Text Indexing

Lecture 11: Top-k Document Retrieval

Florian Kurpicz
PINGO

https://pingo.scc.kit.edu/776916
Recap: Inverted Index and List Encodings

Definition: Inverted Index

Given a set of documents and terms that are contained in the documents, an inverted index stores the terms and associated with each term t

- the number of documents f_t that contain t and
- an ordered list $L(t)$ of documents containing t

1. The old night keeper keeps the keep in the town
2. In the big old house in the big old gown
3. The house in the town had the big old keep
4. Where the old night keeper never did sleep
5. The night keeper keeps the keep in the night
6. And keeps in the dark and sleeps in the light
Recap: Inverted Index and List Encodings

Definition: Inverted Index

Given a set of documents and terms that are contained in the documents, an inverted index stores the terms and associated with each term t:
- the number of documents f_t that contain t and
- an ordered list $L(t)$ of documents containing t

1. The old night keeper keeps the keep in the town
2. In the big old house in the big old gown
3. The house in the town had the big old keep
4. Where the old night keeper never did sleep
5. The night keeper keeps the keep in the night
6. And keeps in the dark and sleeps in the light

<table>
<thead>
<tr>
<th>term</th>
<th>f_t</th>
<th>$L(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>and</td>
<td>1</td>
<td>[6]</td>
</tr>
<tr>
<td>big</td>
<td>2</td>
<td>[2,3]</td>
</tr>
<tr>
<td>dark</td>
<td>1</td>
<td>[6]</td>
</tr>
<tr>
<td>had</td>
<td>1</td>
<td>[3]</td>
</tr>
<tr>
<td>house</td>
<td>2</td>
<td>[2,3]</td>
</tr>
<tr>
<td>in</td>
<td>5</td>
<td>[1,2,3,5,6]</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Recap: Inverted Index and List Encodings

Definition: Inverted Index

Given a set of documents and terms that are contained in the documents, an inverted index stores the terms and associated with each term t:

- the number of documents f_t that contain t and
- an ordered list $L(t)$ of documents containing t

<table>
<thead>
<tr>
<th>term</th>
<th>f_t</th>
<th>$L(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>and</td>
<td>1</td>
<td>[6]</td>
</tr>
<tr>
<td>big</td>
<td>2</td>
<td>[2, 3]</td>
</tr>
<tr>
<td>dark</td>
<td>1</td>
<td>[6]</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>had</td>
<td>1</td>
<td>[3]</td>
</tr>
<tr>
<td>house</td>
<td>2</td>
<td>[2, 3]</td>
</tr>
<tr>
<td>in</td>
<td>5</td>
<td>[1, 2, 3, 5, 6]</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

1. The old night keeper keeps the keep in the town
2. In the big old house in the big old gown
3. The house in the town had the big old keep
4. Where the old night keeper never did sleep
5. The night keeper keeps the keep in the night
6. And keeps in the dark and sleeps in the light

Florian Kurpicz | Text Indexing | 11 Top-k Document Retrieval

Institute for Theoretical Computer Science, Algorithmics II

3/18 2022-01-17
Recap: Inverted Index and List Encodings

Definition: Inverted Index

Given a set of documents and terms that are contained in the documents, an inverted index stores the terms and associated with each term t:

- the number of documents f_t that contain t and
- an ordered list $L(t)$ of documents containing t

List Encodings

- Δ-encoding
- unary- and ternary-encoding
- Elia-γ and -δ-encoding
- Golomb- and Fibonacci-encoding

<table>
<thead>
<tr>
<th>term</th>
<th>f_t</th>
<th>$L(t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>and</td>
<td>1</td>
<td>[6]</td>
</tr>
<tr>
<td>big</td>
<td>2</td>
<td>[2,3]</td>
</tr>
<tr>
<td>dark</td>
<td>1</td>
<td>[6]</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>had</td>
<td>1</td>
<td>[3]</td>
</tr>
<tr>
<td>house</td>
<td>2</td>
<td>[2,3]</td>
</tr>
<tr>
<td>in</td>
<td>5</td>
<td>[1,2,3,5,6]</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
Definition: Document Listing

Given a collection of D documents $\mathcal{D} = \{d_1, d_2, \ldots, d_D\}$ containing symbols from an alphabet $\Sigma = [1, \sigma]$ and a pattern $P \in \Sigma^*$, return all $j \in [1, D]$, such that d_j contains P.
Definition: Document Listing

Given a collection of D documents $\mathcal{D} = \{d_1, d_2, \ldots, d_D\}$ containing symbols from an alphabet $\Sigma = [1, \sigma]$ and a pattern $P \in \Sigma^*$, return all $j \in [1, D]$, such that d_j contains P.

