
Advanced Route Planning in
Transportation Networks

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie

genehmigte

Dissertation

von

Robert Geisberger

aus München

Tag der mündlichen Prüfung: 4. Februar 2011

Erster Gutachter: Prof. Dr. Peter Sanders

Zweite Gutachterin: Prof. Dr. Hannah Bast

Abstract
Many interesting route planning problems can be solved by computing shortest paths
in a suitably modeled, weighted graph representing a transportation network. Such net-
works are naturally road networks or timetable networks of public transportation. For
large networks, the classical Dijkstra algorithm to compute shortest paths is too slow.
And therefore have faster algorithms been developed in recent years. These new algo-
rithms have in common that they use precomputation and store auxiliary data to speed-
up subsequent shortest-path queries. However, these algorithms often consider only
the simplest problem of computing a shortest path between source and target node in
a graph with non-negative real edge weights. But real-life problems are often not that
simple, and therefore, we need to extend the problem definition. For example, we need
to consider time-dependent edge weights, road restrictions, or multiple source and target
nodes. While some of the previous algorithms can be used to solve such extended prob-
lems, they are usually inefficient. It is therefore important to develop new algorithmic
ingredients, or even completely new algorithmic ideas. We contribute solutions to three
practically relevant classes of such extended problems: public transit networks, flexible
queries, and batched shortest paths computation. These classes are introduced in the
following paragraphs.

Public transit networks, for example train and bus networks, are inherently event-
based, so that a time-dependent model of the network is mandatory. Furthermore, as
they are much less hierarchically structured than road networks, algorithms for road
networks perform much worse or even fail, depending on the scenario. We contribute
to both cases, first an algorithm that has its initial ideas taken from a technique for road
networks, but with significant algorithmic changes. It is based on the concept of node
contraction, but now applied to stations. A key point to the success was the usage of
a station graph model, having a single node per station. In contrast, the established
time-expanded or time-dependent models require multiple nodes per station in general.
And second, we contribute to a new algorithm specifically designed for transit networks
supporting a fully realistic scenario. It is based on the concept of transfer patterns: a
connection is described as the sequence of station where a transfer happens. Although
there are potentially hundreds of optimal connections between a pair of stations during
a week, the set of transfer patterns is usually much smaller. The main problem is the
computation of the transfer patterns. A naïve way would be a Dijkstra-like one-to-all
query from each station. But this is too time-consuming so that we develop heuristics to
achieve a feasible precomputation time.

The term flexible queries refers to the problem of computing shortest paths with
further query parameters, such as the edge weight (e. g. travel time or distance), or re-
strictions (e. g. no toll roads). While Dijkstra’s algorithm only requires small changes to
support such query parameters efficiently, existing algorithms based on precomputation
become much more complicated. A naïve adaption of these algorithms would perform
a separate precomputation for each possible value of the query parameters, but this is

4

highly inefficient. We therefore design algorithms with a single joint precomputation.
While it is easy to achieve a better performance than the naïve approach, it is a great
algorithmic challenge to be almost as good as the previous algorithms that do not sup-
port flexibility. Also, depending on the query parameters, only parts of the precomputed
data are interesting, and we need effective algorithms to prune the uninteresting data.
Another obstacle is the classification of roads and junctions. For example, fast highways
are very important for the travel time metric, but less so for distance metric. The so called
“hierarchy” of the network changes with different values of the query parameters. This
highly affects the efficiency of the previous algorithms and we develop new techniques
to cope with that.

Batched shortest paths computation comprises problems considering multiple
source-target pairs. The classical problem is the computation of a shortest paths dis-
tance table between a set of source nodes S and a set of target nodes T . Of course, any of
the previous algorithms can compute this table. But much faster algorithms are possible,
which exploit that we want to compute the distances between all pairs in S×T . Such
tables are important to solve routing problems for logistics, supply chain management
and similar industries. We design an algorithm to perform this table computation in the
time-dependent scenario, where travel times depend on the departure time. There, the
space-efficiency is very important, as an edge weight is described as a travel time func-
tion mapping the departure time to the travel time. They require much more space than
a single real edge weight. Furthermore, the basic operations on edge weights are com-
putationally more expensive on travel time functions than they are on single real values.
Therefore, it pays off to perform additional computations to reduce the number of these
operations. We will also show that we can develop interesting new algorithms for a va-
riety of other problems requiring batched shortest paths computations. These problems
have in common that a lot of distance computations are necessary, but not in the form of
a table. The structure of the problem allows further engineering to improve the perfor-
mance. For example, we develop a ride sharing algorithm that finds among thousands
of offers the one with the minimal detour to satisfy a request within milliseconds. We
improve the performance by limiting the maximum allowed detour. Another example is
the fast computation of the closest points-of-interest.

Acknowledgements
This thesis would not have been written without the support of a number of people whom
I want to express my gratitude. First in line is Peter Sanders, thank you for the numerous
discussions and advice that helped me steering through my studies. Thank you, G. Veit
Batz, for being a great office mate that was always available for interesting discussions,
whether they were work-related or not. Thank you, Dominik Schultes, for introducing
me into the world of route planning at the time I was still an undergraduate student.
Thank you, Hannah Bast, for letting me be a part of your research team at Google, and for
your willingness to review my thesis. Thank you, Erik Carlsson, Jonathan Dees, Daniel
Delling, Arno Eigenwillig, Chris Harrelson, Moritz Kobitzsch, Dennis Luxen, Sabine
Neubauer, Veselin Raychev, Michael Rice, Dennis Schieferdecker, Nathan Sturtevant,
Vassilis Tsotras, Christian Vetter, Fabien Viger, and Lars Volker for great cooperation
on various publications on diverse areas of route planning. Thank you, Fabian Blaicher,
Sebastian Buchwald, and Fabian Geisberger for proofreading this thesis. Thank you,
Anja Blancani and Norbert Berger for alleviating the burden of administration. My work
has been partially supported by DFG grant SA 933/5-1 and the “Concept for the Future”
of Karlsruhe Institute of Technology within the framework of the German Excellence
Initiative.

6

Contents

1 Introduction 11
1.1 Motivation . 11
1.2 Basic Route Planning . 11
1.3 Advanced Route Planning . 16

1.3.1 Time-dependency in Road Networks 17
1.3.2 Public Transportation . 18
1.3.3 Flexible Queries in Road Networks 20
1.3.4 Batched Shortest Paths Computation 22

1.4 Main Contributions . 24
1.4.1 Overview . 24
1.4.2 Public Transportation . 24
1.4.3 Flexible Queries in Road Networks 26
1.4.4 Batched Shortest Paths Computation 27

1.5 Outline . 29

2 Fundamentals 31
2.1 Graphs and Paths . 31
2.2 Road Networks . 31

2.2.1 Static Scenario . 31
2.2.2 Time-dependent Scenario . 32
2.2.3 Flexible Scenario . 33

2.3 Public Transportation Networks . 35
2.3.1 Time-dependent Graph . 37
2.3.2 Time-expanded Graph . 38

3 Basic Concepts 41
3.1 Dijkstra’s Algorithm . 42
3.2 Node Contraction . 43

3.2.1 Preprocessing . 44
3.2.2 Query . 46

3.3 A* Search . 48
3.3.1 Landmarks (ALT) . 48
3.3.2 Bidirectional A* . 49

3.4 Combination of Node Contraction and ALT 49

8 Contents

4 Public Transportation 53
4.1 Routing with Realistic Transfer Durations 53

4.1.1 Central Ideas . 53
4.1.2 Station Graph Model . 53
4.1.3 Query . 58
4.1.4 Node Contraction . 62
4.1.5 Algorithms for the Link and Minima Operation 66
4.1.6 Experiments . 77

4.2 Fully Realistic Routing . 80
4.2.1 Central Ideas . 80
4.2.2 Query . 81
4.2.3 Basic Algorithm . 82
4.2.4 Hub Stations . 86
4.2.5 Walking between Stations . 88
4.2.6 Location-to-Location Query 91
4.2.7 Walking and Hubs . 93
4.2.8 Further Refinements . 102
4.2.9 Heuristic Optimizations . 102
4.2.10 Experiments . 105

4.3 Concluding Remarks . 108

5 Flexible Queries in Road Networks 111
5.1 Central Ideas . 111
5.2 Multiple Edge Weights . 113

5.2.1 Node Contraction . 113
5.2.2 A* Search using Landmarks (ALT) 118
5.2.3 Query . 119
5.2.4 Experiments . 124

5.3 Edge Restrictions . 134
5.3.1 Preliminaries . 134
5.3.2 Node Contraction . 135
5.3.3 A* Search using Landmarks (ALT) 139
5.3.4 Query . 140
5.3.5 Experiments . 142

5.4 Concluding Remarks . 150

Contents 9

6 Batched Shortest Paths Computation 153
6.1 Central Ideas . 153

6.1.1 Buckets . 154
6.1.2 Further Optimizations . 154

6.2 Time-dependent Travel Time Table Computation 156
6.2.1 Preliminaries . 156
6.2.2 Five Algorithms . 158
6.2.3 Computation of Search Spaces 161
6.2.4 Approximate Travel Time Functions 162
6.2.5 On Demand Precomputation 164
6.2.6 Experiments . 165

6.3 Ride Sharing . 176
6.3.1 Matching Definition . 176
6.3.2 Matching Algorithm . 177
6.3.3 Experiments . 180

6.4 Closest Point-of-Interest Location . 185
6.4.1 POI close to a Node . 185
6.4.2 POI close to a Path . 187
6.4.3 k-closest POI . 189
6.4.4 Experiments . 193

6.5 Concluding Remarks . 201

7 Discussion 203
7.1 Conclusion . 203
7.2 Future Work . 204
7.3 Outlook . 204

Bibliography 207

Index 219

List of Notation 221

Zusammenfassung 225

10 Contents

1
Introduction

1.1 Motivation
Optimizing connections in transportation networks is a popular problem that arises in
many different scenarios, such as car journeys, public transportation, or logistics opti-
mization. People expect computers to assist them with these problems in a comfortable
and fast way, whether they are at home, at work, or on a journey. This creates a demand
for efficient algorithms to solve these problems. We see that in the existence of many
online routing services, mobile navigation devices, and industrial tour planners.

The basic concept of a routing algorithm is to model the specific problem in a suit-
able graph and to compute a shortest path to solve it. While it is simple to come up
with an algorithm that just solves the problem, it is much harder to engineer an efficient
algorithm. Furthermore, the problems vary in different scenarios, making it impossible
to create a single efficient algorithm for all of them. There are already efficient algo-
rithms for basic scenarios, but the more advanced a scenario gets, the more attention is
required to develop an efficient algorithm. For example, routing in public transportation
networks is fundamentally different and much more difficult than routing in road net-
works, and therefore different algorithms are required. Of course, these algorithms also
have some basic concepts in common, but much less than one would expect. Crucial for
their efficiency is their specific development and engineering to a certain scenario.

The next two sections will cover problem statements and the current state of the art.
We will begin with basic route planning, a largely solved problem, and then introduce
advanced route planning problems and previously existing work.

1.2 Basic Route Planning
Basic route planning models the problem as a graph. The nodes of the graph represent
geographic locations, such as junctions, and edges connect these locations, for example
with roads. A valid connection in this model, from a source node to a target node, is
a sequence of contiguous edges connecting source and target. Each edge is assigned a

12 Chapter 1. Introduction

non-negative weight, for example the length of the road or an estimation of the travel
time required to reach from one end to the other. The optimization problem is to find a
shortest path between a source node and a target node, that is a valid connection with
minimal length (sum of edge weights).

In the last decade, most research focused on basic route planning in road networks,
developing a plethora of increasingly faster speed-up techniques. Before that, only some
classical algorithms existed that were not efficient on large graphs. The new faster algo-
rithms usually perform a precomputation step for a graph that is independent of source
and target nodes of subsequent queries. The auxiliary precomputation data helps to
speed-up arbitrary shortest-path queries.

We judge the efficiency of these algorithms experimentally in the three-dimensional
space of precomputation time, precomputation space, and query time compared on iden-
tical graphs. In each dimension, a smaller value is better than a larger one. A theoretical
comparison of the fast algorithms is not possible, as there is no thorough theoretical work
that matches the observed performance. A first attempt [3] to grasp the performance of
some of the existing fast algorithms relies on a new graph property, that is, however,
currently impossible to compute for large road networks, as it requires to solve NP-hard
problems. Furthermore, this work does not allow to distinguish the performance of most
of the examined fast algorithms. One reason is that constant factors are ignored in the
comparison, but they are crucial for the practical usability of an algorithm on a specific
graph.

The faster algorithms are divided into hierarchical approaches, goal-directed ap-
proaches, and combinations of both. In the following we will explain the most important
algorithms shortly. Schultes [129] and Delling et al. [43] provide a chronological devel-
opment of these algorithms, including some nowadays superseded ones.

Classical Algorithms

Dijkstra’s Algorithm [50] is the fundamental shortest-path algorithm. It computes the
shortest paths from a single source node to all other reachable nodes in the graph by
maintaining tentative distances for each node. The algorithm visits (or settles) the nodes
in order of their shortest-path distances. We can stop the search as soon as all target
nodes are settled. No precomputation is required. Current implementations are based on
a priority queue that maintains the tentative distances. In the worst-case, O(n) values are
extracted from the queue, and O(m) values inserted or updated, where n is the number of
nodes, and m is the number of edges in the graph. Therefore, an implementation using
Fibonacci heaps [133] has a runtime of O(m+n logn) in the comparison based computa-
tion model. Sophisticated integer priority queues [135] can decrease the runtime. From
a worst-case perspective, Dijkstra’s algorithm largely solves the single-source shortest-
path problem.

We usually compare faster algorithms by the speed-up over Dijkstra’s algorithm, and
if applicable, in the number of settled nodes. This provides experimental results that

1.2. Basic Route Planning 13

can be compared to new algorithms mostly independent of the used hardware. A more
detailed description of Dijkstra’s algorithm is provided in Section 3.1.

A straightforward improvement of Dijkstra’s algorithm is bidirectional search [35].
An additional search from the target node is performed in backward direction, and the
whole search stops as soon as both directions meet. However, it can only be applied if
the target node is known. Empirically, bidirectional search roughly halves the number
of settled nodes.

A* Search [77] is a technique heavily used in artificial intelligence. It directs the search
of Dijkstra’s algorithm towards the target by using lower bounds on the distance to the
target. Now, we always settle the node in order of their tentative distance from the source
plus the lower bound to the target. The efficiency of this approach highly depends on the
lower bounds. The simplest lower bound is based on the geographic coordinates of the
nodes, but this results in poor performance on road networks. In case of travel time edge
weights, even a slow-down of the query is possible [69].

Complete Distance Table. Precompute and store all shortest paths in the graph. This
reduces a shortest-path query to a simple look-up, but requires massive precomputation
time and space, and is therefore practically infeasible on large graphs.

Hierarchical Approaches

Reach-Based Routing. A node with high reach lies in the middle of long shortest
paths [73]. The reach value is defined as the minimum of the lengths of the subpaths
dividing the shortest path at the node, and maximized over all shortest paths. Then, a
shortest-path search prunes nodes with a reach to small to get to source and target from
there. The basic approach was considerably strengthened by an integration [70, 71] of
shortcuts [123, 124], i. e., single edges that represent whole paths in the original graph.

Highway Hierarchies [123, 124, 129] creates a hierarchy of levels by alternating be-
tween node and edge contraction. Node contraction removes low-degree nodes and in-
troduces shortcut edges to preserve shortest-path distances. The edge reduction then
removes non-highway edges that only form a shortest paths of small length. The bidi-
rectional query in this hierarchy subsequently proceeds only in higher levels. An im-
provement is to stop the contraction after only a small core graph is remaining, and to
compute a complete distance table for the core.

Highway-Node Routing [130, 129] computes for a subset of nodes shortcut edges such
that the subgraph induced by this subset of nodes preserves the shortest-path distances.
This is done by performing a Dijkstra search from each node in the subset, until all
computed paths to unsettled nodes contain a covering node in this subset. Shortcuts are

14 Chapter 1. Introduction

introduced to all covering nodes. We can recursively select a subset of nodes to obtain a
hierarchy, with the smallest subset of nodes on top. A bidirectional query algorithm then
never moves downwards in the hierarchy. The correctness is ensured by the shortcuts. To
improve the efficiency of the algorithm, several pruning techniques have been developed.

Contraction Hierarchies [67, 59] intuitively assign a distinct “importance level” to
each node. Then, the nodes are contracted in order of importance by removing them
from the graph and adding shortcuts to preserve the shortest-path distances between the
more important nodes. A bidirectional query only relaxes edges leading to more im-
portant nodes. Correctness is ensured by the added shortcuts. Therefore, it is similar
to highway-node routing with n levels – one level for each node. However, the way
shortcuts are added is different, and also the hierarchical classification. In comparison
to highway hierarchies, contraction hierarchies are solely based on a more sophisticated
node contraction. Interestingly, this algorithm is significantly more efficient than high-
way hierarchies. As node contraction is the most efficient hierarchical approach that
can be adapted to many scenarios, we use it in our algorithms and give a more detailed
description in Section 3.2.

Transit nodes are important nodes that cover long shortest paths. A complete distance
table between all transit nodes is computed. For each node a subset of these transit nodes
that cover long-distance shortest paths is computed, including their distance from the
node. In road networks, this subset of nodes, called access nodes, is small. So a long-
distance query can compute the shortest-past distance by just comparing all distances
via each pair of access station of source and target node. The simpler short-distance
queries are answered using another speed-up technique. This approach was first pro-
posed by Bast, Funke and Matijevic [11, 12], with a simple geometric implementation.
Shortly afterwards, Sanders and Schultes combined the approach with highway hierar-
chies [125, 13, 14]. Using contraction hierarchies to select transit nodes further improved
the performance [67, 59].

Goal-Directed Approaches

ALT [69, 72] is based on A∗, Landmarks and the Triangle inequality. The A∗ search
is significantly improved on road networks when the lower bounds are computed using
shortest-path distances from and to a small set of landmarks. Good landmarks are posi-
tioned behind the target, when viewed from the source, and vice versa. Therefore, they
are selected at the far ends of the network. As A∗ search just needs lower bounds, ALT
can be easily adapted to many scenarios. Using ALT alone only gives mild speed-ups,
but it is a powerful technique in combination with others. We use it in our algorithms
and give a more detailed description in Section 3.3.

1.2. Basic Route Planning 15

Edge Labels. The idea behind edge labels is to precompute information for an edge
e that specifies a set of nodes M(e) with the property that M(e) is a superset of all
nodes that lie on a shortest path starting with e. In a shortest-path query, an edge e
needs not be relaxed if the target is not in M(e). The first work specified M(e) by
an angular range [131]. Geometric containers [139, 141] provide better performance.
Faster precomputation is possible by partitioning the graph into k regions with a small
number of boundary nodes. Now M(e) is represented as a k-vector of edge flags, also
called arc flags [97, 96, 106, 107, 128, 81, 98, 80], where flag i indicates whether there
is a shortest path containing e that leads to a node in region i.

Combined Approaches

A combination of the previously mentioned techniques usually results in a more efficient
algorithm than a technique alone. A common classical scheme is to use a hierarchical
technique and apply a goal-directed technique only on a core of the most important nodes
identified by the hierarchical technique [131, 132, 83, 82]. This significantly reduces the
preprocessing time and space of the goal-directed technique, and accelerates the query.

REAL [70, 71] is a combination of REach and ALt. Storing landmark distances only
with the nodes with high reach values can reduce memory consumption significantly.

