The Project

- example inputs are online
- bv: size of initial bit vector
- tree: full tree with depth d and c children
- outputs next week(?)
- representation of nodes

insertchild(T, v, i, k)

- insert new i-th child of node v such that
- the new node becomes parent of
- the previously i-th to $(i + k - 1)$-th child of v

- boost's dynamic bit_set? yes
- for competition: space in bits and time in ms
Lemma: Decoding Time Improved CSA

An SA value can be decoded in $O(\log \log n)$ time using the improved CSA.

Proof (Sketch)

- On each level, odd SA values can be decoded using the recursive SA.
- There are at most $\log \log n$ levels.
- On each level, even SA values can be decoded in one step, as the next SA value is odd.
- Requires rank and select data structures.
Temporal Data Structures

- data structure that allows updates
- queries only on the newest version
- what happens to old versions
Temporal Data Structures

- data structure that allows updates
- queries only on the newest version
- what happens to old versions

- keep old versions around
- in a “clever” way
- lecture based on: http://courses.csail.mit.edu/6.851/spring12/lectures/L01
Temporal Data Structures

- data structure that allows updates
- queries only on the newest version
- what happens to old versions

- keep old versions around
- in a “clever” way
- lecture based on: http://courses.csail.mit.edu/6.851/spring12/lectures/L01

Persistence

- change in the past creates new branch
- similar to version control
- everything old/new remains the same
Temporal Data Structures

- data structure that allows updates
- queries only on the newest version
- what happens to old versions
- keep old versions around
- in a “clever” way
- lecture based on: http://courses.csail.mit.edu/6.851/spring12/lectures/L01

Persistence

- change in the past creates new branch
- similar to version control
- everything old/new remains the same

Retroactivity

- change in the past affects future
- make change in earlier version changes all later versions
Definition: Pointer Machine

- nodes containing $d = O(1)$ fields
- one root node
- operations in $O(1)$ time
 - new node
 - $x = y.\text{field}$
 - $x.\text{field} = y$
 - $x = y + z$
- access nodes by root.x.y...
Definition: Pointer Machine

- nodes containing \(d = O(1) \) fields
- one root node
- operations in \(O(1) \) time
 - new node
 - \(x = y.\text{field} \)
 - \(x.\text{field} = y \)
 - \(x = y + z \)
- access nodes by root.x.y...

- add additional functionality to existing data structures
- is this a “useful” model? PINGO

- example on the board

Model of Computation
Definition: Pointer Machine

- nodes containing \(d = O(1) \) fields
- one root node
- operations in \(O(1) \) time
 - new node
 - \(x = y.\text{field} \)
 - \(x.\text{field} = y \)
 - \(x = y+z \)
- access nodes by root.x.y...

- add additional functionality to existing data structures
- is this a “useful” model? PINGO
- balanced binary search tree
- linked list

- example on the board
Definition: Pointer Machine

- nodes containing \(d = O(1) \) fields
- one root node
- operations in \(O(1) \) time
 - new node
 - \(x = y \).field
 - \(x\.field = y \)
 - \(x = y + z \)
- access nodes by root\.x\.y . . .

- add additional functionality to existing data structures
- is this a “useful” model?
- balanced binary search tree
- linked list
- . . .

example on the board
Persistence

- keep all versions of data structure
- never forget an old version
- updates create new versions e.g., insert/delete
- all operations are relative to specific version

Definition: Partial Persistence

Only the latest version can be updated

- versions are linearly ordered
- old versions can still be queries
Persistence

- keep all versions of data structure
- never forget an old version
- updates create new versions e.g., insert/delete
- all operations are relative to specific version

Definition: Partial Persistence
Only the latest version can be updated

- versions are linearly ordered
- old versions can still be queries

Definition: Full Persistence
Any version can be updated

- versions form a tree
- updates on old versions create branch

Definition: Confluent Persistence
Like full persistence, but two versions can be combined to a new version

Definition: Functional
Nodes cannot be modified, only new nodes can be created
Persistence

- keep all versions of data structure
- never forget an old version
- updates create new versions e.g., insert/delete
- all operations are relative to specific version