- $d_1 = \text{ATA}$
- $d_2 = \text{TAAA}$
- $d_3 = \text{TATA}$

And for queries:
- $P = \text{TA}$ is contained in d_1, d_2, and d_3
- $P = \text{ATA}$ is contained in d_1 and d_3

- similar to last lecture
- get all documents containing a phrase
Basic Concepts

Definition: Document Concatenation

Given a collection of D documents $\mathcal{D} = \{d_1, d_2, \ldots, d_D\}$ containing symbols from an alphabet $\Sigma = [1, \sigma]$ where each document ends with a special symbol $\#$ not in Σ, the string

$$C = d_1d_2\ldots d_D$$

is called the concatenation of the documents with $\$ \notin \Sigma$ and $\$ < # < \alpha$ for all $\alpha \in \Sigma$

$$N = |C| = \sum_{i=1}^{D} |d_i|$$
Definition: Document Concatenation

Given a collection of D documents $\mathcal{D} = \{d_1, d_2, \ldots, d_D\}$ containing symbols from an alphabet $\Sigma = [1, \sigma]$ where each document ends with a special symbol $\#$ not in Σ, the string

$$C = d_1 d_2 \ldots d_D$$

is called the concatenation of the documents with $\# \not\in \Sigma$ and $\$ < \# < \alpha$ for all $\alpha \in \Sigma$.

$$N = |C| = \sum_{i=1}^{D} |d_i|$$
Suffix Array for Document Concatenation

- given a document concatenation C, build the suffix array
- requires $O(n)$ time
- entries in suffix array correspond to documents
Suffix Array for Document Concatenation

- given a document concatenation \(C \), build the suffix array
- requires \(O(n) \) time
- entries in suffix array correspond to documents

Definition: Document Array

Given a document concatenation \(C \) and its suffix array \(SA \), the document array \(DA \) is defined as

\[
DA[i] = j \iff \sum_{k=1}^{j-1} |d_k| < SA[i] \leq \sum_{k=1}^{j} |d_k|
\]

for \(i > 1 \) and \(DA[1] = 0 \)
Suffix Array for Document Concatenation

- given a document concatenation C, build the suffix array
- requires $O(n)$ time
- entries in suffix array correspond to documents

Definition: Document Array

Given a document concatenation C and its suffix array SA, the document array DA is defined as

$$DA[i] = j \iff \sum_{k=1}^{j-1} |d_k| < SA[i] \leq \sum_{k=1}^{j} |d_k|$$

for $i > 1$ and $DA[1] = 0$
Naive Document Listing

given document concatenation C, its suffix array SA, and document array DA

enhance suffix array to do pattern matching in $O(|P|)$ time only briefly discussed in lecture

find interval in suffix array matching P

report all documents in interval in DA

problem: $O(|P| + N)$ query time very bad
Naive Document Listing

- given document concatenation \(C \), its suffix array \(SA \), and document array \(DA \)
- enhance suffix array to do pattern matching in \(O(|P|) \) time only briefly discussed in lecture
- find interval in suffix array matching \(P \)
- report all documents in interval in \(DA \)
- problem: \(O(|P| + N) \) query time very bad

\[
\begin{array}{cccccccccccccccc}
T & A & T & A & # & T & A & A & # & T & A & T & A & # & \$
\end{array}
\]

\[
\begin{array}{cccccccccccccccc}
SA & 15 & 14 & 4 & 9 & 13 & 3 & 8 & 7 & 6 & 11 & 1 & 12 & 2 & 5 & 10
\end{array}
\]

\[
\begin{array}{cccccccccccccccc}
DA & 0 & 3 & 1 & 2 & 3 & 1 & 2 & 2 & 3 & 1 & 3 & 1 & 2 & 3
\end{array}
\]

\[
P = TA
\]
Naive Document Listing

- given document concatenation C, its suffix array SA, and document array DA
- enhance suffix array to do pattern matching in $O(|P|)$ time only briefly discussed in lecture
- find interval in suffix array matching P
- report all documents in interval in DA
- problem: $O(|P| + N)$ query time very bad