SHARC [20, 21, 38] combines SHortcuts and multi-level ARC flags. Shortcuts allow to
unset arc flags of edges that are represented by the shortcut, reducing the search space.
The query algorithm can be unidirectional, which is advantageous in scenarios where
bidirectional search is prohibitive. But a bidirectional query algorithm is faster in the
basic scenario.

Core-ALT [22, 127, 23] iteratively contracts nodes that do not require too many short-
cuts. Then, on the remaining Core, a bidirectional ALT algorithm is applied. As source
and target node of a query are not necessarily in the core, proxy nodes in the core [71]
are used. The best proxy nodes are the core entry and exit node of a shortest path for
source to target. However, as the query wants to compute a shortest path and does not
know it in advance, the core nodes that are closest to source and target are used.

CHASE [22, 127, 23] combines Contraction Hierarchies and Arc flagS. First, a com-
plete contraction hierarchy is created. Then, on a core of the most important nodes,
including shortcuts, arc flags are computed. The query needs only use the edges with arc
flags set for one of the regions where the other search direction has an entry node into
the core. This results in a very fast algorithm, only algorithms based on transit nodes are
faster.

16 Chapter 1. Introduction

Transit Nodes + Arc Flags. The transit nodes approach is made even faster by com-
puting flags for each access station [22, 23]. In a sense, this computes arc flags when
the set of access station is viewed as a set of shortcut arcs to them. The speed-up over
Dijkstra’s algorithm is more than 3 000 000 on a Western European road network.

1.3 Advanced Route Planning
Basic routing algorithms struggle with advanced routing scenarios, so there is a need to
algorithmically enhance them or even to develop completely new algorithms. The need
for such advanced scenarios stems from diverse advantages:

• Basic routing only considers a simple edge weight function that insufficiently
models reality. For example, travel times change depending on the traffic con-
ditions. With historical traffic data and traffic prediction models, it is possible to
forecast travel times more accurately.

• The limitation to a single edge weight function is not desirable for a user that likes
to have choices. Different edge weights allow to optimize for different criteria, for
example travel time, fuel economy, or distance. Furthermore, trade-offs in such
criteria are important, as usually more than one criterion is important.

• Not all routes are open to every type of vehicle, or a fee needs to be paid. So the
computation of a shortest path with individual restrictions on certain routes is a
desirable feature.

• Routing in public transportation networks is inherently time-dependent, and re-
quires multi-criteria optimization, as at least the travel time and the number of
transfers are important. Quickly finding good routes makes using public transit
more comfortable and helps to increase their popularity.

• Certain problems, such as the vehicle routing problem, require the computation of
a large number of related shortest paths. This relation can be exploited to speed-up
their computation.

Further advanced scenarios, that are not considered in this thesis, are:

• Dynamic routing considers current traffic situations, such as traffic jams [130,
129].

• Alternative route computation provides flexible and reliably routes, and choices to
the user [2, 36].

• Multi-modal routing considers switching between types of transport, for example
cars and planes [42, 119].

1.3. Advanced Route Planning 17

• Traffic simulations require massive numbers of shortest-path computations that
cannot be handled by a single computer. Parallel and distributed algorithms be-
come necessary [89, 90].

• In mobile scenarios, the routing algorithms have to run on very limited hardware.
Especially main memory is small, and therefore external memory needs to be con-
sidered [72, 126, 137].

• Turn restrictions and turn costs increase the detail of the model. They can usually
be incorporated into existing algorithms by an edge-based graph [31, 142, 138].

1.3.1 Time-dependency in Road Networks

Time-dependent edge weights model time-dependency in road networks [33, 54, 91].
Such a weight is a travel time function (TTF) that maps the departure time at the source
node of the edge to the travel time required to reach the target node of the edge. We
distinguish between two types of queries. A time query computes the earliest arrival
time at a target node, given the departure time at the source node. This problem is also
known as the earliest arrival problem (EAP). A profile query computes a travel time
profile for all departure times.

Dijkstra’s Algorithm is easily extended to perform a time query in case that the FIFO-
property is fulfilled: it is not possible to arrive earlier when departing later [33]. We
always use the reasonable assumption that our road networks fulfill the FIFO property.
If not, and waiting is allowed, the problem is NP-hard [116]. To compute a whole travel
time profile, Dijkstra’s algorithm can be extended to iteratively correct tentative travel
time functions [116]. However, this algorithm loses its node settling property.

A few basic speed-up techniques have been augmented to cope with time-dependent
edge weights. The general scheme is to ensure that a property is valid for all departure
times. Furthermore, bidirectional time queries are more difficult, as the arrival time is
not known in advance. Also, as the travel time functions are much more complex than
time-independent travel times, additional important algorithmic ingredients significantly
improve the efficiency of the algorithms.

ALT can be adapted by performing the landmark computation on static lower bounds of
the travel time functions [41]. Therefore, the A∗ potentials provide valid lower bounds
for all departure times. Still, the performance is not very good.

Core-ALT performs the node contraction so that the earliest arrival times between the
remaining nodes are preserved for all departure times [41, 38]. The bidirectional query
is more complex, as the arrival time at the target node is not known. Therefore, the

18 Chapter 1. Introduction

backward search uses lower bounds to reach the core, and the search in the core is only
performed in forward direction.

SHARC is generalized by using time-dependent arc-flags [37, 39, 38]. An arc flag of an
edge is set if there is a single departure time where the edge is on a shortest path to the
target region. Its unidirectional query has advantages over bidirectional algorithms, as
the arrival time is not known. A space-efficient variant [30] further reduces the memory
overhead, especially by not storing the travel time functions of shortcuts, but computing
them on demand. Very fast is an inexact variant, that computes the arc flags only for
a few departure times. However, no approximation guarantee for the query result is
known.

Contraction Hierarchies use an improved node contraction routine and consider the
complexity of the travel time functions in the node order computation [17, 15, 136]. Us-
ing approximate travel time functions significantly decreases the space overhead while
still producing exact results [113, 16]. The trick is to use lower and upper bounds that
allow to compute corridors including the shortest path. The most efficient profile queries
are performed by contracting these corridors. Queries become faster but inexact, when
only based on approximate travel time functions. However, we are the first to prove
approximation guarantees for these queries in Section 6.2.4.

1.3.2 Public Transportation

Speed-up techniques are very successful when it comes to routing in time-dependent
road networks [46]. However, there is only little previous work on speed-up techniques
for public transportation networks, and none of it as successful as for road networks.
Timetable networks are very different from road networks, and the techniques used for
road networks usually do not work for public transportation networks [9]. There is
limited success in transferring these techniques in simple scenarios on well-structured
graphs, but there is no success for fully realistic scenarios on graphs with poor structure.

Scenarios. Routing in public transportation networks can be divided in further scenar-
ios. A scenario describes, which features the query algorithm supports. The following
features seem natural for a human that uses public transportation, but each of them has
influence on the routing algorithm and the success of the speed-up technique. We con-
sider the following features:

• minimum transfer duration: If a transfer happens at a station, there has to be a
minimum transfer duration between the arrival of the first train, and the departure
of the second train.

1.3. Advanced Route Planning 19

• walking between stations: A transfer cannot only happen at a single station, but it
is possible to walk to a nearby station to board the next train.

• traffic days: There can be a different timetable every day of our planning horizon.
We try to store this information efficiently instead of adding a separate connection
for each day. If this feature is not supported, the same timetable is used every day.

• multiple criteria: This feature considers several independent optimization criteria.
In addition to the earliest arrival time, we also optimize the number of transfers,
walking distance or the like. This can result in more than one optimal result.

• location-to-location queries: Location-to-location queries consider an arbitrary
start and end location for a query, instead of a start and end station. It includes the
walking to potentially several nearby start stations and the walking from several
nearby end stations to the end location.

The scenario with realistic transfer durations supports only minimum transfer du-
rations. This is the simplest scenario where the computed connections can be used in
reality, but still may be not optimal from a human perspective. Nevertheless, speed-up
techniques for road networks already start to fail just by considering minimum transfer
durations.

The fully realistic scenario supports all of the above features. It is the desired sce-
nario for a public transportation router used in practice. However, all the supported
features make it very hard, and especially for poorly structured networks, completely
new query algorithms are necessary.

Models. A model describes how to create a graph from the timetables such that we
can answer queries in this graph by shortest-path computations. It is possible to support
each scenario feature in each of the described models, but with different effects on the
efficiency of speed-up techniques. Furthermore, there are usually a lot of variants of
these models, so we will restrict us to the most relevant variant of each model. More
details on models provides Section 2.3.

In the time-expanded model [110, 102, 132], each node corresponds to a specific time
event (departure or arrival), and each edge has a constant travel time. To allow transfers
with waiting, additional transfer nodes are added. By adding transfer edges from arrival
nodes only to transfer edges after a minimum transfer duration passed, realistic transfers
are ensured. The advantage of this model is its simplicity, as all edges weights are simple
values, and Dijkstra’s algorithm can be used to compute shortest paths.

The time-dependent1 model [29, 111, 116, 117] reduces the number of nodes in com-
parison to the time-expanded model, that showed to be a performance obstacle. The
stations are expanded to a train-route graph [121]. A train route is a subset of trains

1Note that the time-dependent model is a special technique to model the time-dependent information
rather than an umbrella term for all these models.

20 Chapter 1. Introduction

that follow the exact same route, at possibly different times and do not overtake each
other. Each train route has its own node at each station. Those are interconnected within
a station with the given transfer durations. As there are usually significantly fewer train
routes at a station than events, this model reduces the number of nodes. However, this
model also becomes more complex, as the edges between the train route nodes along a
train route are time-dependent.

A station graph model uses exactly one node per station, even with support for min-
imum transfer durations. Berger et al. [26, 25] introduced such a model by condensing
the time-dependent model. This results in parallel edges, one for each train route, and
their query algorithm computes connections per incoming edge instead per node. Their
improvement over the time-dependent model is mainly that they compare all connections
at a station and remove dominated ones. We independently developed a different station
graph model, and will emphasize the differences to the model by Berger et al. [26, 25]
upon its introduction in Section 4.1.

Previous Speed-up Techniques. Goal-directed search (A*) brings basic speed-up [77,
120, 121, 52] and can be adapted to all scenarios and models.

Time-dependent SHARC [39, 38] brings better speed-up by using arc flags in the
scenario with realistic transfer durations. It achieves query times of a few milliseconds
but with preprocessing of several hours.

The fully realistic scenario was recently considered by Disser et al. [52] and Berger et
al. [25]. However, the network considered in those papers is relatively small (about 8900
stations) and very well-structured (German trains, almost no local transport). Also, there
are only very few walking edges, as walking between stations is rarely an issue for pure
train networks. Disser et al. [52] reported query times of about one second and Berger
et al. [25] of a few hundred milliseconds. The title of the latter paper aptly states that
obtaining speed-ups for routing on public transportation networks in a realistic model
“is harder than expected”.

1.3.3 Flexible Queries in Road Networks
In the flexible scenario the graph is enriched with additional attributes compared to basic
route planning. These attributes are taken into account by the shortest-path computation
by using additional query parameters. We consider multiple edge weights and edge
restrictions. Formal details are provided in Section 2.2.3.

Multiple Edge Weights

With multiple edge weights there is usually no single optimal path, as the paths have
different costs in the different weights. In the classic approach all Pareto-optimal paths
P are computed, i. e., where for each other path P′, there is at least one of the edge
weights for which P is better than P′. A path P is said to dominate another path P′ if

1.3. Advanced Route Planning 21

P′ is not better in any edge weight. The most common algorithm to compute all Pareto-
optimal paths is a generalization of Dijkstra’s algorithm (Pareto-Dijkstra) [76, 103]. It
does no longer have the node settling property, as already settled nodes may have to be
updated again, and multiple Pareto-optimal paths to a node are represented by multi-
dimensional labels. Computing all Pareto-optimal paths is in general NP-hard, and in
practice exist also a plethora of Pareto-optimal paths on road networks.

Even though the Pareto-optimal shortest path problem has attracted more interest in
the past, the parametric shortest path problem [87] has also been studied. However, it
provides less flexibility as compared to the approach we will introduce in Section 2.2.3.
Given a value p, we are just allowed to subtract p from the single weight of a predefined
subset of edges. All well-defined shortest path trees (when p is too large, we may get
negative cycles) can be computed in O(nm+n2 logn) [118].

Previous Speed-up Techniques. To the best of our knowledge, the most successful
result on speed-up techniques for multi-criteria is an adaptation [45, 38] of the SHARC
algorithm [20, 38]. However, Pareto-SHARC only works when the number of optimal
paths between a pair of nodes (target labels) is small. Pareto-SHARC achieves this ei-
ther by very similar edge weight functions or by tightening the dominance relation that
causes it to omit some Pareto-optimal paths (label reduction). Yet, the label reduction
entails serious problems as not all subpaths of a path that fulfills those tightened domi-
nation criteria have to fulfill the criteria themselves. Therefore, their algorithm may rule
out possibly interesting paths too early, as it is based on a Dijkstra-like approach to com-
pute optimal paths from optimal subpaths. Thus, Pareto-SHARC with label reduction
cannot guarantee to find all optimal paths w. r. t. the tightened domination criteria and
is therefore a heuristic. In a setup similar to the one we use in Section 5.2, they can
only handle small networks of the size of a city. As simple label reduction, they pro-
pose to dominate a label if the travel time is more than ε times longer the fastest. This
is reasonable but only works well for very small ε ≤ 0.02 with around 5 target labels.
Even for slightly larger ε , the preprocessing and query times increase significantly. Also,
stronger label reduction is applied to drop the average number of target labels to 5 even
for ε = 0.5. It seems like Pareto-optimality is not yet an efficient way to add flexibility
to fast exact shortest path algorithms.

Edge Restrictions

In this scenario, edges have additional attributes that restrict their usage in a query. For
example, a user wants to find the shortest path ignoring all unpaved roads. Therefore,
a query algorithm needs to find a shortest path while ignoring a query-specific set of
edges. Dijkstra’s algorithm is able to do that with straightforward modifications.

Previous Speed-up Techniques. A naïve adaption of a basic speed-up technique just
repeats the precomputation separately for each choice of restrictions. However, this is

22 Chapter 1. Introduction

usually infeasible for a large number of different restrictions, as there is an exponential
number of possibilities to combine them. Only ALT [69, 72] and other A∗-based algo-
rithms can be directly used, as removing edges does not invalidate their lower bounds on
the shortest path distances [44].

1.3.4 Batched Shortest Paths Computation

In the batched scenario, shortest path distances are computed for multiple source-target
pairs. However, there are usually much less different source and/or target nodes than
there are source-target pairs. This can be exploited to design special algorithms that
speed-up the computations.

Dijkstra’s algorithm is especially strong in the batched scenario, as it starts from a
single source node and can compute the distances to multiple target nodes. We then stop
the search only after all target nodes are settled. If the shortest-path distances to all nodes
in the graph are required, Dijkstra’s algorithm is even among the most efficient ones. A
very inefficient part in its execution is settling a node whose shortest-path distance is not
required.

Previous Speed-up Techniques. Knopp et al. [93, 92, 94, 129] where the first to ac-
celerate the computation of distance tables beyond Dijkstra’s algorithm. They observed
that a bidirected and non-goaldirected speed-up technique repeatedly performs the same
forward or backward search when the source or target node does not change. So they
first compute the backward search from each target node, storing the tentative distances
at the settled nodes together with the information about the target node. Then, a forward
search from a node can derive the shortest-path distances to all target nodes by using
the stored distances at each settled node like in a regular bidirectional query. Currently
the fastest suitable speed-up technique is contraction hierarchies [67, 59]. We generalize
this idea in Chapter 6.

Applications

We tailored efficient algorithms for important real-life problems that we will introduce
here together with related work.

Time-dependent Vehicle Routing. We provide an algorithm that augments the com-
putation of large travel time tables to the time-dependent scenario. These tables are im-
portant for the optimization of fleet schedules. It is known as the vehicle routing problem
(VRP), which is an intensively studied problem in operations research [27, 28], but also
experiences growing attention from the algorithm community [99, 88]. As the VPR is
a generalization of the traveling salesman problem, it is NP-hard. The goal is to find
routes for a fleet of vehicles such that all customers (locations) are satisfied and the total

1.3. Advanced Route Planning 23

cost is minimized. Solving this problem is important for logistics, supply chain manage-
ment and similar industries. In the time-dependent scenario, this problem is known as
the time-dependent vehicle routing problem (TDVRP), and there exist many algorithms
to solve it [101, 85, 84, 53, 79]. The goal is the same as for VRP, but now, the costs are
time-dependent. Industrial applications often compute travel times for a discrete set of
departure times, e. g. every hour. This approach is very problematic as it is expensive to
compute, requires a lot of space (a table for every hour), and provides absolutely no ap-
proximation guarantee. Our approximate variants do not have these disadvantages. We
require less precomputation time and space, an important aspect for companies because
they can run the algorithm on smaller and cheaper machines. And, even more impor-
tant, we provide approximation guarantees which potentially results in better routes in
practice that further reduce the operational costs of their transportation business.

Ride Sharing. Ride sharing is a concept where a driver (with a car) and a passenger
(without a car) team up so that the driver brings the passenger to her ending location. As
they usually do not share the exact same starting and ending location, the detour of the
driver should be small. The passenger will pay some money to the driver, but less than
the cost of traveling on her own, and therefore both save money. Also, environmental
aspects play an important reason for sharing a ride.

There exists a number of web sites that offer ride sharing matching services to their
customers. But they all suffer some limitations. The most common approach is to only
allow starting and ending locations to be described imprecise from a predefined set, for
example by simply the city name or some points of interest like airports. Some of the
web sites improve this by offering radial search around starting and ending locations
to increase the number of matches. Still, these approaches ignore a lot of reasonable
matches.

Our idea is to match driver and passenger by the detour for the driver to pickup the
passenger at her starting location and bring her to her ending location. We rank the
matches by detour, preferring smaller ones. The detour can be small, even when both
starting and ending locations are not close. To the best of our knowledge, there exists no
previous work on fast detour computation, which would enable drivers and passengers
to meet somewhere in between.

To compute the detours, it is necessary to know for each offered drive the distance to
the passengers pickup location and the distance to the ending location after dropping the
passenger. For the first set of distances, the target node is always the starting location
of the passenger, for the latter set, the source node is always the ending location of the
passenger. Dijkstra’s algorithm, a basic speed-up technique (Section 1.2), or a fast table
computation algorithm can be used. But we will present a more efficient algorithm.

There exists also research on ride sharing outside the algorithmic community. Sev-
eral authors [51, 115, 78] investigated the socio-economic prerequisites of wide-spread
customer adoption and overall economic potential of ride sharing. Other authors
[144, 143] propose to use hand-held mobile devices to find close-by drivers/passengers.

24 Chapter 1. Introduction

Xing et al. [144] gave an approach to ad-hoc ride sharing in a metropolitan area that is
based on a multi-agent model. But in its current form the concept does not scale. As
the authors point out it is only usable by a few hundred participants and not by several
thousands or more participants that a real world ride sharing service would have.

Point-of-Interest Location. There are applications that require to compute close-by
points of interest (POI), for example a mobile navigation device should compute all
close-by Italian restaurants. The simplest approach to compute them is based on Dijk-
stra’s algorithm, as it settled nodes in ascending distance from the source. However, this
is only feasible for very close POI, as any settled node that is not a POI is wasted effort.
Also, the computation of POI close to a path becomes more expensive with Dijkstra’s
algorithm, especially when this path is long. Therefore, spatial data structures, such as
quadtrees or R-trees [74] are used to find geographically close POI. The downside of this
approach is poor performance as there is only low correlation between geodistance and
shortest-path distance, especially when travel time metric is used. To filter or order the
geographically close POI by true shortest-path distance, separate shortest-path queries
are necessary. This makes this approach computationally expensive and we provide a
more efficient algorithm that does not rely on spatial data structures.

