \Phi = -c \cdot 2(d + p + 1)$
- if node is not split $\Delta \Phi = c$
- combined:

\[
\text{amortized cost} = c + c - 2c(d + p + 1) + (2(d + p) + 1) \cdot \text{recursions}
\]
- if node is split constants cancel each other out
Lemma: Making DS Fully Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made fully persistent with

- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

- versions are represented by tree
- tree has pointers to order-maintenance DS
- order-maintenance DS has pointers to tree

- de-amortization is open problem
Confluent Persistence

- hard because concatenation
- linked list concatenate with itself
- after u version length 2^u

more information:
Conclusion and Outlook

This Lecture
- partial and full persistent data structures

Next Lecture
- retroactive data structures

Advanced Data Structures
- String B-tree
- SA & LCP
- Successor
- CSA
- RMQ
- static/dynamic BV
- static/dynamic succ. trees
- range min-max tree
- succ. graphs
Bibliography I