Definition: Partial Persistence
Only the latest version can be updated

- versions are linearly ordered
- old versions can still be queries

Definition: Full Persistence
Any version can be updated

- versions form a tree
- updates on old versions create branch

Definition: Confluent Persistence
Like full persistence, but two versions can be combined to a new version

Definition: Functional
Nodes cannot be modified, only new nodes can be created
Lemma: Making DS Partially Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made partially persistent with

- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update
Lemma: Making DS Partially Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made partially persistent with
- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

Proof (Sketch: Idea)
- store original data and pointer (read only)
- store back pointers to latest version
- store \(\leq 2p \) modifications to fields
 - modification = \((\text{version}, \text{field}, \text{value})\)
 - version \(v \): apply modification with version \(\leq v \)

Proof (Sketch: Functionality)
- read version \(v \)
- look up all modifications \(\leq v \)
- if old version go through old version pointer
- write version if node is not full
- add modification
- if node \(n \) is full
 - create new node \(n' \)
 - copy latest version to data fields
 - copy back pointers to \(n' \)
 - for every node \(x \) such that \(n \) points to \(x \)
 - redirect its pack pointers to \(n' \)
 - for every node \(x \) pointing to \(n \)
 - call recursive change of pointer to \(n' \)
Lemma: Making DS Partially Persistent
Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made partially persistent with
- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

Proof (Sketch: Idea)
- store original data and pointer (read only)
- store back pointers to latest version
- store \(\leq 2p \) modifications to fields
 - modification = \((\text{version}, \text{field}, \text{value}) \)
 - version \(v \): apply modification with version \(\leq v \)

Proof (Sketch: Functionality)
- read version \(v \)
 - look up all modifications \(\leq v \)
 - if old version go through old version pointer
Partial Persistence (1/3)

Lemma: Making DS Partially Persistent

Any pointer-machine data structure with $\leq p = O(1)$ pointers to any node can be made partially persistent with
- $O(1)$ amortized factor overhead and
- $O(1)$ additional space per update

Proof (Sketch: Idea)
- store original data and pointer (read only)
- store back pointers to latest version
- store $\leq 2p$ modifications to fields
 - modification = $(\text{version}, \text{field}, \text{value})$
 - version v: apply modification with version $\leq v$

Proof (Sketch: Functionality)
- read version v
 - look up all modifications $\leq v$
 - if old version go through old version pointer
- write version
 - if node is not full add modification
 - if node n is full
 - create new node n'
 - copy latest version to data fields
 - copy back pointers to n'
 - for every node x such that n points to x redirect its pack pointers to n'
 - for every node x pointing to n call recursive change of pointer to n'
Proof (Sketch: Space)

- adding only constant number of back pointers
- adding only constant number of modifications
- total additional space is $O(1)$
Partial Persistence (2/3)

Proof (Sketch: Space)
- adding only constant number of back pointers
- adding only constant number of modifications
- total additional space is $O(1)$

Proof (Sketch: Time)
- read is constant time
- write requires amortized analysis
Partial Persistence (2/3)

Proof (Sketch: Space)
- adding only constant number of back pointers
- adding only constant number of modifications
- total additional space is $O(1)$

Proof (Sketch: Time)
- read is constant time
- write requires amortized analysis

- potential function Φ
- $\text{amortizes_cost}(n) = \text{cost}(n) + \Delta \Phi$
Partial Persistence (2/3)

Proof (Sketch: Space)
- adding only constant number of back pointers
- adding only constant number of modifications
- total additional space is $O(1)$

Proof (Sketch: Time)
- read is constant time
- write requires amortized analysis

Proof (Sketch: Time cnt.)
- potential
 $\Phi = c \cdot \sum \#\text{modifications in latest version}$
- change of potential by adding new modification
- change of potential by creating new node
- combined:
 $\text{amortized_cost} \leq c + c - 2cp + p \cdot \text{recursion}$
- first c: constant time checking
- second c: adding new modification
- remaining part if new node is created
- total amortized time: $O(1)$
Lemma: Making DS Partially Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made partially persistent with