1.4 Main Contributions

1.4.1 Overview
We present new efficient algorithms in three main areas of advanced route planning.
These algorithms are significantly more efficient than any other previous algorithm, of-
ten they even solve a problem efficiently and exact for the first time. Moreover, we
do not only create new algorithms, but also new models and problem refinements that
allow better algorithms without losing track of the purpose behind the initial problem
definition.

1.4.2 Public Transportation
As stated in Section 1.3.2, in recent years, the advancement of algorithms for public
transportation progressed much slower than for road networks. The techniques that work
excellently on road networks largely fail on public transportation networks. Therefore, it
is both interesting to get a better understanding why these techniques fail, and to develop
completely new ones tailored to public transportation networks.

Routing with Realistic Transfer Durations. This is the simplest scenario where the
techniques for road networks start to fail. We focused on the hierarchical method of
node contraction and discovered, that although networks can be contracted, the standard

1.4. Main Contributions 25

models to create the graph from a timetable cause problems. They use multiple nodes for
a single station, allowing to have “parallel” edges between different nodes of the same
station. This significantly hinders the performance of node contraction. The reason for
multiple nodes per station is that the edge weights can then be simpler. We introduce
a new station graph model with just a single node per station, no parallel edges, and
more complex edge weights. Because of the minimum transfer durations, not only the
earliest arriving train at a station is the best one, but to continue a journey, other trains
that arrive later but require no transfer may be better. This made the development of
efficient algorithms for the required operations on these complex edge weights the most
difficult part of our research. However, further augmentations of the node contractions,
such as some sort of caching, additionally improve the overall performance.

Fully Realistic Routing. In practice, routing in transportation networks is a multi-
criteria and multi-modal problem. Next to an early arrival time, at least a small number
of transfers, and short walking distances at transfers are important. This increases the
complexity of the problem to a point where all previous techniques for routing in road
networks fail to significantly speed-up queries. Therefore, Hanna Bast, at this time a
visiting scientist at Google Zürich, and her team came up with the idea of transfer pat-
terns: store for a pair of source and target station only the transfer patterns of all optimal
connections, that is the sequence stations where transfers happen. Even with thousands
of optimal connections between a pair of stations, we can expect usually a small set of
transfer patterns describing them. Based on all optimal transfer patterns between a pair
of stations, a query graph is created. Each edge represents a direct connection without
any transfers in between. Answering such direct-connection queries is much simpler,
and allows to efficiently perform a search on the query graph. The author of this thesis
joined the team with the task to develop an efficient algorithm to precompute the trans-
fer patterns. This, at first glance, simple task turned out to be very challenging. A naïve
algorithm would perform a single-source search from each station to compute the trans-
fer patterns for all departure times. However, this is infeasible on large networks with
hundreds of thousands of stations, as they are used at Google.

Therefore, the idea of hubs came up that should cover the searches from the other
stations. This idea stems from the transit nodes approach of road networks and works
well there. In more detail, each non-hub only knows the transfer patterns to all relevant
nearby hubs. The search starting at such a non-hub can be stopped as soon as all further
computed paths include a transfer at a hub. To obtain optimal transfer patterns to the tar-
get station, we append the transfer patterns computed from the hub to the target station.
But the structure of public transportation networks is much more difficult than the one
of road networks. There is almost always a path without a transfer at a hub that takes
hours, hindering the local search to stop early. Effectively, the hubs approach reduces
the precomputation time by less than 10%. So we had to take the hard decision to drop
exactness and to rely on heuristics. The most important one is the three-legs heuristic
that prunes a local search before the third transfer happens. Any connection with more

26 Chapter 1. Introduction

than two transfers to reach a hub anyway looks suspicious to a human. As expected, this
creates not more errors than already present due to modelling errors. Further improve-
ments reduce the number of labels computed by the local and global searches, and reduce
the number of the computed transfer patterns without compromising the quality of the
computed paths. The latter one is especially important for fast queries, as it reduces the
size of the query graph.

The final algorithm is in use for public transportation routing on Google Maps
(http://www.google.com/transit). We extensively tested it on different public trans-
portation networks, some of them being very large and having poor structure.

1.4.3 Flexible Queries in Road Networks

Flexible queries provide diverse problems that mostly have not been tackled before from
the viewpoint of an algorithm engineer. Still, they deserve our attention, as they are
highly relevant in practice and a major reason why the current algorithms have not been
adapted widely in industry.

Multiple Edge Weights. Previous research on fast routing in road networks focused
mainly on a single metric. Mostly the travel time metric was used, sometimes also
other metrics such as travel distance. Almost all work on multiple metrics focuses on
Pareto-optimality, but this provides no truly fast algorithms, as computing several paths
at once is significant overhead, and much slower than just a multiple of single-criterion
queries. Therefore, we came up with the idea to linearly combine two metrics with
a single parameter representing the coefficient. Think of this parameter as a slider, that
allows to select the trade-off between the two metrics under consideration for each query.
This provides significantly more flexibility than a single-criterion scenario, but allows
an efficient precomputation. We do not need to perform the precomputation for each
parameter value separately by exploiting certain properties of the linear combination.

As these metrics result in different shortest paths, the hierarchical classification of
the network differs between them. Therefore, we develop the concept of parameter in-
terval splitting: We use different classifications for the most important nodes, depending
on an interval of parameter values, instead of using a single hierarchy for the whole in-
terval of parameter values. The less important nodes are treated the same, thus saving
precomputation time and space.

To improve the speed of precomputation and query, we combine our hierarchical
approach with goal-direction based on landmarks. The problem there is to compute
feasible potentials for any choice of parameter value. Again, properties of the linear
combination of edge weights can be exploited. We can compute feasible potentials for a
whole interval of parameter values by just precomputing potentials for the border values
of the interval.

http://www.google.com/transit

1.4. Main Contributions 27

To be able to compute all shortest paths within an interval of parameter values, we
developed efficient algorithms that require a number of flexible queries that is linear in
the number of different paths, and otherwise independent of the size of the interval.

Edge Restrictions. Not all streets are the same, for example highways allow faster
travel, toll roads cost money, and the transport of hazardous goods is forbidden on roads
in water protection areas. While different speed limits can be incorporated into the travel
time metric, other restrictions cannot. We want an algorithm that allows on a per query
basis to select the restricted edges by their properties.

The first adaption of node contraction to this scenario was done by Michael Rice and
Vassilis Tsotras at the University of California in Riverside. We decided to join forces
to increase the performance of their initial algorithm and to add new features. Under
the lead of the author of this thesis, significant improvements happened: We accelerate
the precomputation by augmenting the node contraction to its full potential as in the
basic scenario. By adding support for parametrized restrictions, such as the maximum
allowed height of a vehicle, the algorithm becomes even more flexible. Combinations
with goal-directed techniques improve the precomputation time, and the query time. By
computing landmarks for different sets of restrictions, the potentials are improved for
more restricted queries.

An interesting observation is that more restricted queries can be answered faster. The
reason is that they relax fewer edges, as they restrict a lot of them. However, a less re-
stricted query relaxes certain shortcut edges in vain. Those shortcuts are only necessary
to preserve the shortest-path distances for more restricted queries. We therefore intro-
duce the concept of witness restrictions that reduces the number of unnecessarily relaxed
shortcuts.

1.4.4 Batched Shortest Paths Computation

Computing multiple related shortest-path distances at once is necessary for many real-
life problems. The most popular one is the computation of a full distance table for vehicle
routing optimization. Exploiting the relation between the source and target nodes of the
distances leads to significantly faster algorithms. But we show that also other related
interesting problems benefit from special algorithms.

Time-dependent Travel Time Table. We augment the algorithmic ideas of the static
table computation algorithm to the time-dependent scenario. While some of the old ideas
can be kept, we need to develop several additional ideas to cope with the more complex
scenario. Time-dependency is modeled by travel time functions as edge weights. As
they require much more space than a simple edge weight that is usually represented by a
single integer, we chose to refine the problem of computing a table to the implementation
of a query interface. By that, we can provide an algorithm that requires precomputation

28 Chapter 1. Introduction

time and space linear in the number of source and target nodes of the table, while still
being more than one order of magnitude faster than competing algorithms.

Previously simple operations on edge weights (add, min on integers) map to expen-
sive operations on travel time functions in the time-dependent scenario. Therefore, we
develop exact techniques to replace most of the expensive operations by cheaper ones.
This also requires changes to the data organization of the static table computation algo-
rithm. Furthermore, we provide several algorithms that store different amounts of data to
accelerate queries. These algorithms provide different trade-offs between preprocessing
time, preprocessing space, and query time.

Approximate versions of these algorithms significantly improve the performance and
the space requirements of our algorithms. This is especially important for industrial ap-
plications. However, the simple heuristics already used there do not provide any approx-
imation guarantee. To the best of our knowledge, our algorithms compute tables faster,
require less space, and allow to select worst-case approximation bounds. We tested our
algorithms on different road networks, and for low and high traffic scenarios.

Ride Sharing. Ride sharing problems have not been considered before from an algo-
rithmic point of view. Current systems are largely based on the features of a database,
limiting new approaches. There, matching a driver having a car, and a passenger to
share a ride is based on the proximity of their starting and ending location. However,
this concept limits the number of matches, as it is not possible that the driver picks up the
passenger on her trip, even when only a small detour is required. We present a new algo-
rithm for efficient detour computation, that compares hundreds of thousands of offers in
a database within milliseconds. We further prune the computation by limiting the max-
imum detour we are interested in, a very reasonable measure in practice. This pruning
is not straightforward and requires deep knowledge of the algorithmic details. Our new
algorithm allows significantly more matches over the previous approaches, hopefully
leading to a wider popularity of ride sharing in the population.

Point-of-Interest Location. To compute points of interest (POI) closest to a point,
we need to compute the shortest-path distances from this point to all POI. While Di-
jkstra’s algorithm seems just perfect for this problem, we exploit hierarchical speed-up
techniques to even further speed-up the computation. We do that by precomputing the
search spaces from all POI. A query then only needs to compute the single search space
from the point and finds all interesting POI. By limiting the distance to the POI, we can
further prune the computation. Even more interestingly, we can efficiently compute POI
closest to a shortest path by adapting the detour algorithm developed for ride sharing.
For example, this allows to compute the gas station with the smallest detour to the initial
target. To the best of our knowledge, current navigation systems do not consider the
target for POI location. Our algorithm therefore allows interesting new approaches for
such systems.

1.5. Outline 29

1.5 Outline
The remaining chapters of this thesis are organized as follows:

Chapter 2 introduces basic definitions and fundamentals of graph theory. In more de-
tail, different scenarios and models for road and public transportation networks are
recaptured from literature.

Chapter 3 introduces some basic concepts that frequently occur in our algorithms.

Chapter 4 is devoted to routing in public transportation networks. We distinguish be-
tween two major scenarios: routing with realistic transfer durations, and fully
realistic routing. For both scenarios, we present new efficient algorithms and test
them on different input networks.

Chapter 5 presents efficient algorithms for two different flexible query scenarios. First,
a flexible algorithm that supports two objective functions. Second, we consider
edge restrictions. Both algorithms are extensively experimentally evaluated.

Chapter 6 considers several application oriented problems that require multiple com-
bined shortest-path computations in the areas of time-dependent travel time tables,
ride sharing, and point of interest location. We present several algorithms for the
travel time table computation and perform an extensive experimental comparison.
Our approach of detour minimization for ride sharing is introduced, and an ef-
ficient algorithm presented. We experimentally analyze both our new approach
and the performance of our algorithm. Finally, we contribute new algorithms to
compute points of interest close to a point or a path, and evaluate their efficiency.

Chapter 7 concludes our work, which also contains some notes on possible future work
and an outlook.

30 Chapter 1. Introduction

2
Fundamentals

In this chapter, we provide the fundamental concepts that we base our work on. These are
all related to graphs, but extend the basic understanding of a graph in different directions.

2.1 Graphs and Paths
A (directed) graph G = (V,E) is defined by a node set V of size n and an edge set E
of size m. Every edge connects two nodes, the source and the target. Furthermore,
depending on the scenario, an edge may have several additionally attributes. Usually, an
edge e ∈ E is uniquely identified by its source u ∈V and target v ∈V , and we just write
(u,v) instead of e. In case that there are parallel edges that have same source and target
(see Chapter 5), additional attributes of an edge, or the current context are necessary for
a unique identification.

A path P in G is a sequence of edges 〈e1, . . . ,ek〉 such that the target of ei and the
source of ei+1 are the same for all 1≤ i≤ (k−1). In case that our graph has no parallel
edges, or if it is clear from the context, we can represent a path also by the node sequence
〈u1, . . . ,uk,uk+1〉, where ui is the source of edge ei, for all 1≤ i≤ k, and uk+1 is the target
of ek. We call u1 the source of P and uk+1 the target of P.

2.2 Road Networks
In road networks, nodes usually represent junctions, and edges represent road segments.

2.2.1 Static Scenario
In the static scenario, each edge is weighted by a function c : E → R+, and no parallel
edges exist. For an edge e = (u,v) we also write c(u,v) instead of c(e). We call such
a simple weighted graph static. The edge weight usually represents the average travel
time required for the road segment, or its physical length. The length of a path P is
c(P) =∑

k
i=1 c(ei). A path P∗ is a shortest path if there is no path P′ with same source and

32 Chapter 2. Fundamentals

1

2

3

4

5
5

6

3

4

8

8

5
5 3 2 2

Figure 2.1: Static graph with n = 5 nodes and m = 11 edges. The edges are annotated
with their weight. The shortest path from source node 2 to target node 5 is thick.

target as P∗ such that c(P′)< c(P∗). The (shortest-path) distance µ(s, t) is the length of
a shortest path with source s and target t, or ∞ if there is no such path. Figure 2.1 shows
a static graph.

2.2.2 Time-dependent Scenario

To model more realistic travel times, our edge weights in this scenario depend on the
departure time. More formally, the edge weight c(u,v) of an edge (u,v)∈ E is a function
f : R→ R≥0. This function f specifies the time f (τ) needed to reach v from u via edge
(u,v) when starting at departure time τ . So the edge weights are called travel time
functions (TTFs). For convenience, we will write c(u,v,τ) for c(u,v)(τ).

In road networks we usually do not arrive earlier when we start later. So all TTFs f
fulfill the FIFO-property [33]: ∀τ ′ > τ : τ ′+ f (τ ′)≥ τ + f (τ). In this work all TTFs are
sequences of points representing piecewise linear functions. This representation is the
simplest model supporting the FIFO-property, and that is closed concerning the neces-
sary operations stated below. Usually, a piecewise linear function is continuous. How-
ever, if we represent events such as the departure of a train or a ferry, then points of
discontinuity exists exactly at these departure times. Note that piecewise constant func-
tions do not support the FIFO-property.

We assume that all TTFs have period Π = 24h. However, using non-periodic TTFs
makes no real difference. Of course, covering more than 24h will increase the mem-
ory usage. This enables us to represent the functions as finite sequences of points
〈(x1,y1), . . . ,(xk,yk)〉 with 0 ≤ x1 < · · · < xk < Π. With | f | we denote the complexity
(i. e., the number of points) of f .

But any representation of TTFs is possible that supports the following three opera-
tions (Figure 2.2):

• Evaluation. Given a TTF f and τ we want to compute f (τ). Using a bucket
structure this runs in constant average time.

• Linking of TTFs. Given a path P = 〈u, . . . ,v〉 with TTF f := c(P) and a path
Q = 〈v, . . . ,w〉 with TTF g := c(Q), we want to compute the TTF of the path

2.2. Road Networks 33

〈u, . . . ,v, . . . ,w〉. This is the function g ∗ f : τ 7→ g(f (τ)+ τ)+ f (τ).1 It can be
computed in O(| f |+ |g|) time and |g ∗ f | ∈ O(| f |+ |g|) holds. On the one hand
linking is an associative operation, i. e., f ∗ (g ∗ h) = (f ∗ g) ∗ h for TTFs f ,g,h.
On the other hand linking is not commutative, i. e., f ∗g 6= g∗ f in general.

• Minima of TTFs. TTFs f , f ′ from u to v, we want to merge these into one
while preserving all shortest paths. The resulting TTF from u to v gets the
TTF min(f , f ′) : τ 7→ min{ f (τ), f ′(τ)}. It can be computed in O(| f |+ | f ′|) time
and |min(f , f ′)| ∈ O(| f |+ | f ′|) holds. The minima operation is associative and
commutative, as min(f ,min(g,h)) = min(min(f ,g),h) and min(f ,g) = min(g, f)
holds for TTFs f ,g,h.

The link and minima operation are distributive, i. e., for TTFs f , f ′ and g holds
min(g∗ f ,g∗ f ′) = g∗min(f , f ′) and min(f ∗g, f ′ ∗g) = min(f , f ′)∗g.

τ

(a) evaluation at τ

1 2 3

(b) linking 1→ 2→ 3 (c) minimum (thick)

Figure 2.2: Operations on travel time functions.

In a time-dependent road network, shortest paths depend on the departure time. For
given start node s and destination node t there might be different shortest paths for dif-
ferent departure times. The shortest-path length from source node s to target node t with
departure time τ is denoted by µ(s, t,τ). The minimal travel times from s to t for all
departure times τ are called the travel time profile from s to t and are represented by a
TTF denoted by µ(s, t).

We define f ∼ g :⇔∀τ : f (τ)∼ g(τ) for ∼∈ {<,>,≤,≥}.

2.2.3 Flexible Scenario
A flexible graph is a graph G = (V,E) with additional attributes. Furthermore, a shortest
path is not only defined by source and target node, but also some additional parameter
value p related to these attributes. For each possible value of p, we can map our flexible
graph to a static graph Gp = (Vp,Ep), such that for each node pair s, t ∈ V there exist

1Linking is similar to function composition: g∗ f means g “after” f .

34 Chapter 2. Fundamentals

1 2

3 4

〈5,2〉

〈6,1〉

〈3,2〉 〈2,2〉

(a) flexible graph G

1 2

3 4

11

9

9 8

(b) static graph G〈1,3〉

Figure 2.3: Flexible graph with two edge weight functions. An edge e is labeled with〈
c(1)(e),c(2)(e)

〉
. For the fixed coefficient vector 〈1,3〉, a static graph is shown.

sp, tp ∈Vp such that there is a bijection between the shortest paths between s and t with
parameter p in G and the shortest paths between sp and tp in Gp. We denote the shortest-
path distance in dependence of p with µp(s, t).

Multiple edge weights. Our additional attributes are r edge weights c(1), . . . ,c(r) : E→
R that are linearly combined to a single non-negative real-valued edge weight using the
coefficient vector p = 〈p1, . . . , pr〉. A shortest path for these parameters is a shortest
path in the static scenario using the graph Gp = (V,E) with the edge weight function
cp : e 7→ ∑

r
i=1 pi · c(i)(e). See Figure 2.3 for an example. So Lemma 2.1 follows directly.

Lemma 2.1 Let G be a flexible graph with multiple edge weights. The shortest paths in
G from source s to target t with parameter value p are exactly the shortest paths in Gp
with edge weight function cp.

Edge restrictions. We have an edge weight function c : E → R+ and an r-
dimensional threshold function vector a = 〈a1, . . . ,ar〉 such that ai : E → R+ ∪ {∞}.
Our query parameter is a constraint vector p = 〈p1, . . . , pr〉. A shortest path for p
is a shortest path in the static scenario using the graph Gp = (V,Ep) with Ep :=
{e ∈ E | ∀i ∈ {1, . . . ,r} : pi ≤ ai(e)}, see Figure 2.4. So Lemma 2.2 follows directly.