$P = TA$

<table>
<thead>
<tr>
<th>T</th>
<th>A</th>
<th>T</th>
<th>A</th>
<th>#</th>
<th>T</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>#</th>
<th>T</th>
<th>A</th>
<th>T</th>
<th>A</th>
<th>#</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>15</td>
<td>14</td>
<td>4</td>
<td>9</td>
<td>13</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>11</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>DA</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

$P = TA$
Naive Document Listing

- given document concatenation C, its suffix array SA, and document array DA
- enhance suffix array to do pattern matching in $O(|P|)$ time only briefly discussed in lecture
- find interval in suffix array matching P
- report all documents in interval in DA
- problem: $O(|P| + N)$ query time very bad

- is there a better solution?
- better query time
- better (or at least equal) space requirements?

$T = \text{TA TA # TA AA A # TA TA TA # }$

$SA = 15 14 4 9 13 3 8 7 6 11 1 12 2 5 10$

$DA = 0 3 1 2 3 1 2 2 2 3 1 3 1 2 3$

$P = TA$
Definition: Chain Array

Given document concatenation C, its suffix array SA, and document array DA, the chain array CA is defined as

$$CA[i] = \max\{j < i: DA[j] = DA[i]\} \cup \{0\}$$

- chains same documents together
- find lexicographically smaller suffix of same document
- use it to report documents just once
- build RMQ data structure for CA
Definition: Chain Array

Given document concatenation C, its suffix array SA, and document array DA, the chain array CA is defined as

$$CA[i] = \max\{j < i : DA[j] = DA[i]\} \cup \{0\}$$

- chains same documents together
- find lexicographically smaller suffix of same document
- use it to report documents just once
- build RMQ data structure for CA
Definition: Chain Array

Given document concatenation C, its suffix array SA, and document array DA, the chain array CA is defined as

$$CA[i] = \max\{j < i : DA[j] = DA[i]\} \cup \{0\}$$

- chains same documents together
- find lexicographically smaller suffix of same document
- use it to report documents just once
- build RMQ data structure for CA

Example

<table>
<thead>
<tr>
<th>T</th>
<th>A</th>
<th>T</th>
<th>A</th>
<th>#</th>
<th>T</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>#</th>
<th>T</th>
<th>A</th>
<th>T</th>
<th>A</th>
<th>#</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>SA</td>
<td>15</td>
<td>14</td>
<td>4</td>
<td>9</td>
<td>13</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>11</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>DA</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>11</td>
<td>9</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

$P = TA$
Definition: Chain Array

Given document concatenation C, its suffix array SA, and document array DA, the chain array CA is defined as

$$CA[i] = \max\{j < i : DA[j] = DA[i]\} \cup \{0\}$$

- chains same documents together
- find lexicographically smaller suffix of same document
- use it to report documents just once
- build RMQ data structure for CA

Optimal Time Document Listing (1/2) [Mut02]
Definition: Chain Array

Given document concatenation C, its suffix array SA, and document array DA, the chain array CA is defined as

$$CA[i] = \max\{j < i : DA[j] = DA[i]\} \cup \{0\}$$

- chains same documents together
- find lexicographically smaller suffix of same document
- use it to report documents just once
- build RMQ data structure for CA

Optimal Time Document Listing (1/2) [Mut02]