- \(O(1) \) amortized factor overhead and

- \(O(1) \) additional space per update
Lemma: Making DS Partially Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made partially persistent with

- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

possible in \(O(1) \) worst case time [Bro96]
Lemma: Making DS Partially Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made partially persistent with

- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

- possible in \(O(1) \) worst case time \([\text{Bro96}]\)

- also possible for full persistence? \([\text{PINGO}]\)
Differences
- versions are no longer numbers
- versions are nodes in a tree
Full Persistence (1/4)

Differences

- versions are no longer numbers
- versions are nodes in a tree

- can we represent versions in a linear fashion?

PINGO
Differences

- versions are no longer numbers
- versions are nodes in a tree

- can we represent versions in a linear fashion?

PINGO

```
ab cd ef gh ij k
(()(()(()()))()(()()))
```

Versions change update in constant time?
Differences

- versions are no longer numbers
- versions are nodes in a tree
- can we represent versions in a linear fashion?

PINGO

```
ab cd ef g  h  ij  k
(()(()(()(()))))(()()())
```

```
b_ab_b_e_be_b_c_b_d_e_d...
```
Differences

- versions are no longer numbers
- versions are nodes in a tree

Can we represent versions in a linear fashion?

PINGO

ab cd ef g h i j k
(((())()))()(()())

versions change
update in constant time?
Order-Maintenance Data Structure

Linked List

- Insert before or after element in $O(1)$ time
- Check if u is predecessor of v in n time

Balanced Search Tree

- Insert before or after element in $O(\log n)$ time
- Check if u is predecessor of v in $O(\log n)$ time

Order-Maintenance DS [DS87]

- Insert before or after element in $O(1)$ time
- Check if u is predecessor of v in $O(1)$ time

How is linearized version tree in order-maintenance DS inserted in $O(1)$ time. New version v of u after b before e. Check order of versions in $O(1)$ time. Maintain and check linearized version tree in $O(1)$ time. Important for applying modifications to fields.
Order-Maintenance Data Structure

Linked List
- insert before or after element in $O(1)$ time
- check if u is predecessor of v in n time

Balanced Search Tree
- insert before or after element in $O(\log n)$ time
- check if u is predecessor of v in $O(\log n)$ time
Order-Maintenance Data Structure

Linked List
- insert before or after element in $O(1)$ time
- check if u is predecessor of v in n time

Balanced Search Tree
- insert before or after element in $O(\log n)$ time
- check if u is predecessor of v in $O(\log n)$ time

Order-Maintenance DS [DS87]
- insert before or after element in $O(1)$ time
- check if u is predecessor of v in $O(1)$ time
- how is
Order-Maintenance Data Structure

Linked List
- insert before or after element in $O(1)$ time
- check if u is predecessor of v in n time

Balanced Search Tree
- insert before or after element in $O(\log n)$ time
- check if u is predecessor of v in $O(\log n)$ time

Order-Maintenance DS [DS87]
- insert before or after element in $O(1)$ time
- check if u is predecessor of v in $O(1)$ time
- how is

- linearized version tree in order-maintenance DS
- insert in $O(1)$ time
 - new version v of u
 - after b_u
 - before e_u
- check order of versions in $O(1)$ time
- maintain and check linearized version tree in $O(1)$ time
- important for applying modifications to fields
Lemma: Making DS Fully Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made fully persistent with

- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update
Lemma: Making DS Fully Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made fully persistent with

- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

Proof (Sketch: Idea)

- Store original data and pointer (read only)
- Store back pointers to all versions
- Store \(\leq 2(d + p + 1) \) modifications to fields
 - Modification = \((\text{version}, \text{field}, \text{value})\)
- Version \(v \): look at ancestors of \(v \)
Lemma: Making DS Fully Persistent

Any pointer-machine data structure with \(p = O(1) \) pointers to any node can be made fully persistent with

- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

Proof (Sketch: Idea)

- store original data and pointer (read only)
- store back pointers to all versions
- store \(\leq 2(d + p + 1) \) modifications to fields
 - modification = (version, field, value)
- version \(v \): look at ancestors of \(v \)