Intuitively, you can think of ai as the height restriction on a road, and of pi as the
height of the vehicle. In particular, it is also possible to model binary restrictions by
setting ai(e) = 0 if the edge is restricted, and ai(e) = ∞ otherwise. A query that wants to
avoid such restricted edges, just sets pi = ∞.

Lemma 2.2 Let G be a flexible graph with edge restrictions. The shortest paths in G
from source s to target t with parameter value p are exactly the shortest paths in Gp.

2.3. Public Transportation Networks 35

1

4 5

2 3

6

(4,〈3,8〉) (2,〈4,5〉)

(3,〈4,9〉) (5,〈5,8〉)

(2,〈2,8〉) (2,〈3,7〉) (2,〈3,5〉)

(a) flexible graph G

1

4 5

2 3

6

4

3 5

2

(b) static graph G〈3,7〉

Figure 2.4: Flexible graph with two restricting threshold functions. An edge e is labeled
with (c(e),〈a1(e),a2(e)〉). To enforce restrictions 〈3,7〉, violating edges are removed in
the static graph.

2.3 Public Transportation Networks

Traditionally, a timetable is represented by a set of trains (or buses, ferries, etc). Each
train visits a sequence of stations (or bus stops, ports, etc). For each station, except the
last one, the timetable includes a departure time, and for each station, except the first
one, the timetable includes an arrival time, see Table 2.5.

Table 2.5: Traditional timetable of three trains.
(a) train 1

station time
A dep. 8:05

B
arr. 9:55

dep. 10:02

C
arr. 11:57

dep. 12:00
D arr. 13:20

(b) train 2

station time
C dep. 12:00
E arr. 13:00

(c) train 3

station time
C dep. 13:00
E arr. 14:00

To be able to mathematically define connections consisting of several trains, we split
them into elementary connections [121]. More formally, we are given a set of stations B,
a set of stop events ZS per station S ∈B, and a set of elementary connections C , whose
elements c are 6-tuples of the form c = (Zd,Za,Sd,Sa,τd,τa). Such a tuple (elementary
connection) is interpreted as train that leaves station Sd at time τd after stop Zd and the
immediately next stop is Za at station Sa at time τa, see Table 2.6 If x denotes a tuple’s
field, then the notation of x(c) specifies the value of x in the elementary connection c. A
stop event is similar to a train identifier, but we will show in Table 2.9 that it is slightly
more complicated. We define a stop event to be the consecutive arrival and departure
of a train at a station, where no transfer is required. For the corresponding arriving
elementary connection c1 and the departing one c2 holds Za(c1) = Zd(c2). Furthermore,

36 Chapter 2. Fundamentals

a stop event is local to each station, see Table 2.7. We introduce additional stop events
for the begin (no arrival) and the end (no departure) of a train.

Table 2.6: Elementary connections of the timetable in Table 2.5.
(a) train 1

(Zd, Za, Sd, Sa, τd, τa)
(1, 1, A, B, 8:05, 9:55)
(1, 1, B, C, 10:02, 11:57)
(1, 1, C, D, 12:00, 13:20)

(b) train 2

(Zd, Za, Sd, Sa, τd, τa)
(2, 1, C, E, 12:00, 13:00)

(c) train 3

(Zd, Za, Sd, Sa, τd, τa)
(3, 2, C, E, 13:00, 14:00)

Table 2.7: Stops are local to a station, and map to trains with arrival and departure time.
The stops in this example are taken from the elementary connections in Table 2.6.

(a) station C

stop train τa τd
1 1 11:57 12:00
2 2 - 12:00
3 3 - 13:00

(b) station E

stop train τa τd
1 2 13:00 -
2 3 14:00 -

The duration of an elementary connection c, denoted by d(c), is τa(c)− τd(c).
At a station S ∈B, it is possible to transfer from one train to another, if the time

between the arrival and the departure at the station S is larger than or equal to a given,
station-specific, minimum transfer duration, denoted by transfer(S).

Let P = (c1, . . . ,ck) be a sequence of elementary connections. Define depi(P) :=
τd(ci), arri(P) := τa(ci), Sd(P) := Sd(c1), Sa(P) := Sa(ck), Zd(P) := Zd(c1), Za(P) :=
Za(ck), dep(P) := dep1(P), arr(P) := arrk(P), and d(P) := arr(P)− dep(P). Such a
sequence P is called a consistent connection from station Sd(P) to Sa(P) if it fulfills the
following two consistency conditions:

1. The departure station of ci+1 is the arrival station of ci.

2. The minimum transfer durations are respected; either Zd(ci+1) = Za(ci) or
depi+1(P)−arri(P)≥ transfer(Sa(ci)).

2.3. Public Transportation Networks 37

Table 2.8: A consistent connection P = (c1,c2,c3) formed by three elementary con-
nections of Table 2.6. The connection has one transfer at station C. Assume a transfer
duration at station C of 5 minutes. It would not be consistent to replace c3 with train 2
that arrives at arr3(P) = 12:00 since there are only 3 < 5 = transfer(C) minutes between
the arrival of train 1 and the departure of train 2 at station C.

ci train (Zd, Za, Sd, Sa, τd, τa) depi arri
c1 1 (1, 1, A, B, 8:05, 9:55) 8:05 9:55
c2 1 (1, 1, B, C, 1:02, 2:57) 10:02 11:57
c3 3 (3, 2, C, E, 13:00, 14:00) 13:00 14:00

Table 2.9: Example of a train that visits a station more than once. Note that station B
is visited twice. If we would only store the train with each of its elementary connec-
tions, we could create a consistent connection from elementary connections c1 and c4,
independent of the minimum transfer duration at station B. Although we would arrive at
station D at 12:05 when we board at station A at 12:00, the connection does not describe
the correct sequence of elementary connections. The two elementary connections, c2
and c3, from station B to station C and back to station B are missing.

(a) traditional timetable
station time

A dep. 12:00

B
arr. 12:01

dep. 12:01

C
arr. 12:02

dep. 12:03

B
arr. 12:04

dep. 12:04
D arr. 12:05

(b) elementary connections

ci (Zd, Za, Sd, Sa, τd, τa)
c1 (1, 1, A, B, 12:00, 12:01)
c2 (1, 1, B, C, 12:01, 12:02)
c3 (1, 2, C, B, 12:03, 12:04)
c4 (2, 1, B, D, 12:04, 12:05)

(c) stops at station B

stop train τa τd
1 1 12:01 12:01
2 1 12:04 12:04

We illustrate the difference between a consistent and inconsistent connection in Ta-
ble 2.8.

After we have introduced elementary connections and explained how to create con-
nections from them, we are now ready to explain why we use stop events instead of a
single train identifier per elementary connection. In fact, previous publications [121]
only use a single train identifier, but they lose information from the traditional timetable.
The reason is explained in Table 2.9.

2.3.1 Time-dependent Graph
To create a graph from a timetable using the time-dependent model (Section 1.3.2), we
first need to compute all train routes. Each station S has a transfer node St. For each

38 Chapter 2. Fundamentals

train route R, we add to each station S on this route one train-route node SrR, and edges,
connecting these nodes in the order of the train route. Each of this edges has an assigned
travel time function stemming from all the elementary connections that are represented
by this edge. We add an edge from St to SrR and one in the other direction. The edge to
the transfer node carries the transfer cost including the minimum transfer duration, the
other edge has cost zero. We visualize it in Figure 2.10.

At Bt Ct Dt

Et

ArR1 BrR1 CrR1 DrR1

0 5 0 5 0 5 0 5

8:05

110

10:02

115

12:00

80

CrR2

ErR2

0

5

0

5

60

12:00 13:00

Figure 2.10: Graph in the time-dependent model of the timetable of Table 2.5. There
are two train routes, one from station A via B and C to D, and a second one with two
connections from station C to E. Each transit edge between two train-route nodes stores
a travel time function that maps the departure time to the travel time. The constant
slope of the functions represents the waiting for the train. The solid edges between a
train-route and the transfer node ensure that the minimum transfer duration is respected.
In this example, we assume that the minimum transfer duration is 5 minutes at every
station. The dotted edges have cost zero.

2.3.2 Time-expanded Graph

The graph of the time-expanded model has three kinds of nodes, each carries a time and
belongs to a station. For every elementary connection c1 = (Z1,Z2,S1,S2,τ1,τ2) from
station S1 to the next station S2 on the same train, we put a departure node S1d@τ1 at S1
with the departure time τ1, an arrival node S2a@τ2 at S2 with the arrival time τ2 and
an edge S1d@τ1 → S2a@τ2 to model riding this vehicle from S1 to S2. If the vehicle
continues from S2 at time τ3, we put an edge S2a@τ2→ S2d@τ3 that represents staying
on the vehicle at S2. This is possible no matter how small the difference τ3− τ2 is.

2.3. Public Transportation Networks 39

For each departure node S2d@τ we put a transfer node S2t@τ at the same time
and an edge S2t@τ → S2d@τ between them. Also, we put an edge S2t@τ → S2t@τ ′

to the transfer node at S2 that comes next in the ascending order of departure times
(with ties broken arbitrarily); these edges form the waiting chain at S2. Now, to allow
a transfer after having reached S2a@τ2, we put an edge to the first transfer node S2t@τ

with τ ≥ τ2 + transfer(S2). This gives the opportunity to transfer to that and all later
departures from S2. We visualize it in Figure 2.11.

tim
e

At@
8:05

Ad@
8:05

Ba@
9:55

Bt@
10:02

Bd@
10:02

Ca@
11:57

Ct@
12:00

Cd@
12:00

Ct@
12:00

Cd@
12:00

Ct@
13:00

Cd@
13:00

Da@
13:20

Ea@
13:00

Ea@
14:00

Figure 2.11: Graph in the time-expanded model of the timetable of Table 2.5. For each
event, there is a node. We arranged the nodes vertically by there time. The time cost
of an edge is implicitly given by the difference between its endpoints. In this example,
we assume that the minimum transfer duration is 5 minutes at every station. Therefore,
there is an edge from Ca@11:57 to Ct@13:00 and not Ct@12:00.

Multi-criteria. Up to now, we only considered the time in the time tables. How-
ever, in the fully realistic scenario, we also support multi-criteria costs. As we use only

40 Chapter 2. Fundamentals

time-expanded graphs in the fully realistic scenario, it is sufficient to explain how to in-
corporate them there. Our scheme supports a fairly general class of multi-criteria cost
functions and optimality notions. In our implementation, a cost is a pair (d, p) of non-
negative duration and penalty. Penalty applies mostly to transfers: each station S defines
a fixed penalty score for transferring, and that is the penalty component of the cost of
edges Sa@τ → St@τ ′. The edges from departure to arrival nodes may be given a small
penalty score for using that elementary connection. Other edges, in particular waiting
edges, have penalty zero. The cost of a path in the graph is the component-wise sum of
the costs of the edges.

We say cost (d1, p1) dominates or is better than cost (d2, p2) in the Pareto sense iff
d1 ≤ d2 and p1 ≤ p2 and one of the inequalities is strict. Each finite set of costs has
a unique subset of Pareto-optimal costs that are pairwise non-dominating but dominate
any other cost in the set (in the Pareto sense).

Optimizations. For exposition, we regard the graph as fully time-expanded, mean-
ing times increase unbounded from time 0 (midnight of day 0). This abstracts from
technicalities such as edges that cross midnight and timetables that vary from one day
to the next. In practice, we use a more compact graph model that we will describe in
Section 4.2.8. Also, we allow additional transfers by walking to nearby stations. More
details are provided in Section 4.2.5.

3
Basic Concepts

All of our algorithms use at least one of the basic concepts introduced in this chapter. We
will introduce the concepts here for the basic scenario with static graphs (Section 2.2.1).
Their augmentation to advanced scenarios is part of the matter of the subsequent chap-
ters. Figure 3.1 gives an overview of the relations.

Basic Concepts

Node Contraction

A∗ Search (ALT)

Public Transporta-
tion (Chapter 4)

Realistic Transfer
Durations

Fully Realistic

Flexible Queries
(Chapter 5)

Multiple Edge
Weights

Edge Restrictions

Batched Shortest
Paths Computa-
tion (Chapter 6)

Time-dependent
Travel Time Table

Ride Sharing

Closest POI
Location

augments augments

instantiates

Figure 3.1: Overview of the relations between the basic concepts and the advanced route
planning algorithms presented in this thesis. (Note that the relations of Dijkstra’s algo-
rithm are omitted as it is related to all other algorithms.)

42 Chapter 3. Basic Concepts

3.1 Dijkstra’s Algorithm
In Chapter 2 we introduced graph models for different scenarios and defined short-
est paths. The classical algorithm to compute these shortest paths in a static graph
G = (V,E) with edge weight function1 c is Dijkstra’s algorithm [50]. In particular, Dijk-
stra’s algorithm solves the single-source shortest-path (SSSP) problem of computing the
shortest paths from a single source node s to all other nodes in the graph. The algorithm
maintains, for each node u, a label δ (u) with the tentative distance from s to u. Each
node is unreached, reached or settled, see Figure 3.2. A priority queue with key δ (u)
contains all reached but not settled nodes u. Initially, only the source node s is reached
with δ (s) = 0 and all other nodes u are unreached with δ (u) = ∞. In each step, a node u
in the priority queue with smallest key δ (u) is deleted. We say that we settle node u as
in this case we know that δ (u) is the shortest-path distance. All outgoing edges (u,v) of
a settled node u are relaxed, i. e., we compare the shortest-path distance from s via u to
v with the tentative distance δ (v). If the one via v is shorter, we update δ (v) and v in the
priority queue. Note that such an update is either an insert operation if v was unreached,
or otherwise a decrease key operation. The algorithm terminates once the priority queue
is empty, this happens after at most n steps, where n is the number of nodes in the graph.
After the termination, all nodes are either unreached or settled.

Algorithm 3.1 shows pseudo-code. Sometimes we do not settle all nodes in the
graph, either because there are not all reachable or we stop the search early. To avoid the
O(n) initialization in Line 1 for subsequent executions of the algorithm, we can store the
settled nodes and reset the tentative distances to ∞ after we used the computed distances.
That way, the complexity of the algorithm only depends on the number of settled nodes
and relaxed edges, and not on n.

Algorithm 3.1: Dijkstra(s)
input : source s
output : shortest-path distances δ from s to all nodes in the graph

1 δ := 〈∞, . . . ,∞〉; // tentative distances
2 δ (s) := 0; // search starts at node s
3 Q.update(0, s); // priority queue
4 while Q 6= /0 do
5 (·,u) := Q.deleteMin(); // settle u
6 foreach e = (u,v) ∈ E do // relax edges
7 if δ (u)+ c(e)< δ (v) then // shorter path via u?
8 δ (v) := δ (u)+ c(e); // update tentative distance
9 Q.update(δ (v), v); // update priority queue

Dijkstra’s algorithm involves at most n insert operations into the priority queue,
n delete operations, and m decrease key operations, yielding a runtime complexity of

1We assume non-negative edge weights in static graphs. For arbitrary edge weights, the Bellman-Ford
algorithm [24, 57] can be used.

3.2. Node Contraction 43

0

6

4

8

7

17

17

19 ∞

∞

∞

∞

∞

6

4 4

3

13

9

10

15

3

4

8

2

7

2

2

Figure 3.2: Illustration of Dijkstra’s algorithm after 5 nodes have been settled. The
source node is thick. Nodes are settled (solid), reached (dashed) or unreached (dotted).
We labelled each node with its current tentative distance. Each edge is labelled with its
weight.

O(m+n logn) if Fibonacci heaps [133] are used.
There are some simple enhancements of the above algorithm.

Shortest Paths. We can also compute a shortest-path tree using parent pointers. The
parent pointer of a node v points to the node u that was relaxed to update v. So a shortest
path from s to v can be found by traversing the parent pointers from v until s is reached.
As there are potentially multiple shortest paths, we can extend this approach by using
sets of parent pointers.

Set of Target Nodes. If only the shortest-path distance to a subset of all nodes should
be computed, we can stop the algorithm as soon as all nodes in the subset are settled.

Point-to-Point Queries. If we are only interested in the shortest-path distance to a
single target node t, we can use a bidirectional version of Dijkstra’s algorithm. We
execute two searches, one from the source node s in forward direction, the other one from
the target node t in backward direction. The direction defines how edges are relaxed:
when we settle a node u in backward direction, we relax all edges (v,u). We can stop the
search as soon as a node is settled in both directions. The shortest-path distance is not
necessarily the one via this node, but we can guarantee that it is the computed distance
from s to t via a node reached in both directions [35].

3.2 Node Contraction
The central idea of node contraction is to remove a node from a graph, and add short-
cut edges to preserve shortest-path distances between the remaining nodes. This can

44 Chapter 3. Basic Concepts

speedup the shortest path computation by a modified bidirectional Dijkstra search that
only relaxes edges to nodes that are contracted later than the currently settled node.
When both search scopes meet, a tentative shortest-path distance is updated, and the
search is stopped as soon as both minimum keys in the priority queues are not smaller
than this tentative distance. The correctness of this approach is ensured by the short-
cuts. Highway hierarchies (HH) [123, 124] was the first algorithm using shortcuts, and
contraction hierarchies (CH) [67] was the first algorithm only relying on a (more sophis-
ticated) node contraction. The intuition behind node contraction is to contract “unimpor-
tant” nodes so that the shortest path search only needs to relax edges to “more important”
nodes. While it is possible to contract adjacent nodes at the same time [130], currently
the most efficient algorithms contract nodes such that for every edge one endpoint was
contracted later, and a total node order can be established. We will restrict our explana-
tions to such algorithms.

3.2.1 Preprocessing
In general, the computation of an optimal node order that minimizes the number of
necessary shortcuts, or the number of settled nodes in a query, is NP-hard [32, 19].
Therefore, we rely on heuristics. The computation of the node order and the node con-
traction are combined. We assign each remaining node a priority on how attractive it is
to contract the node next. Then we contract one of the most attractive nodes and update
the priorities of the remaining nodes, as they may depend on contracted nodes or newly
added shortcuts. Algorithm 3.2 shows pseudo-code for this simplified preprocessing.

Algorithm 3.2: SimplifiedCHPreprocessing(G = (V,E), node order)
input : graph G
output : contraction hierarchy G with shortcuts

1 initialize node priorities;
2 while exists remaining nodes do
3 pick one node v with most attractive priority;
4 foreach (u,v) ∈ E with u not contracted, (v,w) ∈ E with w not contracted do
5 if 〈u,v,w〉 “may be” the only shortest path from u to w using only uncontracted

nodes then
// add shortcut

6 E:= E ∪{(u,w)} (use weight c(u,w):= c(u,v)+ c(v,w));

7 update priorities of “some of” the remaining nodes;

Adding Shortcuts. To determine the necessary shortcuts, it is sufficient to preserve
the shortest-path distances between the neighbors of the currently contracted node v. A
simple algorithm is to perform a Dijkstra search from each node u with incoming edge

3.2. Node Contraction 45

(u,v) in the remaining graph ignoring node v. The search can stop as soon as all nodes
w with outgoing edge (v,w) are settled. If the computed shortest-path distance from
node u to a node w is larger than the length of the path 〈u,v,w〉, then we add a shortcut.
Otherwise, there is a witness path from u to w that can replace the path via v. We call
the Dijkstra search therefore witness search. An important observation is that we can
prune this witness search, for example by limiting the number of settled nodes, or the
depth of the shortest-path tree (hop limit). Such a pruned search is called a local search,
as it usually explores only a small part of the graph. Local searches compute upper
bounds on the shortest-path distance from u to w and we may add more shortcuts that
necessary. Nevertheless, we always add all necessary shortcuts. To remove unnecessary
shortcuts later, we use the information gathered by the witness search to perform an edge
reduction. More precisely, after a witness search from a node u, we drop each remaining
edge (u,x) that has been traversed, who is not the path computed to x. This preserves
correctness, as (u,x) on a shortest path could then be replaced by the computed path.

