Recap: 2-Dimensional Rectangular Range Searching

Important

- assume now two points have the same x- or y-coordinate

- generalize 1-dimensional idea

 - 1-dimensional
 - split number of points in half at each node
 - points consist of one value

 - 2-dimensional
 - points consist of two values
 - split number of points in half w.r.t. one value
 - switch between values depending on depth
Motivation

- hidden surface removal
- which pixel is visible
- important for rendering
z-Buffer Algorithm

- transform scene such that viewing direction is positive z-direction
- consider objects in scene in arbitrary order
- maintain two buffers
 - frame buffer currently shown pixel
 - z-buffer z-coordinate of object shown
- compare z-coordinate of z-buffer and object
z-Buffer Algorithm

- transform scene such that viewing direction is positive z-direction
- consider objects in scene in arbitrary order
- maintain two buffers
 - frame buffer ⊱ currently shown pixel
 - z-buffer ⊱ z-coordinate of object shown
- compare z-coordinate of z-buffer and object

- first sort object in depth-order
- depth-order may not always exist 🎨
- how to efficiently sort objects?
BSP Trees (1/2)

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments
BSP Trees (1/2)

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments
BSP Trees (1/2)

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

\[h^+ = \{(x_1, \ldots, x_d): a_1x_1 + \cdots + a_dx_d > 0\} \]

\[h^- = \{(x_1, \ldots, x_d): a_1x_1 + \cdots + a_dx_d < 0\} \]
BSP Trees (1/2)

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

- $h^+ = \{(x_1, \ldots, x_d): a_1 x_1 + \cdots + a_d x_d > 0\}$
- $h^- = \{(x_1, \ldots, x_d): a_1 x_1 + \cdots + a_d x_d < 0\}$
BSP Trees (1/2)

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

\[h^+ = \{ (x_1, \ldots, x_d) : a_1 x_1 + \cdots + a_d x_d > 0 \} \]
\[h^- = \{ (x_1, \ldots, x_d) : a_1 x_1 + \cdots + a_d x_d < 0 \} \]
BSP Trees (1/2)

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

- $h^+ = \{(x_1, \ldots, x_d): a_1 x_1 + \cdots + a_d x_d > 0\}$
- $h^- = \{(x_1, \ldots, x_d): a_1 x_1 + \cdots + a_d x_d < 0\}$
BSP Trees (1/2)

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

\[h^+ = \{(x_1, \ldots, x_d) : a_1 x_1 + \cdots + a_d x_d > 0\} \]

\[h^- = \{(x_1, \ldots, x_d) : a_1 x_1 + \cdots + a_d x_d < 0\} \]
BSP Trees (1/2)

- partition space using hyperplanes
- binary partition similar to kd-tree
- hyperplanes create half-spaces and cut objects into fragments

- \(h^+ = \{(x_1, \ldots, x_d) : a_1x_1 + \cdots + a_dx_d > 0\} \)
- \(h^- = \{(x_1, \ldots, x_d) : a_1x_1 + \cdots + a_dx_d < 0\} \)

- each split creates two nodes in a tree
- if number of objects in space is one: leaf
- otherwise: inner node
for leaf: store object/fragment
for inner node v: store hyperplane h_v and the objects contained in h_v
left child represents objects in upper half-space h^+
right child represents objects in lower half-space h^-
BSP Trees (2/2)

- for leaf: store object/fragment
- for inner node v: store hyperplane h_v and the objects contained in h_v
- left child represents objects in upper half-space h^+
- right child represents objects in lower half-space h^-
BSP Trees (2/2)

- for leaf: store object/fragment
- for inner node v: store hyperplane h_v and the objects contained in h_v
- left child represents objects in upper half-space h^+
- right child represents objects in lower half-space h^-
BSP Trees (2/2)

- For leaf: store object/fragment
- For inner node v: store hyperplane h_v and the objects contained in h_v
- Left child represents objects in upper half-space h^+
- Right child represents objects in lower half-space h^-
BSP Trees (2/2)

- for leaf: store object/fragment
- for inner node ν: store hyperplane \(h_\nu \) and the objects contained in \(h_\nu \)
- left child represents objects in upper half-space \(h^+ \)
- right child represents objects in lower half-space \(h^- \)
for leaf: store object/fragment
for inner node v: store hyperplane h_v and the objects contained in h_v
left child represents objects in upper half-space h^+
right child represents objects in lower half-space h^-

space of BSP tree is number of objects stored at all nodes
what about fragments?
too many fragments can make the tree big
Auto-Partitioning

- sorting points for kd-trees worked well
- BSP-tree is used to sort objects in dept-order
- auto-partitioning uses splitters through objects
 - 2-dimensional: line through line segments
 - 3-dimensional: half-plane through polygons
Painter’s Algorithm

- consider viewpoint p_{view}
- traverse through tree and always recurse on half-space that does not contain p_{view} first
- then scan-convert object contained in node
- then recurse on half-space that contains p_{view}
Constructing Planar BSP Trees (1/3)

- use auto-partitioning
- construction similar to construction of kd-tree
- store all necessary information
 - hyperplane
 - objects in hyperplane
- how to determine next hyperplane?
- creating fragments increases size of BSP tree
use auto-partitioning
construction similar to construction of kd-tree
store all necessary information
- hyperplane
- objects in hyperplane
how to determine next hyperplane?
creating fragments increases size of BSP tree

let s be object and ℓ(\(s\)) line through object
order matters
Constructing Planar BSP Trees (1/3)