Proof (Sketch: Functionality)

- read version \(v \)
 - look up all modifications \(\leq v \)
 - if old version go through old version pointer
Lemma: Making DS Fully Persistent

Any pointer-machine data structure with $p = O(1)$ pointers to any node can be made fully persistent with
- $O(1)$ amortized factor overhead and
- $O(1)$ additional space per update

Proof (Sketch: Idea)
- store original data and pointer (read only)
- store back pointers to all versions
- store $\leq 2(d + p + 1)$ modifications to fields
 - modification = $(version, field, value)$
- version v: look at ancestors of v

Proof (Sketch: Functionality)
- read version v
 - look up all modifications $\leq v$
 - if old version go through old version pointer
- write version
 - if node is not full add modification
 - the same if node is full? PINGO
Lemma: Making DS Fully Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made fully persistent with

- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

Proof (Sketch: Idea)

- store original data and pointer (read only)
- store back pointers to all versions
- store \(\leq 2(d + p + 1) \) modifications to fields
 - modification = \((version, field, value)\)
- version \(v \): look at ancestors of \(v \)

Proof (Sketch: Functionality)

- read version \(v \)
 - look up all modifications \(\leq v \)
 - if old version go through old version pointer
- write version
 - if node is not full add modification
 - the same if node is full? PINGO
 - if node \(n \) is full
 - split node into two
 - each new node contains half of modifications
 - modifications are tree
 - partition tree ✉️
 - apply all modifications to “subtree”
 - recursively update pointers
Full Persistence (3/4)

Proof (Sketch: Space)

- if no split no additional memory
- if split $O(1)$ memory
Full Persistence (3/4)

Proof (Sketch: Space)
- if no split no additional memory
- if split $O(1)$ memory

Proof (Sketch: Time)
- applying versions in $O(1)$ time
- there are $\leq 2(d + p) + 1$ recursive pointer updates
- potential

$$\Phi = -c \cdot \sum \# \text{empty modification slots}$$
Full Persistence (3/4)

Proof (Sketch: Space)
- if no split no additional memory
- if split $O(1)$ memory

Proof (Sketch: Time)
- applying versions in $O(1)$ time
- there are $\leq 2(d + p) + 1$ recursive pointer updates
- potential

$$\Phi = -c \cdot \sum \#\text{empty modification slots}$$

Proof (Sketch: Time cnt.)
- if node is split $\Delta \Phi = -c \cdot 2(d + p + 1)$
- if node is not split $\Delta \Phi = c$
- combined:
 $$\text{amortized_cost} = c + c - 2c(d + p + 1) + (2(d + p) + 1) \cdot \text{recursions}$$
- if node is split constants cancel each other out
Lemma: Making DS Fully Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made fully persistent with
- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update
Lemma: Making DS Fully Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made fully persistent with

- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

- versions are represented by tree
- tree has pointers to order-maintenance DS
- order-maintenance DS has pointers to tree
Lemma: Making DS Fully Persistent

Any pointer-machine data structure with \(\leq p = O(1) \) pointers to any node can be made fully persistent with
- \(O(1) \) amortized factor overhead and
- \(O(1) \) additional space per update

- versions are represented by tree
- tree has pointers to order-maintenance DS
- order-maintenance DS has pointers to tree

- de-amortization is open problem
Confluent Persistence

- hard because concatenation
- linked list concatenate with itself
- after u version length 2^u

more information:
Conclusion and Outlook

This Lecture
- partial and full persistent data structures

Advanced Data Structures

- String B-tree
- SA & LCP
- Successor
- CSA
- RMQ
- static/dynamic BV
- static/dynamic succ. trees
- range min-max tree
- succ. graphs
Conclusion and Outlook

This Lecture
- partial and full persistent data structures

Next Lecture
- retroactive data structures

Advanced Data Structures

- String B-tree
- SA & LCP
- Successor
- CSA
- RMQ
- static/dynamic BV
- static/dynamic succ. trees
- range min-max tree
- succ. graphs
Bibliography I