Node Priority. A crucial but also complex part is the computation of the node priorities
[59]. Usually, it is a linear combination of certain priority terms considering the number
of necessary shortcuts, the cost of the witness search, the (estimated) cost of queries, and
uniformly distributed contraction of the nodes. Below is a list of good priority terms.

• The edge difference is the difference between the number of incident edges of a
node and the number of necessary shortcuts to contract it. It can also be used as
the edge quotient, the quotient between the two numbers of edges.

• the number of adjacent contracted neighbors

• the number of contracted nodes that are closer to this node than to any other node
(shortest-path-based Voronoi region)

• the search space size counting the number of relaxed edges or settled nodes in the
witness searches

• the sum of number of original edges that are represented by the necessary shortcuts

• The hierarchy depth is an upper bound on the depth of a shortest path tree during
a query. Initially, the hierarchy depth of each node is 0. When we contract a node,
the hierarchy depth of its remaining neighbors is updated by 1 plus the hierarchy
depth of the contracted node, if it is not already higher.

• based on some global measures, such as betweenness [58, 5] or reach [73]

The selection of the priority terms and the coefficients for the linear combination depend
on the advanced scenario, and also on the used graph. Further terms can evolve in
specific scenarios, for example in time-dependent road networks (Section 2.2.2), the
complexity of the travel time functions is important [15].

46 Chapter 3. Basic Concepts

Updating Node Priorities. The contraction of a node mostly affects the remaining
neighbors of this node, but generally more nodes are affected. As it is not practical to
update the node priorities of all remaining nodes, we only update the neighbors. Fur-
thermore, before we contract a node, we recompute its node priority and reconsider our
decision to contract it (layz update).

3.2.2 Query
Node contraction creates the structure described by Lemma 3.1 on the processed graph
by adding shortcuts. These shortcuts represent whole paths in the original graph and
therefore do not change the shortest-path distances. But the shortcuts may add additional
representations of shortest paths. We exploit this with our query algorithm.

Lemma 3.1 Let s be a source node and t be a target node that are connected and po-
tentially already contracted. There exists a shortest s-t-path P in the graph including
shortcuts of the form 〈s, . . . ,x, . . . ,y, . . . , t〉 with the following properties:

(1) If s 6= x, then the subpath 〈s, . . . ,x〉 is an upward path: Each node, starting with s,
was contracted before the next one on the path. Node x may not be contracted, but
all other nodes are.

(2) If y 6= t, then the subpath 〈y, . . . , t〉 is a downward path: Each node, starting with t,
was contracted before the previous one on the path. Node y may not be contracted,
but all other nodes are.

(3) If x 6= y, then all nodes on the subpath 〈x, . . . ,y〉 are in the remaining graph, and
thus not contracted.

Proof. This proof is an extended version of the correctness proof for contraction hier-
archies [59, Theorem 2]. Let s be a source node and t be a target node. The contraction of
a node preserves the shortest-path distances between the remaining neighbors by adding
shortcuts. For a path P, among all contracted nodes v on P whose two neighbors on P
are not contracted earlier, define node zP being the one that was contracted the earliest,
or zP =⊥ if no such node exists. The two neighbors may not be contracted at all. Choose
among all shortest s-t paths the path P with zP =⊥ or zP being contracted the latest. We
will prove that P has the required form.

If s has been contracted, choose node x such that the subpath 〈s, . . . ,x〉 is the maximal
upward path, otherwise x := s. And if t has been contracted, choose node y such that
the subpath 〈y, . . . , t〉 is the maximal downward path, otherwise y := t. Therefore, the
path 〈s, . . . ,x, . . . ,y, . . . , t〉 has properties (1) and (2), and it remains to show property
(3). Assume that x 6= y, and for the sake of contradiction, that a node v on the subpath
〈x, . . . ,y〉 has been contracted. Then, there is also such a node v that has been contracted
before x and y, as the subpaths 〈s, . . . ,x〉 and 〈y, . . . , t〉 are maximal. Therefore holds

3.2. Node Contraction 47

zP 6=⊥. The contraction of zP either adds a shortcut between the neighbors, or there
exists a witness consisting of nodes not being contracted earlier than zP. This results
in a shortest s-t-path P′ with zP′ =⊥ or zP′ is contracted later than zP, contrary to our
selection of P. �

Corollary 3.2 Assume that all nodes in the graph are contracted. Then for each con-
nected source node s and target node t, there is a shortest path of the form 〈s, . . . ,x, . . . , t〉.
The subpath 〈s, . . . ,x〉 is an upward path, and the subpath 〈x, . . . , t〉 is a downward path.
Such a path is called an up-down path.

Corollary 3.3 For each connected source node s and target node t, that are not con-
tracted, there is a shortest path between them consisting only of uncontracted nodes.

Here, we assume that our preprocessing contracts all nodes. We will discuss
the case where we do not contract all nodes in Section 3.4. After the preprocess-
ing, we split the resulting graph with shortcuts into an upward graph

→
G := (V,

→
E)

with
→
E := {(u,v) ∈ E | u contracted before v} and a downward graph

←
G:= (V,

←
E) with

←
E := {(u,v) ∈ E | u contracted after v}.

Our query algorithm simultaneously performs a forward search in
→
G and a backward

search in
←
G. Both search scopes will meet at the most important node of a shortest path,

as Corollary 3.2 ensures. An important observation is that we only need to store an edge
in the edge group of the less important incident node. This formally results in a search
graph G∗ = (V,E∗) with

E :=

{
(v,u) | (u,v) ∈ ←E

}
and E∗ :=

→
E ∪
E . And we store a

forward and a backward flag such that for any edge e ∈ E∗,→ (e) = true iff e ∈ →E and

← (e) = true iff e ∈
E . Algorithm 3.3 presents pseudo-code for a query in G∗.

Stall-on-demand. An important optimization technique is stall-on-demand [130]. It
exploits the fact that nodes are settled with a suboptimal distance that is larger then the
shortest-path distance. This happens as we do not relax all edges compared to Dijkstra’s
algorithm. We detect this by looking at the edges that are used by the search in the other
direction to build a path to the currently settled node from an more important neighbor. If
this path is shorter, we stall the currently settled node, meaning we do not relax its edges.
This is correct, as this node would never be part of a shortest path that is found by our
query algorithm. Furthermore, we can propagate this path to other nodes to stall more
suboptimally reached nodes. The most efficient way proved to be just the propagation
to its reached neighbors. When those nodes are settled later without being updated in
between, we stall them.

48 Chapter 3. Basic Concepts

Algorithm 3.3: CHQuery(s, t)
input : source s, target t
output : shortest-path distance δ

1
→
δ := 〈∞, . . . ,∞〉; // tentative forward distances

2
←
δ := 〈∞, . . . ,∞〉; // tentative backward distances

3
→
δ (s) := 0; // forward search starts at node s

4
←
δ (t) := 0; // backward search starts at node t

5 δ := ∞; // tentative shortest-path distance
6
→
Q.update(0, s); // forward priority queue

7
←
Q.update(0, t); // backward priority queue

8 ∼:=→; // current direction
9 while (

→
Q 6= /0) or (

←
Q 6= /0) do

10 if δ < min
{→

Q.min(),
←
Q.min()

}
then break;

11 if
¬∼
Q 6= /0 then ∼:= ¬ ∼; // change direction, ¬←=→ and ¬→=←

12 (·,u) :=
∼
Q.deleteMin(); // u is settled

13 δ := min
{

δ ,
→
δ (u)+

←
δ (u)

}
; // u is potential candidate

14 foreach e = (u,v) ∈ E∗ with ∼(e) do // relax edges
15 if

(∼
δ (u)+ c(e)

)
<
∼
δ (v) then // shorter path via u?

16
∼
δ (v) :=

∼
δ (u)+ c(e); // update tentative distance

17
∼
Q.update

(∼
δ (v), v

)
; // update priority queue

18 return δ ;

3.3 A* Search

A∗ search [77] is a goal-directed technique that helps to speed up Dijkstra’s algorithm by
pushing the search towards the target. Given a (target-dependent) potential π : V → R,
A∗ search is a Dijkstra search executed on the reduced edge weights cπ(u,v) = c(u,v)−
π(u)+π(v). A potential is feasible iff cπ(u,v)≥ 0, a necessary condition for Dijkstra’s
algorithm. So, if the potential π(t) of the target t is zero, π(v) is lower bound on the
shortest-path distance from v.

3.3.1 Landmarks (ALT)

The ALT algorithm [69, 72] based on A∗, Landmarks and the Triangle inequality, is cur-
rently the most efficient approach to compute good potentials for road networks. Given
a set of landmarks L ⊂ V , we precompute all shortest-path distances from and to these
landmarks. With the triangle inequality, we can derive a lower bound from an arbi-
trary node v to an arbitrary target node t. Let ` ∈ L, then µ(v, t) ≥ µ(v, `)− µ(t, `) and

3.4. Combination of Node Contraction and ALT 49

µ(v, t) ≥ µ(`, t)− µ(`,v). Each of these lower bounds, and also the maximum over all
landmarks is a feasible potential.

Landmark Selection. The most commonly used method to select landmarks is the
avoid heuristic [69]. It provides very good potentials while still having fast precompu-
tation time. In iteratively creates a set of landmarks. It grows a shortest-path tree from
a random node r in backward direction using Dijkstra’s algorithm. The size of a node
v in the tree is recursively defined by the difference between µ(v,r) and the potential
obtained from the current set of landmarks, plus the size of its children. We set the size
of all nodes v to zero that have at least one landmark in the subtree rooted at v. Then,
starting at the node with highest size, we follow the child with the highest size until we
reach a leaf. This leaf is added to the set of landmarks. The first random node r is picked
uniformly at random, the following ones picked with a probability proportional to the
square of the distance to the nearest landmark. Further landmark selection methods can
be found in [69, 72].

3.3.2 Bidirectional A*
While an unidirectional search works with any feasible potential, a bidirectional search
needs more caution. In principle, we can execute a search using two potentials →π and ←π
for forward and backward direction. But it is only allowed to stop the search as soon as
a node is settled in both directions with a consistent pair of potential functions fulfilling
→
π +←π = const.

3.4 Combination of Node Contraction and ALT
As the computation and storage of the distances to landmarks is quite expensive on a
large graph, we can combine it with node contraction [23, 38]. We first contract nodes
until a core of the K most important nodes remains, and then we compute the landmarks
for this core. That requires to store the landmark distances only for the core nodes. Then,
the bidirectional query can guide its search with A∗ within the core.

More precisely, we perform the query in two phases. In the first phase, we perform
the CH query described in Section 3.2.2, but stop at core nodes. In the second phase, we
perform a core-based bidirectional ALT algorithm. As source node s and target node t
are not necessarily in the core, we need proxy nodes s′ and t ′ in the core [71]. The ALT
potentials are computed using s′ and t ′ as goal, so the best proxy nodes are the core entry
and exit node of a shortest path from s to t. However, as our query wants to compute a
shortest path and does not know it in advance, we use the core nodes that are closest to s
and t as proxy nodes. We split the second phase into two parts itself. The first part is the
calculation of the proxy nodes. We perform a backward search from the source node and
a forward search from the target node until we settle the first core node. Note, that it is

50 Chapter 3. Basic Concepts

not guaranteed to find a path to the core in the respective searches. This can only happen
if our input graph does not consist of strongly connected components. If this should be
the case we disable the goal-direction for the respective direction by setting the potential
function to zero. The second part is a bidirectional ALT algorithm, starting from all the
core nodes that are settled in the first phase. The path found by this search has the form
described by Lemma 3.1.

We can even extend the approach of [23, 38] by contracting the core and applying
a bidirectional algorithm on the core that combines the CH and ALT algorithm. This
provides faster query times at the expense of slower preprocessing, as the core is usually
quite dense and takes long to contract. On a contracted core, due the stopping criterion of
the CH query (Section 3.2.2), consistent potential functions will never improve the query,
as we are not allowed to stop as soon as both directions meet. The only modification of
this query algorithm is that we now add the potential functions to the priority keys.

As the combination of ALT and CH in the core is new, we will look into the details
and its correctness. We first consider the case where we have landmarks for the whole
graph, such that we have a query algorithm with just one phase. The resulting CHALT2

query is a slight adaption of the CH query by naturally adding the potential functions, see
Algorithm 3.4. Lemma 3.4 proves its correctness. Note that it is does not matter whether
the landmark distances are computed before or after the contraction of the core nodes,
as the node contraction does not change shortest-path distances, see Corollary 3.3.

Lemma 3.4 The CHALT query algorithm computes µ(s, t).

Proof. As the potentials are feasible, the nodes on the shortest path given by Corol-
lary 3.2 are settled with the same distance as the CH algorithm. Assume for the sake of
contradiction, that our query does not return µ(s, t). This can only happen if we abort the
query too early in Line 11 with a path via candidate u, and therefore δ > µ(s, t). Assume
that node v is an optimal candidate. Therefore, at the time of abortion,

→
δ (u)+→π (u)+

←
π (u)+

←
δ (u) = δπ < min

{→
Q.min(),

←
Q.min()

}
≤min

{→
δ (v)+→π (v),

←
δ (v)+←π (v)

}
. As

µ(s,v)+ →π (v) ≤ µ(s,v)+ µ(v, t)+ →π (t) = µ(s, t)+ →π (t) <
→
δ (u)+

←
δ (u)+ →π (u), v is

settled with
→
δ (v) = µ(s,v) in the forward search before the abortion. A symmetric ar-

gument gives that v is settled with
←
δ (v) = µ(v, t) in the backward search. From that we

can follow that δ ≤
→
δ (v)+

←
δ (v) (Line 14), a contradiction to the initial assumption that

δ > µ(s, t) =
→
δ (v)+

←
δ (v). �

A query that uses landmarks on a contracted core, just replaces the bidirectional ALT
query in the second phase by our CHALT query, starting from all the core nodes that are
settled in the first phase. The proof of correctness (Theorem 3.5) is straightforward.

2CHALT combines CH and ALT in a single query phase (no core), easily mistakeable for CALT,
a commonly used abbreviation for Core-ALT that has two separate query phases and uses ALT on an
uncontracted core.

3.4. Combination of Node Contraction and ALT 51

Algorithm 3.4: CHALTQuery(s, t)
input : source s, target t
output : shortest-path distance δ

1
→
δ := 〈∞, . . . ,∞〉; // tentative forward distances

2
←
δ := 〈∞, . . . ,∞〉; // tentative backward distances

3
→
δ (s) := 0; // forward search starts at node s

4
←
δ (t) := 0; // backward search starts at node t

5 δ := ∞; // tentative shortest-path distance
6 δπ := ∞; // tentative shortest-path distance with potentials
7
→
Q.update(0+→π (s), s); // forward priority queue

8
←
Q.update(0+←π (t), t); // backward priority queue

9 ∼:=→; // current direction
10 while (

→
Q 6= /0) or (

←
Q 6= /0) do

11 if δπ < min
{→

Q.min(),
←
Q.min()

}
then break;

12 if
¬∼
Q 6= /0 then ∼:= ¬ ∼; // interleave direction, ¬←=→ and ¬→=←

13 (·,u) :=
∼
Q.deleteMin(); // u is settled

14 δπ := min
{

δπ ,
→
δ (u)+→π (u)+←π (u)+

←
δ (u)

}
; // u is potential candidate

15 δ := min
{

δ ,
→
δ (u)+

←
δ (u)

}
;

16 foreach e = (u,v) ∈ E∗ with ∼(e) do // relax edges
17 if

(∼
δ (u)+ c(e)

)
<
∼
δ (v) then // shorter path via u?

18
∼
δ (v) :=

∼
δ (u)+ c(e); // update tentative distance

19
∼
Q.update

(∼
δ (v)+ ∼π(v), v

)
; // update priority queue

20 return δ ;

Theorem 3.5 Our two phase query algorithm using CHALT on a contracted core com-
putes µ(s, t).

Proof. Let node v be an optimal candidate node where forward and backward search of
a CH query can meet to compute µ(s, t) =

→
δ (v)+

←
δ (v). If v is not in the core, the first

phase will already compute the correct shortest-path distance. Otherwise, v is in the core
and we can apply the proof of Lemma 3.4. �

52 Chapter 3. Basic Concepts

4
Public Transportation

We have two major contributions in this chapter. First, we use the ideas of a speed-up
technique for route planning to create a new algorithm for the scenario with realistic
transfer durations. And second, we contribute to a completely new algorithm that can
handle the fully realistic scenario.

4.1 Routing with Realistic Transfer Durations

4.1.1 Central Ideas

Hierarchical route planning algorithms are very successful on road networks, but they
fail on public transportation networks, especially when based on the concept of node
contraction (Section 3.2). Intuitively, for public transportation networks, we want to
contract stations. However, previous models either use several nodes per station, i. e. the
time-expanded model [110, 102, 132] or the time-dependent model [29, 111, 116, 117,
121], or require parallel edges [26, 25]. In such models, there can be potentially many
edges between the same pair of stations, either between different nodes representing
the stations, or as parallel edges. This is disadvantageous for node contraction, and we
propose to use a new station graph model, that represents each station by a single node,
and does not require parallel edges. However, this station graph model requires fairly
complex edge costs, so that it requires some effort to efficiently implement the basic
edge operations required to chain and merge edges. The second central idea is to exploit
the small number of stations in a public transportation network, compared to the number
of nodes in a road networks. This allows us to cache more data during preprocessing,
leading to very fast preprocessing times.

4.1.2 Station Graph Model

We introduce a model that represents a timetable with a set of stations B as a directed
graph G = (B,E) with exactly one node per station. For a simplified scenario without

54 Chapter 4. Public Transportation

realistic transfer durations, this is like the time-dependent model (Section 2.3.1). We ex-
plain in Example 4.1 why a station graph model is advantageous over the time-dependent
model for contraction.

Example 4.1 Assume that we have a network with three stations A, B and C. Let there be
three different train routes1 R1, R2, and R3 from station A to station B, and three different
train routes R4, R5, and R6 from station B to station C. As described in Section 2.3.1,
these train routes are represented by 3 train-route nodes ArR1, . . . , ArR3 at station A,
3+3= 6 train-route nodes BrR1, . . . , BrR6 at station B and 3 train-route nodes CrR4, . . . ,
CrR6 at station C. To allow transfers at stations, there is a dedicated station node and
transfer edges from/to the train-route nodes. The time-dependent graph is shown in
Figure 4.1.

At

ArR1

ArR2

ArR3

BrR1

BrR2

BrR3

Bt

BrR4

BrR5

BrR6

CrR4

CrR5

CrR6

Ct

Figure 4.1: Example graph in the time-dependent model before the contraction of station
B. There are 3 stations and 6 train routes.

Now assume that we contract station B with all its nodes, and that we always need
to add a shortcut. The resulting graph is shown in Figure 4.2. So the initially 3 outgoing
edges from the train-route nodes of station A and the 3 incoming edges to the train-route
nodes of station C multiplied to 3 ·3 = 9 edges.

At

ArR1

ArR2

ArR3

CrR4

CrR5

CrR6

Ct

Figure 4.2: Example graph in the time-dependent model. After the contraction of station
B, there can be an edge from every train-route node of A to every train-route node of C.

