Exams
- 10.08.2022 and 29.09.2022
- write to blancani@kit.edu
 - full name
 - Matrikelnummer
 - PO version
 - date
- online or in person depending on situation/personal preferences
- 18.07.2022 Q&A during last half of lecture

Evaluation
- now
Recap: Persistent Data Structures

- **Persistence**
 - change in the past creates new branch
 - similar to version control
 - everything old/new remains the same

- **Retroactivity**
 - change in the past affects future
 - make change in earlier version changes all later versions

- **Definition: Partial Persistence**
 - Only the latest version can be updated

- **Definition: Full Persistence**
 - Any version can be updated

- **Definition: Confluent Persistence**
 - Like full persistence, but two versions can be combined to a new version

- **Definition: Functional**
 - Nodes cannot be modified, only new nodes can be created
Operations

- INSERT\((t, \text{operation})\): insert operation at time \(t\)
- DELETE\((t)\): delete operation at time \(t\)
- QUERY\((t, \text{query})\): ask \text{query} at time \(t\)

for a priority queue updates are
- insert
- delete-min

\text{time} is integer for simplicity otherwise use order-maintenance data structure

Definition: Partial Retroactivity

QUERY is only allowed for \(t = \infty\) \(\text{now}\)

Definition: Full Retroactivity

QUERY is allowed at any time \(t\)

Definition: Nonoblivious Retroactivity

INSERT, DELETE, and QUERY at any time \(t\) but also identify changed QUERY results
Easy Cases: Partial Retroactivity

- Commutative operations
 - Insert and delete-min are not commutative
 - Insert and delete are commutative

- Invertible updates
 - Operation op^{-1} such that $op^{-1}(op(\cdot)) = \emptyset$
 - Delete becomes insert inverse operation

- Makes partial retroactivity easy
 - $\text{INSERT}(t, \text{operation}) = \text{INSERT}(\infty, \text{operation})$
 - $\text{DELETE}(t, op) = \text{INSERT}(\infty, op^{-1})$

Partial Retroactivity

- Hashing
- Dynamic dictionaries
- Array with updates only $A[i] + = \text{value}$
Search Problems

Definition: Search Problem
A search problem is a problem on a set S of objects with operations insert, delete, and $\text{query}(x, S)$

Definition: Decomposable Search Problem
A decomposable search problem is a search problem, with
- $\text{query}(x, A \cup B) = f(\text{query}(x, A), \text{query}(x, B))$
- with f requiring $O(1)$ time

- predecessor and successor search
- range minimum queries
- nearest neighbor
- point location
- ...

- these types of problems are also “easy”

- which decomposable search problem have we seen? PINGO
Decomposable Search Problems: Full Retroactivity

Lemma: Full Retroactivity for DSP

Every decomposable search problems can be made fully retroactive with a $O(\log m)$ overhead in space and time, where m is the number of operations.

Proof (Sketch)

- use balances search tree
- each leaf corresponds to an update
- node n corresponds to interval of time $[s_n, e_n]
- if an object exists in the time interval $[s, e]$, then it appears in all node n if $[s_n, e_n] \subseteq [s, e]$ if non of n's ancestors’ are $\subseteq [s, e]$
- each object occurs in $O(\log n)$ nodes

Proof (Sketch, cnt.)

- to query find leaf corresponding to t
- look at ancestors to find all objects
- $O(\log m)$ results which can be combined in $O(\log m)$ time
- data structure is stored for each operation!
- $O(\log m)$ space overhead!
Lemma: Lower Bound
Rewinding m operations has a lower bound of $\Omega(m)$ overhead

Proof (Sketch)
- two values X and Y
- initially $X = \emptyset$ and $Y = \emptyset$
- supported operations
 - $X = x$
 - $Y+ = \text{value}$
 - $Y = X \cdot Y$
 - query Y

Proof (Sketch, cnt.)
- perform operations
 - $Y+ = a_n$
 - $Y = X \cdot Y$
 - $Y+ = a_{n-1}$
 - $Y = X \cdot Y$
 - ...
 - $Y+ = a_0$
- what are we computing here? PINGO
- $Y = a_n \cdot X^n + a_{n-1} X^{n-1} + \cdots + a_0$
- evaluate polynomial at $X = x$ using $t=0, X=x$
- this requires $\Omega(n)$ time [FHM01]
Priority Queue with
- insert
- delete-min