<table>
<thead>
<tr>
<th>T</th>
<th>A</th>
<th>T</th>
<th>A</th>
<th>#</th>
<th>T</th>
<th>A</th>
<th>A</th>
<th>A</th>
<th>#</th>
<th>T</th>
<th>A</th>
<th>T</th>
<th>A</th>
<th>#</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>SA</td>
<td>15</td>
<td>14</td>
<td>4</td>
<td>9</td>
<td>13</td>
<td>3</td>
<td>8</td>
<td>7</td>
<td>6</td>
<td>11</td>
<td>1</td>
<td>12</td>
<td>2</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>DA</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>11</td>
<td>9</td>
<td>12</td>
</tr>
</tbody>
</table>

$P = TA$
Optimal Time Document Listing (2/2)

- given document concatenation C, its suffix array SA, document array DA, and chain array CA with RMQ data structure
- find interval $SA[s, e]$ as before
- report document $DA[m]$ only if $CA[m] < s$ for $m \in [s, e]$

- find all positions where $CA[m] < s$ with RMQs
- get arg min of CA in interval and report $DA[m]$ if $CA[m] < s$
- split interval in $[s, m - 1]$ and $[m + 1, e]$ and recurse
- ignore intervals where nothing is reported

Lemma: Optimal Document Listing

Listing all documents containing a pattern P can be done in $O(|P| + occ)$ time
Top-k Document Retrieval for Single-Term Frequencies

Definition: Top-k Document Retrieval

Given a collection of D documents $\mathcal{D} = \{d_1, d_2, \ldots, d_D\}$ containing symbols from an alphabet $\Sigma = [1, \sigma]$, a pattern $P \in \Sigma^*$, and a threshold k, return the top-k documents $j \in [1, D]$, such that d_j contains P most often.

- retrieve occ distinct documents where P occurs
- determine frequency of P in each document
- maintain min-heap of (frequency, document)-pairs of size k
- total time: $O(|P| + occ(\lg k + \lg N))$
Top-k Document Retrieval for Single-Term Frequencies

Definition: Top-k Document Retrieval

Given a collection of D documents $\mathcal{D} = \{d_1, d_2, \ldots, d_D\}$ containing symbols from an alphabet $\Sigma = [1, \sigma]$, a pattern $P \in \Sigma^*$, and a threshold k, return the top-k documents $j \in [1, D]$, such that d_j contains P most often.

- retrieve occ distinct documents where P occurs
- determine frequency of P in each document
- maintain min-heap of $(frequency, document)$-pairs of size k
- total time: $O(|P| + occ(lg k + lg N))$

- occ can be N
- can we do better
Definition: Top-k Document Retrieval

Given a collection of D documents $\mathcal{D} = \{d_1, d_2, \ldots, d_D\}$ containing symbols from an alphabet $\Sigma = [1, \sigma]$, a pattern $P \in \Sigma^*$, and a threshold k, return the top-k documents $j \in [1, D]$, such that d_j contains P most often.

- retrieve occ distinct documents where P occurs
- determine frequency of P in each document
- maintain min-heap of (frequency,document)-pairs of size k
- total time: $O(|P| + occ(\lg k + \lg N))$

occ can be N
- can we do better

- optimal solution: $O(|P| + k)$ query time in $O(N \lg N)$ bits [NN12]
- now: $O(m + k \lg N)$ [GKN17]
Recap: Suffix Tree

Definition: Suffix Tree [Wei73]

A suffix tree (ST) for a text T of length n is a

- compact trie
- over $S = \{T[1..n], T[2..n], \ldots, T[n..n]\}$

suffixes are prefix-free due to sentinel
Recap: Suffix Tree

Definition: Suffix Tree [Wei73]

A suffix tree (ST) for a text T of length n is a

- compact trie
- over $S = \{T[1..n], T[2..n], \ldots, T[n..n]\}$
 - suffixes are prefix-free due to sentinel

Let $G = (V, E)$ be a compact trie with root r and a node $v \in V$, then

- $\lambda(v)$ is the concatenation of labels from r to v
- $d(v) = |\lambda(v)|$ is the string-depth of v
 - string depth \neq depth
Definition: Suffix Tree [Wei73]

A suffix tree (ST) for a text T of length n is a
- compact trie
- over $S = \{ T[1..n], T[2..n], \ldots, T[n..n] \}$
 - suffixes are prefix-free due to sentinel