1As introduced in Section 1.3.2, a train route is a subset of trains that follow the exact same route, at
possibly different times and do not overtake each other [121].

4.1. Routing with Realistic Transfer Durations 55

Figure 4.3 shows the graph of the same network, but in the station graph model,
before and after the contraction. There is just a single node per station and no parallel
edges. During the contraction of station B, we just add a single shortcut from station A
to station C representing a set of connections (these connections do not need to have the
same train-route and the set also does not need to have the FIFO-property).

A B C

(a) before

A C

(b) after

Figure 4.3: Example graph in the station graph model before and after the contraction of
station B. There is a single node per station.

In the station graph model, we store for each edge e = (A,B) ∈ E a set of consistent
connections c(e) that depart at A and arrive at B, usually all elementary connections.
Here and in the following we assume that all connections are consistent, as defined in
Section 2.3. Note that this set of connections c(e) does not need to fulfill the FIFO-
property, i. e. some connections may overtake each other. In comparison, the station
graph model of Berger et al. [26, 25] partitions the set c(e), such that the set of connec-
tions represented by a partition fulfills the FIFO-property. Then, each set of connections
represented by a partition is stored as a separate parallel edge. As we want to avoid
parallel edges, in general, an edge in our model cannot represent a set of connections
with FIFO-property. Without FIFO-property, the relaxation of an edge during a search
is more complicated, even for the computation of earliest arrival times (formally intro-
duced by Definition 4.5 in Section 4.1.3). We provide an efficient search algorithm in
Section 4.1.5.

We say that a connection P dominates a connection Q if we can replace Q by P
(Lemma 4.4). More formally, let Q be a connection. Define parr(Q) as the (previous)
arrival time of the train at station Sd(Q) before it departs at time dep(Q), or ⊥ if
this train begins there. If parr(Q) 6=⊥ then we call std(Q) := dep(Q)− parr(Q) the
stopping time at departure. We say that Q has a critical departure when parr(Q) 6=⊥
and std(Q)< transfer(Sd(Q)). Symmetrically, we define ndep(Q) as the (next) departure
time of the train at station Sa(Q), or ⊥ if the train ends there. When ndep(Q) 6=⊥ then
we call sta(Q) := ndep(Q)− arr(Q) the stopping time at arrival. And Q has a critical
arrival when ndep(Q) 6=⊥ and sta(Q) < transfer(Sa(Q)). We will motivate the defini-
tion of a critical departure and arrival in Example 4.3 later, but first we need to define the
dominance relation between connections.

Definition 4.2 A connection P dominates Q iff all of the following conditions are ful-
filled:

56 Chapter 4. Public Transportation

(1) Sd(P) = Sd(Q) and Sa(P) = Sa(Q)

(2) dep(Q)≤ dep(P) and arr(P)≤ arr(Q)

(3) Zd(P) = Zd(Q), or Q does not have a critical departure, or dep(P)− parr(Q) ≥
transfer(Sd(P))

(4) Za(P) = Za(Q), or Q does not have a critical arrival, or ndep(Q)− arr(P) ≥
transfer(Sa(P))

Conditions (1) and (2) are elementary conditions. Conditions (3) and (4) are neces-
sary to respect the minimum transfer durations, when Q is a subconnection of a larger
connection, see Example 4.3. Given connection R = (c1, . . . ,ck) consisting of k elemen-
tary connections, we call a connection (ci, . . . ,c j) with 1≤ i≤ j ≤ k a subconnection of
R, we call it prefix iff i = 1 and suffix iff j = k. Given a set of connections S , we call a
subset S ′ ⊆S dominant set among S iff for all Q ∈S \S ′ exists P ∈S ′ such that
P dominates Q, and no connection P ∈S ′ dominates a connection Q ∈S ′ \{P}.

Example 4.3 This example motivates the notion of a critical departure/arrival and Def-
inition 4.2 of the dominance relation on connections. Let our timetable be given by
Table 4.4. As there is at most a single elementary connection between each pair of
stations, we can represent connections by their sequence of stations.

Table 4.4: Timetable consisting of two trains and six stations. The minimum transfer
duration at every station is 5 minutes.

(a) train 1

station time
A dep. 9:00

B
arr. 9:06

dep. 9:10

C
arr. 9:15

dep. 9:17

E
arr. 9:20

dep. 9:24
F arr. 9:40

(b) train 2

station time
B dep. 9:10

D
arr. 9:12

dep. 9:14
E arr. 9:19

Let Q be the connection B→C→ E and let P be the connection B→ D→ E. Both
connections are obviously consistent, as Q only uses train 1 and P only uses train 2.
Some of the attributes of Q and P are summarized in Table 4.5. Let us decide whether
connection P dominates connection Q, i. e. we can replace connection Q by P. The
conditions (1) and (2) are already fulfilled. Both depart at 9:10 and the duration of Q is
10 minutes and the duration of P is 9 minutes. At first glance, it might look like we can
replace Q by P.

4.1. Routing with Realistic Transfer Durations 57

connection parr dep std critical departure arr ndep sta critical arrival
Q 9:06 9:10 4 yes 9:20 9:24 4 yes
P ⊥ 9:10 – no 9:19 ⊥ – no

Table 4.5: Attributes of connections Q and P.

However, if Q appears as subconnection of a larger connection, the result may not
be consistent. Let R be the connection A→ B→C→ E→ F. Connection R is consistent
as it is a single train from A to F without any transfers. Q is a subconnection of R. When
we replace Q by P in R, we get a connection R′ over A→ B→D→ E→ F with transfers
at B and E. Connection R′ is not consistent. The reason is that between the arrival of
train 1 at B at 9:06 and the departure of train 2 at 9:10 are only 4 minutes time, this
is smaller than the minimum transfer duration of 5 minutes. If R would arrive earlier,
e. g. at 9:05, the transfer would be consistent, std(Q) would increase to 5 minutes and Q
would not have a critical departure.

Note that at station E we have a different situation than at station B, although Q
has a critical arrival (at E). There, the transfer of R′ is consistent since between the
arrival at 9:19 and the departure at 9:24 are 5 minutes time to transfer. However, in
general, conditions (1) and (2) are only sufficient if Q has neither a critical departure
nor a critical arrival.

Lemma 4.4 A consistent connection P dominates a consistent connection Q iff for all
consistent connections R with subconnection Q, we can replace Q by P to get a consistent
connection R′ with Sd(R) = Sd(R′), Sa(R) = Sa(R′), and dep(R) ≤ dep(R′) ≤ arr(R′) ≤
arr(R).

Proof. ⇒: P dominates Q: We need to show that R′ is a consistent connection.
Condition (1) ensures that Sd(R) = Sd(R′), Sa(R) = Sa(R′). Condition (2) ensures that
we can replace R = Q by P directly or when transfer durations are irrelevant. The last
two conditions (3) and (4) ensure that we can replace Q by P even when Q is just a
part of a bigger connection and we need to consider transfer durations. The prefix of
this bigger connection w. r. t. Q may arrive in Sd(Q) with stop event Zd(Q) and due to
condition (3) it is consistent to transfer to Zd(P). Consequently the suffix of this bigger
connection w. r. t. Q may depart in Sa(Q) with stop event Za(Q) and due to condition (4)
it is consistent to transfer from Za(P). If Q is not a prefix of R, then dep(R) = dep(R′),
otherwise, condition (2) ensures that dep(R) = dep(Q) ≤ dep(P) = dep(R′). If Q is
not a suffix of R, then arr(R) = arr(R′), otherwise, condition (2) ensures that arr(R′) =
arr(P)≤ arr(Q) = arr(R).
⇐: ∀R we can replace Q by P: We need to show that all 4 conditions hold to prove

that P dominates Q. Condition (1) holds trivially. We get condition (2) with R = Q.
Condition (3): Let Q = (c1, . . . ,ck) have a critical departure and Zd(Q) 6= Zd(P).

Then there is a previous arrival of the train at station Sd(Q) with elementary connection

58 Chapter 4. Public Transportation

c0. We choose R := (c0,c1, . . . ,ck). As we can replace Q by P in R to get a consistent
connection, dep(P)−parr(Q)≥ transfer(Sd(P)) must hold.

Condition (4): Let Q = (c1, . . . ,ck) have a critical arrival and Za(Q) 6= Za(P). Then
there is a next departure of the train at station Sa(Q) with elementary connection ck+1.
We choose R := (c1, . . . ,ck,ck+1). As we can replace Q by P in R to get a consistent
connection, ndep(Q)− arr(P)≥ transfer(Sa(P)) must hold. �

4.1.3 Query

We consider two types of queries in the scenario with realistic transfer durations: A time
query (Definition 4.5) solving the earliest arrival problem2 (EAP), and a profile query
(Definition 4.6) computing a dominant set of connections.

Definition 4.5 A time query is given as A@τ → B, where A is the source station, τ is
the earliest departure time, and B is the target station. All consistent connections from
station A to station B that do not depart before τ are feasible for this query. A feasi-
ble connection with minimal arrival time is optimal. The query’s result is an optimal
connection.

Definition 4.6 A profile query is given as A→ B, where A is the source station, and B is
the target station. All consistent connections from station A to station B are feasible for
this query. A feasible connection that is part of a dominant set among all feasible con-
nections is optimal. The query’s result is a dominant set among all feasible connections.

Time Query Algorithm. We want to compute the result of a time query A@τ → B
(Definition 4.5) with a Dijkstra-like algorithm. It stores multiple labels with each sta-
tion. A label represents a connection P stored as a tuple (Za,arr)3, where Za is the arrival
stop event of P and arr is the arrival time of P. The source station is always A, the target
station Sa(P) is implicitly given by the station that stores this label. Furthermore, we
only consider connections departing not earlier than τ at A and want to minimize the
arrival time. As we do not further care about the actual departure time at A, we need
to define a new dominance relation. To distinguish the new dominance relation (Defini-
tion 4.7) from the previous dominance relation (Definition 4.2), we call the considered
connections arrival connections if we want to use the new dominance relation. All no-
tation and other definitions related to connections therefore apply to arrival connections,
too.

2Another interesting problem is the latest departure problem (LDP). It is symmetric to the EAP, and
symmetric algorithms to the ones that solve the EAP can be used to solve the LDP.

3Such a label does not uniquely describe a connection but stores all relevant information for a time
query. To compute the actual connection, and not only the earliest arrival time, we need to store an
additional parent pointer with each label.

4.1. Routing with Realistic Transfer Durations 59

Definition 4.7 An arrival connection P dominates Q iff all of the following conditions
are fulfilled:

(1) Sa(P) = Sa(Q)

(2) arr(P)≤ arr(Q)

(3) Za(P) = Za(Q), or Q does not have a critical arrival, or ndep(Q)− arr(P) ≥
transfer(Sa(P))

Lemma 4.8 shows that we can compute a dominant set of arrival connections from
dominant prefixes.

Lemma 4.8 Let (A,B,τ) be a time query. A consistent arrival connection P dominates
a consistent arrival connection Q iff for all consistent arrival connections R with prefix
Q, we can replace Q by P to get a consistent arrival connection R′ with Sa(R) = Sa(R′),
and arr(R′)≤ arr(R).

Proof. This proof is similar to the one of Lemma 4.4.
⇒: P dominates Q: We need to show that R′ is a consistent connection. Condition

(1) ensures that Sa(R) = Sa(R′). Condition (2) ensures that we can replace R = Q by P
directly or when transfer durations are irrelevant. The last condition (3) ensures that we
can replace Q by P even when Q is just a prefix of a bigger connection and we need
to consider transfer durations. The suffix of this bigger connection w. r. t. Q may depart
in Sa(Q) with stop event Za(Q) and due to condition (3) it is consistent to transfer from
Za(P). If Q 6= R, then arr(R) = arr(R′), otherwise, condition (2) ensures that arr(R′) =
arr(P)≤ arr(Q) = arr(R′).
⇐: ∀R we can replace Q by P: We need to show that all 3 conditions hold to prove

that P dominates Q. Condition (1) holds trivially. We get condition (2) with R = Q.
Condition (3): Let Q = (c1, . . . ,ck) have a critical arrival and Za(Q) 6= Za(P). Then

there is a next departure of the train at station Sa(Q) with elementary connection ck+1.
We choose R := (c1, . . . ,ck,ck+1). As we can replace Q by P in R to get a consistent
connection, ndep(Q)− arr(P)≥ transfer(Sa(P)) must hold. �

Our algorithm manages a set of dominant arrival connections ac(S) for each station S,
see Algorithm 4.1 for pseudo-code. The initialization of ac(A) at the departure station A
is a special case since we have no real connection to station A. That is why we introduce
a special stop event⊥ and we start with the set {(⊥,τ)} at station A. Our query algorithm
then knows that we are able to board all trains that depart not earlier than τ . We perform
a label correcting query that uses the minimum arrival time of the (new) connections as
key of a priority queue. This algorithm needs two elementary operations: (1) link: We
need to traverse an edge e = (S,T) by linking a given set of arrival connections ac(S)
with the connections c(e) to get a new set of arrival connections to station T . (2) minima:
We need to combine the already existing arrival connections at T with the new ones to a
dominant set. We found a solution to the EAP once we extract a label of station B from
the priority queue, as Theorem 4.9 shows.

60 Chapter 4. Public Transportation

Algorithm 4.1: TimeQuery(A, B, τ)
input : source station A, target station T , departure time τ

output : earliest arrival time (Definition 4.5)

// tentative dominant sets of arr. connections from A to S
1 foreach S ∈B \A do ac(S) := /0;
2 ac(A) := {(⊥,τ)}; // special value for A since we depart here at time τ

3 Q.insert(τ,A); // priority queue, key is earliest arrival time
4 while Q 6= /0 do
5 (t,S) := Q.deleteMin();
6 if S = B then return t; // done when at target B
7 foreach e := (S,T) ∈ E do
8 N := min(ac(T)∪ e.link(ac(S)));
9 if N 6= ac(T) then // new connections not dominated

10 ac(T) := N; // update arrival connections at T
11 k := minP∈N arr(P); // earliest arrival time at T
12 Q.update(k,T);

13 return ⊥; // target B not reachable

Theorem 4.9 Our time query algorithm in the station graph model solves a time query.

Proof. The query algorithm only creates consistent connections because link and minima
do so. Lemma 4.8 ensures that there is never a connection with earlier arrival time. The
connections depart from station A not before τ by initialization, so they are feasible for
the time query. Since the duration of any connection is non-negative, and by the order in
the priority queue, the first label of B extracted from the priority queue has the earliest
arrival time at B. �

The link and minima operation dominate the runtime of the query algorithm and we
describe efficient algorithms in Section 4.1.5. The most important part is to have a suit-
able order of the connections, primarily ordered by arrival time. The minima operation
is then mainly a linear merge operation, and the link operation uses precomputed in-
tervals to look only at a small relevant subset of c(e). We gain additional speed-up by
combining the link and minima operation.

Profile Query Algorithm. We extend the previous algorithm to answer profile queries
(Definition 4.6). Our profile query algorithm computes dominant connections con(S)
for each reached station S instead of dominant arrival connections, see Algorithm 4.2.
Also we cannot just stop the search when we remove a label of B from the priority queue
for the first time. We are only allowed to stop the search when we know that we have a
dominant set among all feasible connections. For daily operating trains, we can compute
a maximum duration for a set of connections and can use it to prune the search. We show
the correctness of our profile query algorithm with Theorem 4.10.

4.1. Routing with Realistic Transfer Durations 61

Algorithm 4.2: ProfileQuery(A, B)
input : source station A, target station T
output : dominant set among all feasible connections (Definition 4.6)

// tentative dominant sets of connections from A to S
1 foreach S ∈B \A do con(S) := /0;

// special value for A since we depart here
2 con(A) := {⊥};

// priority queue, key is minimum duration from station A
3 Q.insert(0,A);
4 while Q 6= /0 do
5 (t,S) := Q.deleteMin();

// prune due to daily (1440 min. = 1 day) operating trains
6 if minP∈con(B) {arr(P)−dep(P)}+1440+ transfer(A)+ transfer(B)≤ t then
7 return con(B);

8 foreach e := (S,T) ∈ E do
9 N := min(con(T)∪ e.link(con(S)));

10 if N 6= con(T) then // new connections not dominated
11 c(T) := N; // update arrival connections at T
12 k := min

P∈N
{arr(P)−dep(P)}; // min duration from A to T

13 Q.update(k,T);

14 return ⊥;

Theorem 4.10 Our profile query algorithm in the station graph model computes a dom-
inant set among all feasible connections.

Proof. The query algorithm only creates consistent connections because link and minima
do so. Furthermore, the minima operation ensures that the stored sets of connections are
always dominant. Lemma 4.4 ensures that we can compute for each feasible connection
R a feasible connection R′ from dominant prefixes, and R′ dominates R. Left to prove
is showing the correctness of our stopping criterion. We assume daily operating trains.
Let P be a connection in con(B) with minimal arr(P)− dep(P). Every connection Q
with arr(Q)−dep(Q)≥ arr(P)−dep(P)+1440+ transfer(A)+ transfer(B) can always
be dominated by P, or the same connection P′ on the next day. �

Efficient algorithms for the link and minima operation are complex, see Sec-
tion 4.1.5. Similar to a time query, we use a suitable order of the connections, primarily
ordered by departure time. The minima operation is an almost linear merge: we merge
the connections in descending order and remove dominated ones. This is done with a
sweep buffer that keeps all previous dominant connections that are relevant for the cur-
rent departure time. The link operation, which links connections from station A to S with
connections from station S to T , is more complex: in a nutshell, we process the sorted
connections from A to S one by one, compute a relevant interval of connections from S

62 Chapter 4. Public Transportation

to T as for the time query, and remove dominated connections using a sweep buffer like
for the minima operation.

4.1.4 Node Contraction
Here, we show how to perform node contraction (Section 3.2) of a network in the station
graph model. After this preprocessing step, we are able to use a faster algorithm to
answer time and profile queries.

Contracting a node (= station) v in the station graph removes v and all its adjacent
edges from the graph and adds shortcut edges to preserve dominant connections between
the remaining nodes. A shortcut edge bypasses node v and represents a set of connec-
tions. Practically, we contract one node at a time until the graph is empty. All original
edges together with the shortcut edges form the result of the preprocessing, a contraction
hierarchy (CH).

Preprocessing. The most time consuming part of the contraction is the witness search:
given a node v and an incoming edge (u,v) and an outgoing edge (v,w), is a shortcut
between u and w necessary when we contract v? We answer this question with a one-
to-many profile search from u omitting v. We want to find for every connection of the
path 〈u,v,w〉 a dominating connection. In this case, we can omit a shortcut, otherwise
we add a shortcut with all the connections that have not been dominated. To keep the
number of witness searches small, we maintain a set of necessary shortcuts for each node
v. They do not take a lot of space since timetable networks are much smaller than road
networks. Then, the contraction of node v is reduced to just adding the stored shortcuts.
Initially, we perform a one-to-many witness search from each node u and store with each
neighbor v the necessary shortcuts (u,w) that bypass v. The search can be limited by the
duration of the longest potential shortcut connection from u.

After the contraction of a node v, we need to update the stored shortcuts of the re-
maining nodes. The newly added shortcuts (u,w) may induce other shortcuts for the
neighbors u and w, see Figure 4.6. So we perform one forward witness search from u
and add to w the necessary shortcuts (u,x) bypassing w. A backward witness search
from w updates node u. To omit the case that two connections witness each other, we
add a shortcut when the witness has the same duration and is not faster. So at most two
witness searches from each neighbor of v are necessary. When we add a new shortcut
(u,w), but there is already an edge (u,w), we merge both edges using the minima opera-
tion, so there are never parallel edges. Avoiding these parallel edges is important for the
contraction, which performs worse on dense graphs. Thereby, we also ensure that we
can uniquely identify an edge by its endpoints.