- use auto-partitioning
- construction similar to construction of kd-tree
- store all necessary information
 - hyperplane
 - objects in hyperplane
- how to determine next hyperplane?
- creating fragments increases size of BSP tree

- let s be object and $\ell(s)$ line through object
- order matters
Constructing Planar BSP Trees (1/3)

- use auto-partitioning
- construction similar to construction of kd-tree
- store all necessary information
 - hyperplane
 - objects in hyperplane
- how to determine next hyperplane?
- creating fragments increases size of BSP tree

- let \(s \) be object and \(\ell(s) \) line through object
- order matters
Lemma: Number Line Fragments
The expected number of fragments generated when iterating through the line segments using a random permutation is $O(n \log n)$
Lemma: Number Line Fragments

The expected number of fragments generated when iterating through the line segments using a random permutation is $O(n \log n)$

Proof (Sketch)

- Distance of lines $\text{dist}_{s_i}(s_j) =$
 \[
 \begin{cases}
 \# \text{ segments inters. } \ell(s_i) & \text{between } s_i \text{ and } s_j \\
 \ell(s_i) \text{ inters. } s_j & \infty \text{ otherwise}
 \end{cases}
 \]

- Example on the board
Lemma: Number Line Fragments

The expected number of fragments generated when iterating through the line segments using a random permutation is $O(n \log n)$.

Proof (Sketch)

- distance of lines $\text{dist}_{s_i}(s_j) = \begin{cases}
\# \text{segments inters. } \ell(s_i) \\
\text{between } s_i \text{ and } s_j \\
\infty \\
\ell(s_i) \text{ inters. } s_j \\
\text{otherwise}
\end{cases}$
- example on the board

Proof (Sketch, cnt.)

- let $\text{dist}_{s_i}(s_j) = k$ and s_j, \ldots, s_{j_k} be segments between s_i and s_j
- what is the probability that $\ell(s_i)$ cuts s_j?
- this happens if no s_{j_x} is processed before s_i
- since order is random

$$
P[\ell(s_i) \text{ cuts } s_j] \leq \frac{1}{\text{dist}_{s_i}(s_j) + 2}$$
Proof (Sketch, cnt.)

- expected number of cuts

\[
\mathbb{E}[\text{# cuts generated by } s_i] \leq \sum_{j \neq i} \frac{1}{\text{dist}_{s_i}(s_j) + 2} \leq 2 \sum_{k=0}^{n-2} \frac{1}{k + 2} \leq 2 \ln n
\]

- all lines generate at most \(2n \ln n\) fragments
Proof (Sketch, cnt.)

- expected number of cuts

\[
\mathbb{E}[\text{# cuts generated by } s_i] \leq \sum_{j \neq i} \frac{1}{\text{dist}_{s_i}(s_j)} + 2 \leq 2 \sum_{k=0}^{n-2} \frac{1}{k+2} \leq 2 \ln n
\]

- all lines generate at most \(2n \ln n\) fragments

Lemma: BSP Construction

A BSP tree of size \(O(n \log n)\) can be computed in expected time \(O(n^2 \log n)\)
Proof (Sketch, cnt.)

- expected number of cuts

\[\mathbb{E}[\text{# cuts generated by } s_i] \leq \sum_{j \neq i} \frac{1}{\text{dist}_{s_i}(s_j) + 2} \leq 2 \sum_{k=0}^{n-2} \frac{1}{k + 2} \leq 2 \ln n \]

- all lines generate at most \(2n \ln n\) fragments

Lemma: BSP Construction

A BSP tree of size \(O(n \log n)\) can be computed in expected time \(O(n^2 \log n)\)

Proof (Sketch)

- computing permutation in linear time
- construction is linear in number of fragments to be considered
- number of fragments in subtree is bounded by \(n\)
- number of recursions is \(n \log n\)
Conclusion and Outlook

This Lecture
- BSP trees

Advanced Data Structures

- retroactive PQ
- String B-tree
- SA & LCP
- Kd- & Range Tree
- Successor
- CSA
- RMQ
- static/dynamic BV
- static/dynamic succ. trees
- range min-max tree
- succ. graphs
Conclusion and Outlook

This Lecture
- BSP trees

Next Lecture
- your presentations
Recap

- bit vectors
Recap

- bit vectors
- succinct trees
Recap

- bit vectors
- succinct trees
- dynamic bit vectors and trees
Recap

- bit vectors
- succinct trees
- dynamic bit vectors and trees
- predecessor and RMQ queries
Recap

- bit vectors
- succinct trees
- dynamic bit vectors and trees
- predecessor and RMQ queries
- suffix array and string B-tree
Recap

- bit vectors
- succinct trees
- dynamic bit vectors and trees
- predecessor and RMQ queries
- suffix array and string B-tree
- compressed suffix array
Recap

- bit vectors
- succinct trees
- dynamic bit vectors and trees
- predecessor and RMQ queries
- suffix array and string B-tree
- compressed suffix array
- persistent data structures
Recap

- bit vectors
- succinct trees
- dynamic bit vectors and trees
- predecessor and RMQ queries
- suffix array and string B-tree
- compressed suffix array
- persistent data structures
- retroactive data structures
Recap

- bit vectors
- succinct trees
- dynamic bit vectors and trees
- predecessor and RMQ queries
- suffix array and string B-tree
- compressed suffix array
- persistent data structures
- retroactive data structures
- orthogonal range search
Recap

- bit vectors
- succint trees
- dynamic bit vectors and trees
- predecessor and RMQ queries
- suffix array and string B-tree
- compressed suffix array
- persistent data structures
- retroactive data structures
- orthogonal range search
- binary space partitions