Let $G = (V, E)$ be a compact trie with root r and a node $v \in V$, then
- $\lambda(v)$ is the concatenation of labels from r to v
- $d(v) = |\lambda(v)|$ is the string-depth of v
 - string depth \neq depth
Generalized Suffix Tree for Top-k Document Retrieval (1/4)

- a generalized suffix tree is a suffix tree for a set of strings
- document concatenation is a set of strings

Mark Document Numbers
- mark all leaves with DA-entry i

Diagram:
- Nodes represent leaves marked with DA-entry i
- Edges show common ancestors of marked leaves
- A, TA, AA, $TA#$, $A#$, $A\#$, $\#$ symbols indicate document concatenation
a generalized suffix tree is a suffix tree for a set of strings

document concatenation is a set of strings

Mark Document Numbers

- mark all leaves with DA-entry i
- add i to nodes that are lowest common ancestor of two leaves marked with i
a generalized suffix tree is a suffix tree for a set of strings

document concatenation is a set of strings

Mark Document Numbers

- mark all leaves with DA-entry i
- add i to nodes that are lowest common ancestor of two leaves marked with i
Inner Node Names

- Leaf index is rank of suffix in \([1, N]\) in leaf.
- Each inner node gets \(v\) gets \(id(v)\), which is the leaf index of rightmost child in leftmost leaf.

- \(id(v) \neq id(w)\) for all inner nodes \(v \neq w\).
- \(id(v) \in [1, N]\).
- \(id(v) - 1 \in [lb(v), rb(v)],\) with \(intervalilb(v), rb(v)\) being \(v\)'s suffix array interval.

- Example on the board.

Generalized Suffix Tree for Top-\(k\) Document Retrieval (2/4)
connect node with id \(i \) to closest ancestor containing id \(i \)

- nodes marked with id \(i \) correspond to suffix tree of \(d_i \)
- document id \(i \) occurs at most \(|d_i|\) times in leaves and \(|d_i| - 1\) times in inner nodes
- there are at most \(O(N) \) document ids in the generalized suffix tree
Generalized Suffix Tree for Top-\(k\) Document Retrieval (4/4)

- to retrieve documents containing pattern \(P\)
- select locus of \(P\) first node \(v\) with \(\lambda(v)\) is prefix of \(P\)

- per document at most one pointer leaves subtree of locus \(v\)
- associate each pointer with number of occurrences of documents in pointers source (weight)
- pointer of document \(i\) leaving subtree has maximum weight of all document \(i\) pointers in subtree
- document listing is listing all documents of pointers leaving subtree
Representing Pointers on a Grid (1/2)

- now: report top-k documents
- represent pointers in a grid
- for simplicity only weights ≥ 2 starting at inner node
- assign each pointer to (x, y)-coordinate
 - x: id(source)
 - y: d (target)
- each point is associated with pointers weight
- given a locus v, all pointers leaving the subtree have y-coordinate $< d(v)$
Representing Pointers on a Grid (2/2)

- grid can be represented using wavelet tree
- range maximum query for each level

Answering Queries

- find string depth of locus in suffix tree
- answer range query in grid
- if represented as wavelet tree, use RMQs on each level to report top-\(k\) documents
- if \(\leq k\) documents, use document listing
- total time: \(O(m + k \log N)\)

- example range queries in wavelet trees on the board
Conclusion and Outlook

This Lecture
- document listing
- top-\(k\) document retrieval (single term frequency)

Linear Time Construction

- ST
- SA
- WT
- LZ
- LCP
- BWT
- FM-Index
- \(r\)-Index
Conclusion and Outlook

This Lecture
- document listing
- top-k document retrieval (single term frequency)

Next Lecture
- longest common extension queries

Linear Time Construction

Diagram showing relationships between data structures such as ST, SA, WT, LZ, LCP, BWT, FM-Index, and r-Index.
Oral Exam
- registration is open
- is there anybody studying w.r.t. “Prüfungsordnung vor 2015”

Evaluation
https://onlineumfrage.kit.edu/evasys/online.php?p=ZF8QT
Bibliography I