We also limit the number of hops and the number of transfers of a witness search [67].
This accelerates the witness search at the cost of potentially more shortcuts.

We do not require loops in static and time-dependent road networks. But for station
graph timetable networks, loops are sometimes necessary when transfer durations differ

4.1. Routing with Realistic Transfer Durations 63

v

u w

y x

v

u w
new shortcut

at contraction of v

potentially neces-
sary shortcut for

contraction of u

potentially neces-

sary shortcut for

contraction of w

Figure 4.6: If the contraction of node v adds a new shortcut (u,w), we need to update
the necessary shortcuts stored with u and w. For the contraction of w (in the future), a
potentially necessary shortcut (u,x) needs to be considered and for the contraction of u
(in the future), a potentially necessary shortcut (y,w) needs to be considered.

between stations, see Table 4.7. Technically speaking, loops allow to transfer between
certain connections at a station below the minimum transfer duration. These loops also
make the witness computation and the update of the stored shortcuts more complex. A
shortcut (u,w) for node v with loop (v,v) must not only represent the path 〈u,v,w〉, but
also 〈u,v,v,w〉. So when we add a shortcut (v,v) during the contraction of another node,
we need to recompute all stored shortcuts of node v.

Table 4.7: Example showing why loop shortcuts are necessary. The timetable consists of
two trains and four stations. Let transfer(B) = 5 and transfer(C) = 1. Such a timetable
is not unrealistic, if for example station B is a large station, whereas station C has just
two rail tracks on a single platform. We want to go from station A to station D. It is not
consistent to transfer from train 1 to train 2 at station B since it would require a transfer
duration of 3 minutes or less. However, it is possible to transfer at station C and then we
get a consistent connection from station A to station D arriving at 12:05. Thus, when we
contract station C, we need to add a loop at station B.

(a) train 1

station time
A dep. 12:00

B
arr. 12:01

dep. 12:01
C arr. 12:02

(b) train 2

station time
C dep. 12:03

B
arr. 12:04

dep. 12:04
D arr. 12:05

The order in which the nodes are contracted is deduced from a node priority con-
sisting of: (a) The edge quotient, the quotient between the number of shortcuts added
and the number of edges removed from the remaining graph [136]. (b) The hierar-

64 Chapter 4. Public Transportation

chy depth, an upper bound on the amount of hops that can be performed in the result-
ing hierarchy. Initially, we set depth(u) = 0 and when a node v is contracted, we set
depth(u) = max(depth(u),depth(v)+1) for all neighbors u. We weight (a) with 10 and
(b) with 1 in a linear combination to compute the node priorities. Nodes with higher pri-
ority are more “important” and get contracted later. The nodes are contracted in rounds.
In each round, nodes with a priority that is minimal in their 2-neighborhood are con-
tracted. We ensure unique priority values by taking the node id into account [136]. Also
note that we do not need to perform a simulated contraction of a node to compute its
edge quotient [67, 15] due to our stored sets of necessary shortcuts [18].

As mentioned in the introduction, we cannot directly use the algorithms used for
time-dependent road networks [15]. We tried using the time-dependent model for the
timetable networks, but too many shortcuts were added, especially a lot of shortcuts
between the different train-route nodes of the same station pair occur.4 Additionally,
Batz et al. [15] strongly base their algorithm on min-max search that only uses the time-
independent min/max duration of an edge to compute upper and lower bounds. However,
in timetable networks, the maximum travel time for an edge is very high, for example
when there is no service during the night. So the computed upper bounds are too high to
bring any exploitable advantages. Without min-max search, the algorithm of Batz et al.
[15] is drastically less efficient, as the preprocessing takes days instead of minutes.

Query. The query is based on the ideas of Section 3.2.2, but some augmentations are
necessary. Remember that a directed edge (v,w), where w is contracted after v, is an
upward edge, and where w is contracted before v is a downward edge. However, this
definition does not consider loops (v,v), a loop is always considered as an upward edge.

For a CH time query, we do not know the arrival time at the target node. We solve this
by marking all downward edges that are reachable from the target node. The standard
time query algorithm, using only upward edges and the marked downward edges, solves
the EAP.

The CH profile query performs a baseline profile query from the source using only
upward edges. Additionally it performs a backwards profile query from the target node
using only downward edges. The meeting nodes of both search scopes define connec-
tions from source to target and the dominant set among all these connections is the result
of the CH profile query. The stopping criterion of the search is different, we keep a
tentative set of dominant connections from the source station A to the target station B.
Every time forward and backward search space meet, we update this tentative set and
compute the maximum travel time for arbitrary departure time considering just this set.
We can abort the search in a direction once the key of the priority queue is larger than
this maximum travel time. Note that using further optimizations that work for road net-
works, more precisely the stall-on-demand technique and min-max search [15], would
even slowdown our query.

4We tried to merge train-route nodes but this brought just small improvements.

4.1. Routing with Realistic Transfer Durations 65

The restriction of the CH query is that it only computes paths consisting of a se-
quence of upward edges followed by a sequence of downward edges. Lemma 4.11
proves that due to our preprocessing, we still are able to compute dominant connec-
tions. Therefore, our time query (Theorem 4.12) and our profile query (Theorem 4.13)
are correct.

Lemma 4.11 Let Q be a consistent connection. Then there exists a sequence of upward
edges e1, . . . ,ei in the CH and a sequence of downward edges ei+1, . . . ,e j in the CH
with P1 ∈ c(e1), . . . ,Pj ∈ c(e j), such that the consistent connection P created from the
concatenation of P1, . . . ,Pj dominates Q.

Proof. WLOG we assume that the stations are numbered 1..n by order of contraction,
station 1 being contracted first.

Let X = 〈(e1,P1), . . . ,(ek,Pk)〉 be a sequence of edge/connection pairs, we will call
it connection-path, such that P1 ∈ c(e1), . . . ,Pk ∈ c(ek), the concatenation of the connec-
tions, denoted by Xcon, is a consistent connection and the concatenation of the edges,
denoted by Xpath, is a path in the graph including the shortcuts. Define M(X) := {(a,b) |
1≤ a < b≤ k with Sd(Pa+1) = Sd(Pa+2) = · · ·= Sd(Pb) and Sd(Pb) is contracted before
Sd(Pa),Sa(Pb)}. If M(X) 6= /0, define MS(X) := min{Sd(Pb) | (a,b) ∈M(X)}. Note that
if M(X) = /0 the path Xpath can be split into a sequence of upward edges and a sequence
of downward edges as in the description of this lemma.

We will prove that for each connection-path X we can construct a connection-path
Y such that Ycon dominates Xcon and M(Y) = /0 or MS(Y) > MS(X). This finishes our
proof by iteratively applying this construction on the connection-path created from the
elementary connections of Q together with the edges that contain these elementary con-
nections. Note that the domination relation on connections is transitive, and that after
a finite number of iterations, M(Y) = /0 must hold, as there are only a finite number of
stations in our graph.

Let M(X) 6= /0 and Sd(Pb) := MS(X) with (a,b) ∈M(X). The contraction of station
Sd(Pb) either finds a witness for the connection (Pa, . . . ,Pb) or adds a shortcut with this
connection. Let X ′ be the connection-path of this witness or shortcut for our consid-
ered connection. We know that if M(X ′) 6= /0, then MS(X ′) > MS(X), as we contracted
station MS(X) = Sd(Pb). Therefore, we can replace (ea,Pa), . . . ,(eb,Pb) in X with X ′.
We do this iteratively for any occurrence of station MS(X) as an endpoint of an edge
of Xpath, as stations can appear several times. For the resulting connection-path Y holds
either M(Y) = /0 or MS(Y) > MS(X). Also, due to Lemma 4.4, Ycon dominates Xcon by
construction. �

Theorem 4.12 The CH time query solves the EAP.

Proof. Let Q be a connection solving the EAP for a time query (A,B,τ). With
Lemma 4.11 we know that there is a path as a sequence of upward edges followed by a
sequence of downward edges describing a connection P that dominates Q. This path can

66 Chapter 4. Public Transportation

be found by our CH query algorithm, essentially a baseline time query on a restricted set
of edges. Therefore, with Theorem 4.9 we know that we solve the EAP correctly. �

Theorem 4.13 The CH profile query computes a dominant set among all consistent con-
nections from A to B.

Proof. Let Q be a consistent connection from A to B. With Lemma 4.11 we know that
there is a path as a sequence of upward edges followed by a sequence of downward edges
describing a connection P that dominates Q. Therefore, with Theorem 4.10 we know that
the forward search computes a connection dominating the subconnection described by
the sequence of upward edges, and the backward search computes a connection domi-
nating the subconnection described by the sequence of downward edges. Thus, our CH
profile query computes a connection P that dominates Q. As we ordered the priority
queue by minimum duration of the connections, we can stop the search as soon as the
minimum key in the priority queue exceeds the computed maximum travel time. �

4.1.5 Algorithms for the Link and Minima Operation

The main ideas of our station graph model are simple: Use just one node per station,
and no parallel edges. A potential explanation why nobody used it before is that the
operations required to run a Dijkstra-like algorithm in this model become quite complex
with realistic transfer durations. The following two operations are required:

1. link: We need to traverse an edge e = (S,T) by linking a given set of connections
from A to S with the connections c(e) to get a new set of connections to station T .

2. minima: We need to combine two sets of dominant connections between the same
pair of station to a new dominant set among the union of both.

Straightforward implementations of these operations are simple, but their runtime
is at least quadratic in the number of connections. We provide implementations that
have almost linear runtime. This significantly improves the performance of our query
algorithms, and we therefore devote a whole section to these implementations.

The ordered set of connections for an edge is stored in an array. It is primarily ordered
by departure time, secondarily by arrival time, and finally critical arrivals come before
non-critical arrivals. We assume daily operating connections and give times in minutes.
A day has 1 440 minutes, so we store for each connection only one representative with
departure time in [0,1439]. Therefore, the array actually represents a larger unrolled
array of multiple days and we get the connections of different days by shifting the times
by 1 440. Given two time values t and t ′, we define the cycledifference(t, t ′) as smallest
non-negative integer ` such that `≡ t ′− t (mod 1 440).

4.1. Routing with Realistic Transfer Durations 67

Operations on Arrival Connections

The realistic transfer durations are the main issue why an efficient implementation is
complex. Due to them, not only the earliest arriving connection at a station S is dominant,
but also ones arriving less than transfer(S) minutes later if they have a critical arrival.

We store a set of arrival connections as array. It is primarily ordered by arrival time.
This ensures that no arrival connection in the array dominates an arrival connection with
lower index.

Consider the relaxation of an edge e = (S,T) during a time query. This requires to
link the arrival connections in ac(S) to the connections in c(e). A basic link algorithm for
the time query would pairwise link them together, and afterwards remove the dominated
arrival connections. Let g := |ac(S)| and h := |c(e)|. The basic algorithm would create
up to Θ(g ·h) arrival connections. Especially h can be very large even though usually
only a small range in c(e) is relevant for the link operation.

We improve the basic algorithm. Given a connection P ∈ ac(S), we identify the first
connection Pt ∈ c(e) we can transfer to. This first connection is the beginning of a domi-
nant range. Obviously, there will be a connection in c(e), so that after this connection, all
connections linked with P will result in dominated connections. Therefore, such a con-
nection marks the end of a dominant range. It is preferable to make the dominant range
as small as possible, but also supersets of dominant ranges are dominant ranges. We
could also distinguish between linking to a certain connection with and without transfer,
but we restrict ourselves only to the case with transfer. This results in a practically very
efficient link operation since we can precompute the dominant range for each Pt as it is
independent of P. Details on how to compute such a dominant range are provided later in
this section. So given an array of arrival connections ac(S) and an array of connections
of an edge c(e) to relax, the link will work as follows:

1. edt := minP∈ac(S) arr(P) (mod 1 440) // earliest departure time, in [0,1439]

2. ett := edt+ transfer(S) (mod 1 440) // earliest departure with transfer time

3. Find first connection Pn ∈ c(e) with minimal cycledifference(edt,dep(Pn)) using
buckets.

4. Find first connection Pt ∈ c(e) with minimal cycledifference(ett,dep(Pt)). Con-
nection Pt gives a dominant range that is identified by the first connection Pe out-
side the range. This partitions the unrolled array of c(e):

...
Pn

link w/o transfer
Pt

link w/ transfer
Pe

...

We may only link to a connection in [Pn,Pt) without transfers and thus all arrival
connections in ac(S) are relevant to decide which consistent arrival connections
we can create there. It is consistent to link to all connections with transfers from
Pt on.

68 Chapter 4. Public Transportation

5. While we link, we remember the minimal arrival time τ∗ and use it to skip domi-
nated arrival connections using Lemma 4.14.

6. Finally, we sort the resulting connections and remove the dominated ones, again
using Lemma 4.14. This step is necessary because the minimum arrival time may
decrease while we link and we may have to remove duplicates, too.

Lemma 4.14 Let S be a set of arrival connections at a station S, and let the
mapping S → ZS,P 7→ Za(P) be injective. Pick P∗ ∈ S with earliest arrival
time τ∗ := arr(P∗), preferably having a critical arrival. Then S ∗ := {P∗} ∪
{P ∈S | P 6= P∗∧ arr(P)< τ∗+ transfer(S)∧P has a critical arrival} is a dominant
set among S .

Proof. We need to show that for each Q ∈S \S ∗ there exists a P ∈S ∗ such that P
dominates Q, and no arrival connection P ∈ S ∗ dominates an arrival connection Q ∈
S ∗ \{P}.

Let Q ∈S \S ∗. We will prove that P∗ dominates Q, that is all three conditions (1),
(2) and (3) of Definition 4.7 are fulfilled. Condition (1) holds as Sa(P∗) = S = Sa(Q).
Condition (2) holds as P∗ has the earliest arrival time of all connections in S . As
Q /∈S ∗, either arr(Q) ≥ arr(P∗)+ transfer(S) or Q does not have a critical arrival. In
case that Q does not have a critical arrival, condition (3) holds. Otherwise, ndep(Q) ≥
arr(Q)≥ arr(P∗)+ transfer(S), and thus condition (3) holds as well.

Now assume, for the sake of contradiction, that there exists P ∈S ∗ and Q ∈S ∗ \
{P} such that P dominates Q. Condition (3) has to hold, thus either Za(P) = Za(Q) or
Q does not have a critical arrival or ndep(Q)− arr(P) ≥ transfer(S). Za(P) = Za(Q) is
not possible as P 6= Q and the mapping S →ZS,P′ 7→ Za(P′) is injective. If Q does not
have a critical arrival, then Q = P∗, as all other arrival connections in S ∗ have critical
arrivals. As we preferred P∗ having a critical arrival, P has to arrive later than Q = P∗, as
otherwise we would have picked P for P∗. Thus condition (2) cannot hold. If ndep(Q)−
arr(P)≥ transfer(S), then arr(Q)≥ arr(P)+ transfer(S)≥ arr(P∗)+ transfer(S). Observe
that transfer(S) > 0 has to hold, as otherwise S ∗ = {P∗}. Therefore, arr(Q) > arr(P∗)
and thus Q 6= P∗ and Q /∈S ∗, contrary to our assumption. �

Note that the requirement of the mapping S →ZS,P 7→ Za(P) being injective is no
real restriction of Lemma 4.14. If there are multiple connections in S arriving with the
same arrival stop event (same train at same time), we just need to keep one of them.

Example 4.15 Consider the example of Figure 4.8 of an earliest arrival query from
station A with earliest departure time 7:30. Assume that the two marked connections
arriving at C currently represent the set of arrival connections ac(C). We want to link
ac(C) with c(C,D) to compute a set of arrival connections at station D. Note that both
ac(C) and c(C,D) are already ordered like we would store them in an array. In Step 1 of
our link algorithm we compute the earliest departure time edt = 9:00. Step 2 computes
the earliest departure with transfer time ett = 9:05. Step 3 computes the connection

4.1. Routing with Realistic Transfer Durations 69

A

0:00
7:30

C

0:00
9:00
9:01

8:59
9:01
9:04
9:05
9:05
9:06
9:14

D

9:59
10:05
10:00
10:04
10:06
10:03
10:10

9:59
10:05
10:05
0:00

10:06
10:06
10:10

ac(C)

c(C,D)

Figure 4.8: Excerpt of an example timetable while performing a time query from station
A with earliest departure time 7:30. Currently, the time query algorithm settles station C
and relaxes edge (C,D). Below the edge (C,D), there is a set of connections, represented
by their departure time (left) and their arrival time (right). Riding the train from the left
station to the right station is denoted by a solid line. At a station, dotted lines show that
there is no transfer necessary. The minimum transfer duration is 5 minutes at each sta-
tion. Therefore, if the time difference without a transfer at a station is below 5 minutes,
it has a critical arrival/departure, for example arriving at D at 9:59 and departing at 9:59
again is a critical arrival/departure, whereas arriving at 10:00 and departing at 10:05 is
not.

scan min. arrival
step connection P add reason time τ∗

w
/o

tr
an

sf
er 1 9:01 — 10:05 yes

arrival connection 9:00 ∈ ac(C)
can be linked to P w/o transfer,

update τ∗ := 10:05
10:05

2 9:04 — 10:00 yes
arrival connection 9:01 ∈ ac(C)
can be linked to P w/o transfer,

update τ∗ := 10:00
10:00

w
/t

ra
ns

fe
r 3 9:05 — 10:04 no

τ∗ not updated and
P does not have a critical arrival 10:00

4 9:05 — 10:06 no
τ∗ not updated and

arr(P)≥ τ∗+ transfer(D)
10:00

5 9:06 — 10:03 yes
arr(P)< τ∗+ transfer(D)
and P has a critical arrival 10:00

Table 4.9: Scan over all connections departing not earlier than 9:00. As the minimum
transfer duration is 5 minutes, in the range [9:00, 9:04], only linking without transfer is
possible. Each connection departing not earlier than 9:05 can be reached with a transfer.

70 Chapter 4. Public Transportation

Pn = 9:01 — 10:05, as it is the first connection to depart not earlier than edt = 9:00.
Step 4 computes the connection Pt = 9:05 — 10:04, as it is the first connection to depart
not earlier than ett = 9:05. Furthermore, we precomputed another connection Pe for
connection Pt that represents a dominant range following Lemma 4.16. Let us look close
on how Pe is computed: the departure time of Pt is 9:05, the minimum duration of any
connection of c(C,D) is 56 minutes, and the duration of Pt is 59 minutes, therefore d′ =
59 - 56 = 3 minutes, and the minimum transfer duration at D is 5 minutes. So, following
Lemma 4.16, Pe has to be the first connection that does not depart earlier than 9:05
+ 3 + 5 = 9:13, therefore Pe = 9:14 — 10:10. In Step 5 of the link operation, we
scan through all the connections starting with Pn and stopping before reaching Pe, see
Table 4.9. While we do that, we update the minimum arrival time τ∗ and use Lemma 4.14
to prune dominated connections. In Step 6, we remove dominated arrival connections,
in this example, only the one added in scan step 1, again using Lemma 4.14. After that,
Lemma 4.14 proves that the remaining set of arrival connections is a dominant one.