Delete-min makes PQ non-commutative

Lemma: Partial Retroactive PQ
A priority queue can be partial retroactive with only $O(\log n)$ overhead per partially retroactive operation.
what is the problem with
- INSERT(t, delete-min())
- INSERT(t, insert(i))

- INSERT(t, delete-min()) creates chain-reaction
- INSERT(t, insert(i)) creates chain-reaction

- can we solve DELETE(t, delete-min()) using INSERT(t, insert(i))? PINGO
- insert deleted minimum right after deletion
Priority Queues: Partial Retroactivity (3/6)

- Let Q_t be elements in PQ at time t
- What values are in Q_∞? Partial retroactivity
 - What value inserts $\text{INSERT}(t, \text{insert}(v))$ in Q_∞?
 - Values is $\max\{v, v': v' \text{ deleted at time } \geq t\}$
 - Maintaining deleted elements is hard
- Can change a lot

Definition: Bridge

A time t' is a bridge if $Q_{t'} \subseteq Q_\infty$

- All elements present at t' are present at t_∞
Lemma: Deletions after Bridges

If time t' is closest bridge preceding time t, then

$$\max\{v' : v' \text{ deleted at time } \geq t\} = \max\{v' \notin Q_\infty : v' \text{ inserted at time } \geq t'\}$$

Proof (Sketch)

- $\max\{v' \notin Q_\infty : v' \text{ inserted at time } \geq t'\} \in \{v' : v' \text{ deleted at time } \geq t\}$
 - if maximum value is deleted between t' and t
 - then this time is a bridge
 - contradicting that t' is bridge preceding t

Proof (Sketch, cnt.)

- $\max\{v' : v' \text{ deleted at time } \geq t\} \in \{v' \notin Q_\infty : v' \text{ inserted at time } \geq t'\}$
 - if v' is deleted at some time $\geq t$
 - then it is not in Q_∞

- what values are in Q_∞? partial retroactivity
- what value inserts INSERT(t, insert(v)) in Q_∞
- $\max\{v, v' \notin Q_\infty : v' \text{ inserted at time } \geq t'\}$
keep track of inserted values
use balanced binary search trees for $O(\log n)$ overhead

BBST for Q_∞ changed for each update
BBST where leaves are inserts ordered by time augmented with
 for each node x store $\max\{v' \notin Q_\infty : v' \text{ inserted in subtree of } x\}$
BBST where leaves are all updates ordered by time augmented with
 leaves store 0 for inserts with $v \in Q_\infty$, 1 for
 inserts with $v \notin Q_\infty$ and -1 for delete-mins
 inner nodes store subtree sums

how can we find bridges? PINGO
use third BBST and find prefix of updates summing to 0
requires $O(\log n)$ time as we traverse tree at most twice
this results in bridge t'

use second BBST to identify maximum value not in Q_∞ on path to t'
since BBST is augmented with these values,
this requires $O(\log n)$ time

update all BBSTs in $O(\log n)$ time
Lemma: Partial Retroactive PQ

A priority queue can be partial retroactive with only $O(\log n)$ overhead per partially retroactive operation.

- requires three BBSTs
- updates need to update all BBSTs
Nonoblivious Retroactivity

- priority queue with
 - insert
 - delete
 - min

- identify queries that are now incorrect
- using ray shooting 📔
Conclusion and Outlook

This Lecture
- retroactive data structures

Next Lecture
- geometric data structures

![Advanced Data Structures Diagram]

Advanced Data Structures

- **retroactive**
 - PQ
- **String B-tree**
- **SA & LCP**
- **Successor**
 - CSA
- **RMQ**
- **static/dynamic**
 - BV
 -succ. trees
- **range min-max tree**
- **succ. graphs**

17/17

2022-07-04 Florian Kurpicz | Advanced Data Structures | 08 Temporal Data Structures 2

Institute of Theoretical Informatics, Algorithm Engineering