High Quality (Hyper-)Graph Partitioning

Algorithm Engineering for NP-hard Graph Problems
Yaroslav Akhremtsev, Peter Sanders, Sebastian Schlag and Christian Schulz

1. The \(\lambda \)-balanced (Hyper-)Graph Partitioning Problem

- Graph: \(G = (V, E) \)
 - models relationships between objects
 - dyadic (2 ary) relationships

- Hypergraph: \(H = (V, E) \)
 - generalization: edges connect \(\geq 2 \) vertices
 - arbitrary (\(d \) ary) relationships

Task:
- Partition \(G / H = (V, E : V \rightarrow \mathbb{R}_+, \omega : E \rightarrow \mathbb{R}_+) \) into \(k \) disjoint blocks \(V_1, \ldots, V_k \) such that
 - blocks \(V_i \) are roughly equal-sized: \(\epsilon(V_i) \leq (1 + \epsilon) \frac{|V|}{k} \)
 - objective: the cut is minimized. \(\text{cut} = \sum_{e \in \text{cut}} w(e) \), connectivity = \(\sum_{e \in \text{cut}} (\lambda - 1) w(e) \), where \(\lambda = \# \text{blocks connected by edge } e \)

2. Applications

- VLSI Design
- Warehouse Optimization
- Complex Networks
- Route Planning
- Simulation
- Scientific Computing

3. Multilevel (Hyper-)Graph Partitioning

- Input (Hyper-)Graph
- Output Partition
- match / cluster
- contract
- refine
- uncontract
- 1. Coarsening
- 2. Initial Partitioning
- 3. Uncoarsening

4. Algorithmic Innovations

- Min-Hash Based Sparsification
- Community-Aware Coarsening
- Max-Flow Min-Cut Refinement
- Engineered FM Local Search
- Global Search Strategies
- Advanced Memory Models / Parallelization

5. Open Source (Hyper-)Graph Partitioning Software

- KaHIP - Karlsruhe High Quality Partitioning:
 - \url{http://algo2.iti.kit.edu/kahip/}
 - multilevel graph partitioning algorithms
 - \(n \)-level approach
 - parallel evolutionary algorithms
 - cut and connectivity optimization
 - perfectly balanced partitioning
 - recursive bisection & direct \(k \)-way

- KaHyPar - Karlsruhe Hypergraph Partitioning:
 - \url{http://www.kahypar.org}
 - multilevel graph partitioning algorithms
 - \(n \)-level approach
 - parallel evolutionary algorithms
 - cut and connectivity optimization
 - perfectly balanced partitioning
 - recursive bisection & direct \(k \)-way

6. Experimental Results

- Extensive experiments on large benchmark sets of graphs and hypergraphs confirm that KaHIP and KaHyPar compute high-quality solutions – outperforming competing state-of-the-art tools.

Selected References

Sebastian Schlag
Institute of Theoretical Informatics, Algorithms II
sebastian.schlag@kit.edu