The second important operation is the minima operation. Given two sets of arrival
connections at a node, this operation builds the dominant set among the union. This
can be done in linear time by just identifying the minimum arrival time τ∗ and using
Lemma 4.14. Figure 4.10 shows an example. Sometimes arrival connections are equiv-
alent but not identical. Two arrival connections are equivalent if they are identical or

10:01
10:02 c
10:05 c

10:00 c
10:03 c

10:00 c
10:02 c
10:03 c

τ∗ = 10:00

Figure 4.10: Build the minima of two sets of arrival connections arriving at a station S.
The two sets are in the bottom of this figure, and for each set the arrival time of each
arrival connection is given. An arrival connection with critical arrival is marked with ‘c’.
The overall minimum arrival time τ∗ is 10:00. The minimum transfer duration of station
S is 5 minutes. We build a dominant set among the union of the sets using Lemma 4.14.
So we first identify our earliest arriving connection, that is the one arriving at τ∗ :=
10:00. Then, we merge both ordered sets of arrival connections. We keep all arrival
connections except the one arriving at 10:01 because it does not have a critical arrival,
and the one arriving at 10:05 because 10:05 ≥ τ∗+ transfer(S).

4.1. Routing with Realistic Transfer Durations 71

have the same arrival time and neither of them has a critical arrival. In this case we must
keep just one of them. We make this decision so that we minimize the number of queue
inserts in the query algorithm, e. g. prefer the one that was not created in the preceding
link operation.

Running time. The above minima operation runs in linear time. But the link oper-
ation is more complex than a usual link operation that maps departure time to arrival
time. However, we give an idea why this link operation is very fast and may work in
constant time in many cases. The experiments in Section 4.1.6 show that it is indeed
very efficient. Let b be the number of connections in the bucket where Pn is located. Let
cd be the number of connections that depart within the transfer duration window [Pn,Pt)
at the station. Let ca be the number of arrival connections |ac(S)|, r be the number of
connections that depart within the range [Pt ,Pe). The runtime for computing a link is
then O(b+ cdca + r). We choose the number of buckets proportional to the number of
connections, so b is in many cases constant. For linking connections without transfer,
we have the product O(cdca) as summand in the runtime. We could improve the product
down to O(cd + ca +u) with hashing, where u is the number of linked connections. But
this is slower in practice, since cd and ca are usually very small. The station-dependent
minimum transfer duration is usually very small, and also, only very few connections
depart and arrive within this transfer duration. It is harder to give a feeling of the size
of the range [Pt ,Pe). Remember that every connection operates daily. Let be d the dif-
ference between the duration of Pt and the minimum duration of any connection in c(e).
d+ transfer(S) is an upper bound on the size of the time window of this range. So when
d is small, and this should be true in many cases, also r is small. To show that our link
operation is empirically fast, we give the average of the parameters we used to bound
our runtime in Table 4.11. The average is the most relevant measure because we perform
several hundreds link operations per query.

network b cd ca cd · ca r
PT-EUR 2.7 0.55 1.12 0.68 1.09
PT-VBB 3.0 0.57 1.32 0.94 1.22
PT-RMV 3.2 0.69 1.38 1.20 1.26

Table 4.11: Average of 1 000 random time queries.

Computing the dominant range. Besides the buckets, we also need to compute the
dominant ranges. For each connection Pt stored with an edge e, the dominant range that
starts with Pt ends with the first connection Pe ∈ c(e) that does not depart earlier than
the time specified by Lemma 4.16. As c(e) is stored as an array that is primarily ordered
by departure time, all connections with higher index have no earlier departure time. An
efficient algorithm to compute all dominant ranges uses a sweepline algorithm approach.

72 Chapter 4. Public Transportation

Lemma 4.16 Let P be an arrival connection at station S that can link to a connection
Q ∈ c(S,T) with a transfer. Let d′ be the difference between the duration of Q and the
minimum duration of any connection in c(S,T). Then all connections Q′ that depart
not earlier than dep(Q)+d′+ transfer(T) will not create a dominant arrival connection
when linked with P.

Proof. Let Q′ be a connection that does not depart earlier than dep(Q)+d′+ transfer(T).
By definition of d′ is d(Q) ≤ d(Q′)+d′ and thus arr(Q) = dep(Q)+d(Q) ≤ dep(Q)+
d(Q′)+ d′ ≤ (dep(Q′)− d′− transfer(T))+ d(Q′)+ d′ ≤ arr(Q′)− transfer(T). Thus,
the arrival connection created by linking P with Q will always dominate the one created
by linking P with Q′. �

Operations on Connections
The operations on connections are more complex than the ones on arrival connections,
as we additionally need to consider critical departures.

Linking two edges. To link two edges for shortcuts and profile search, we use the
dominant range computation at link time. We change the order of the connections in
the array for this operation. They are still primarily ordered by departure time. But
within the same departure time, the dominant connection should be after the dominated
one. That allows for an efficient backward scan to remove dominated connections. We
secondarily order by duration descending, thirdly non-critical before critical departure,
and then non-critical before critical arrival. Finally, we order by the first and then last
stop event, except if the last stop event is critical and the first one not, then we order by
the last and then the first stop event. The last criterion is used for an efficient building of
a dominant union (minima) of two connection sets where the preference is on one set.

Given two edges e1 = (S1,S2) and e2 = (S2,S3), we want to link all consistent con-
nections to create c(e3) for a shortcut e3 = (S1,S3). A trivial algorithm would link each
consistent pair of connections in c(e1) and c(e2) and then compare each of the resulting
connections with all other connections to find a dominant set of connections. However,
this is impractical for large g = |c(e1)| and h = |c(e2)|. We would create Θ(g ·h) new
connections and do up to Θ

(
(gh)2) comparisons.

So we propose a different strategy for linking that is considerably faster for practical
instances. We process the connections in c(e1) in descending order. Given a connection
P∈ c(e1), we want to find a connection Q∈ c(e1) that dominates P at the departure at S1
(first half of condition (2), and condition (3) of Definition 4.2). So we only need to link
P to connections in c(e2) that depart in S2 before Q could consistently transfer to them,
see Figure 4.12. Preferably we want to find the Q with the earliest arrival time. However,
we find the Q with the earliest arrival time at S2 with dep(Q) ≥ dep(P)+ transfer(S1).
Then Q will not only dominate P at the departure but also any connection departing not
later than P. So we can use a simple finger search to find Q in c(e1). We also use finger

4.1. Routing with Realistic Transfer Durations 73

A

7:30
8:00
8:00
8:00

P

Q

B

10:00
10:00
10:01
10:30

10:05
10:15
10:25
10:35

C

11:05
11:15
11:25
11:35 R

c(A,B) c(B,C)

Figure 4.12: Excerpt of a timetable. Each edge has a set of connections, represented by
their departure time (left) and their arrival time (right). The minimum transfer duration
is 5 minutes at each station. We only need to consider linking P to the first three con-
nections in c(B,C) (of which only the first one will result in a dominant connection).
The connection created by linking P with the forth connection R is dominated by the one
created by linking Q with R.

search to find the first connection that departs in c(e2) after the arrival of P. Of course,
we need to take the transfer duration at S2 into account when we link. It is not always
necessary to link to all connections that depart in the dominant range specified by the
arrival time of P and Q; we can use the knowledge of the minimum duration in c(e2) to
stop linking when we cannot expect any new dominant connections. The newly linked
connections may not be dominant and also may not be in order and we fix this by these
three measures:

1. We use a sweep buffer that has as state the current departure time and holds all
relevant connections with higher order to dominate a connection with the cur-
rent departure time. The relevant connections are described by the set S ∗ in
Lemma 4.17. The number of them is usually small, see Figure 4.13. When we
link a new connection, we drop it in case that it is dominated by a connection in
the sweep buffer. If it is not dominated, we add it to the sweep buffer.

When the current departure time changes, we update the sweep buffer and drop
all connections that do not fulfill the conditions of Lemma 4.17 anymore. Note
that only the new departure time, and the time τ ′ defined in Lemma 4.17 are nec-
essary to update the sweep buffer. Assuming that only few connections depart
in S1 within transfer(S1) minutes, and only few connections arrive in S3 within
transfer(S3) minutes, the sweep buffer has only few entries.

2. Connections can only be unordered within a range with the same departure time,
for example when they have ascending durations. As there are usually only few
connections with same departure time, it is efficient to use the idea of insertion
sort to reposition a connection that is not in order. While we reposition a new
connection, we must check whether it dominates the connections that are now

74 Chapter 4. Public Transportation

positioned before it. For example, a new connection with same departure than the
previous one but smaller duration may dominate the previous one if the departure
is not critical.

3. After we processed all connections in c(e1), we have a superset of c(e3) that is al-
ready ordered, but some connections may still be dominated. This happens when
the dominant connection departs after midnight and the dominated connection be-
fore, so the periodic border is between them. To remove all dominated connec-
tions, we continue scanning backwards through the new connections but now on
“day -1” using the sweep buffer. We can stop when no connection in the sweep
buffer is of “day 0”.

Lemma 4.17 Let S be a set of connections between stations S and T , and let Q
be a connection with Sd(Q) = S and Sa(Q) = T . Furthermore, for all P ∈ S holds

7:00 — 9:00

7:00 — 8:00
7:03 — 8:05
7:10 — 8:50
7:11 — 8:45
7:30 — 8:55
8:00 — 9:20
8:30 — 8:35
8:45 — 9:49

S

Q

S ∗

Figure 4.13: Example on how the sweep buffer works. We show connections from a
station S to a station T represented by their departure time (left) and arrival time (right).
All connections here have distinct stop events, and all have critical arrival and critical
departure. The minimum transfer duration at stations S and T is 5 minutes. To decide
whether connection Q is dominated by the set of connections S , it is sufficient to look
only at the small number of marked connections in S ∗. The time τ ′ from Lemma 4.17 is
τ ′ = 8:45. Therefore, our sweep buffer only contains connections departing earlier than
dep(Q) + transfer(S) = 7:05, and connections arriving earlier than τ ′+ transfer(T) =
8:50. In our example, connection Q is dominated by connection P′ := 7:10 — 8:50
∈S \S ∗, because there is at least transfer(S) = 5 minutes time between the departure
of Q and the departure of P′, and at least transfer(T) = 5 minutes time between the
arrival of P′ and the arrival of Q. The connection P′′ from the proof of Lemma 4.17 is
P′′ := 7:11—8:45 ∈S ∗. And clearly, P′′ also dominates Q. But note that P′′ does not
dominate P′, as P′ has a critical arrival.

4.1. Routing with Realistic Transfer Durations 75

dep(Q) ≤ dep(P). Define τ ′ := min{arr(P) | P ∈S ∧dep(P)≥ dep(Q)+ transfer(S)}.
Iff there exists P′ ∈ S such that P′ dominates Q, then there exists P′′ ∈ S ∗ :=
{P ∈S | dep(P)< dep(Q)+ transfer(S)} ∪ {P ∈S | arr(P)< τ ′+ transfer(T)} such
that P′′ dominates Q.

Proof. We have to prove that if exists P′ ∈S \S ∗ such that P′ dominates Q, then there
exists P′′ ∈S ∗ that dominates Q. Pick P′′ ∈ {P ∈S | dep(P)≥ dep(Q)+ transfer(S)}
with arr(P′′) = τ ′. We will prove that P′′ dominates Q, that is, all four conditions (1),
(2), (3) and (4) of Definition 4.2 hold. Condition (1) holds as Sd(P′′) = S = Sd(Q)
and Sa(P′′) = T = Sa(Q). Condition (2): dep(Q) ≤ dep(P′′) holds by prerequisite.
As P′ /∈ {P ∈S | arr(P)< τ ′+ transfer(T)}, we know that arr(P′) ≥ τ ′+ transfer(T).
And because P′ dominates Q, by condition (2), we know that arr(Q) ≥ arr(P′). Both
inequalities together prove that arr(Q) ≥ τ ′ + transfer(T) ≥ τ ′ = arr(P′′), therefore,
condition (2) holds as well. Condition (3): Assume that Zd(P′′) 6= Zd(Q) and Q
has a critical departure, as otherwise, condition (3) holds directly. By choice of P′′

we know that dep(P′′) ≥ dep(Q) + transfer(S), and therefore, dep(P′′)− parr(Q) ≥
dep(P′′)− dep(Q) ≥ transfer(S) ⇒ condition (3) holds. Condition (4): Assume that
Za(P′′) 6= Za(Q) and Q has a critical arrival, as otherwise, condition (4) holds directly.
As P′ dominates Q, by condition (2), arr(P′)≤ arr(Q) holds, and also arr(P′)≥ arr(P′′)+
transfer(T) because P′ /∈ S ∗. Therefore, ndep(Q)− arr(P′′) ≥ arr(Q)− arr(P′′) ≥
arr(Q)− arr(P′)+ transfer(T)≥ 0+ transfer(T)⇒ condition (4) holds. �

Note that in comparison to the link operation for arrival connections, where we could
use the minimum arrival time τ∗ of Lemma 4.14 to find dominated arrival connections,
for connections, the sweep buffer S ∗ is the suitable replacement for τ∗.

Running time. We give an idea why this link operation is very fast and may work in
linear time in many cases. The experiments in Section 4.1.6 show that it is indeed very
efficient. Let cP be the size of the range in c(e2) that departs between the arrival of
P ∈ c(e1) and Q ∈ c(e1), as in the description of our algorithm. Let bP be the runtime
of the finger search to find the earliest connection in c(e2) that departs after the arrival
of P. Let s be the maximum number of connections in the sweep buffer. The runtime of
link is then O

(
∑P∈c(e1) (cP · s+bP)

)
. This upper bound reflects the linking and usage of

the sweep buffer. The ordering is also included, as s is an upper bound on the number of
connections with same departure time, as all these connections are in the sweep buffer.
The backward scanning on “day -1” is also included, since it just adds a constant factor
to the runtime. The finger search for Q in c(e1) is amortized in O(1), so it is also
included in the runtime above. It is hard to get a feeling for cP and bP, they can be
large when h = |c(e2)| is much larger than g = |c(e1)|. Under the practical assumption
that ∑P∈c(e1) (cP +bP) = O(g+h), we get a runtime of O((g+h)s). As we already
argued when we described the sweep buffer, s is small and in many cases constant, so
our runtime should be O(g+h) in many cases. We give the average of the parameters

76 Chapter 4. Public Transportation

we used to bound our runtime in Table 4.14 to show that our link and minima operation
are fast in practice.

network cP
∑P∈c(e1)

cP

g+h bP
∑P∈c(e1)

bP

g+h
∑P∈c(e1)

(cP+bP)

g+h s
PT-EUR 0.93 0.29 3.25 0.84 1.14 2.34
PT-VBB 1.26 0.29 3.97 0.93 1.22 3.85
PT-RMV 1.44 0.30 4.30 1.08 1.38 5.30

Table 4.14: Average of 1 000 random profile queries.

Constructing the Minima of two Sets of Connections. Our algorithm for the minima
operation is a backwards merge of the ordered arrays of connections that uses the sweep
buffer defined by Lemma 4.17, as for the link operation. We also continue backward
scanning on “day -1” to get rid of dominated connections over the periodic border. The
minima operation is not only used during a query, but also to compare witness paths and
possible shortcuts, and to merge parallel edges.

Similar to equivalent arrival connections, two connections are equivalent when they
have the same duration, an equivalent departure and equivalent arrival. Two connec-
tions P and Q have an equivalent departure when their departure is identical or when
the departure is not critical and they have the same departure time. Analogously, two
connections P and Q have an equivalent arrival when their arrival is identical or when
the arrival is not critical and they have the same arrival time. Note that equivalent con-
nections are stored next to each other in an ordered array. So we can easily detect them
during the merge and keep just one of them. To reduce the number of priority queue
operations during a search, we prefer a connection that was not created in the preceding
link operation.

Running time. Let g and h be the cardinalities of the two sets we merge. Let s be
the maximum size of the sweep buffer. Then, the runtime of the minima operation is
O((g+h)s). Since s is small and in many cases constant, the runtime should be O(g+h)
in many cases.

Integrating Link and Minima. A minima operation always follows a link operation
when we relax an edge to an already reached station T . This happens quite often for
profile queries, so we can exploit this to tune our algorithm. We directly merge the
newly linked connections one by one with the current connections at T . Our sweep
buffer can contain current connections and newly linked connections at the same time.
When a new connection is not in order, we fix this with the insertion sort idea. This
integration reduces required memory allocations and gives significant speed-ups.

4.1. Routing with Realistic Transfer Durations 77

4.1.6 Experiments
Environment. The experimental evaluation was done on one core of a Intel Xeon
X5550 processor (Quad-Core) clocked at 2.67 GHz with 48 GiB of RAM5 and 8 MiB
of Cache running SuSE Linux 11.1 (kernel 2.6.27). The program was compiled by the
GNU C++ compiler 4.3.2 using optimization level 3.

Instances. We have used real-world data from the European railways. The network of
the long distance connections of Europe (PT-EUR) is from the winter period 1996/97.
The network of the local traffic in Berlin/Brandenburg (PT-VBB) and of the Rhein/Main
region in Germany (PT-RMV) are from the winter period 2000/01. The sizes of all
networks are listed in Table 4.15.

Table 4.15: Network sizes and number of nodes and edges in the graph for each model.
trains/ elementary time-dependent station based

network stations buses connections nodes edges nodes edges
PT-EUR 30 517 167 299 1 669 666 550 975 1 488 978 30 517 88 091
PT-VBB 12 069 33 227 680 176 228 874 599 406 12 069 33 473
PT-RMV 9 902 60 889 1 128 465 167 213 464 472 9 902 26 678

Results. We selected 1 000 random queries and give average performance measures.
We compare the time-dependent model and our new station model using a simple unidi-
rectional Dijkstra algorithm in Table 4.16. Time queries have a good query time speed-up
above 4.5 and even more when compared to the number of delete mins. However, since
we do more work per delete min, this difference is expected. Profile queries have very
good speed-up around 5 to 8 for all tested instances. Interestingly, our speed-up of the

5We never used more than 556 MiB of RAM, reported by the kernel.

Table 4.16: Performance of the station graph model compared to the time-dependent
model on plain Dijkstra queries. We report the total space, the #delete mins from the
priority queue, query times, and the speed-up compared to the time-dependent model.

TIME-QUERIES PROFILE-QUERIES

space #delete spd time spd #delete spd time spd
network model [MiB] mins up [ms] up mins up [ms] up

PT-EUR
time-dep. 27.9 259 506 1.0 54.3 1.0 1 949 940 1.0 1 994 1.0
station 48.3 14 504 17.9 9.4 5.8 48 216 40.4 242 8.2

PT-VBB
time-dep. 11.3 112 683 1.0 20.9 1.0 1 167 630 1.0 1 263 1.0
station 19.6 5 969 18.9 4.0 5.2 33 592 34.8 215 5.9

PT-RMV
time-dep. 10.9 87 379 1.0 16.1 1.0 976 679 1.0 1 243 1.0
station 29.3 5 091 17.2 3.5 4.6 27 675 35.3 258 4.8

78 Chapter 4. Public Transportation

number of delete mins is even better than for time queries. We assume that more re-visits
occur since there are often parallel edges between a pair of stations represented by its
train-route nodes. Our model does not have this problem since we have no parallel edges
and each station is represented by just one node. It is not possible to compare the space
consumption per node since the number of nodes is in the different models different. So
we give the absolute memory footprint: it is so small that we did not even try to reduce
it, although there is some potential.

Before we present our results for CH, we would like to mention that we were un-
able to contract the same networks in the time-dependent model. The contraction took
days and the average degree in the remaining graph exploded. Even when we contracted
whole stations with all of its train-route nodes at once, it did not work. It failed since
the necessary shortcuts between all the train-route nodes multiplied quickly, see Exam-
ple 4.1. So we developed the station graph model to fix these problems. Table 4.17
shows the resulting preprocessing and query performance. We get preprocessing times
between 3 to 4 minutes using a hop limit of 7. The number of transfers is limited to the
maximal number of transfers of a potential shortcut + 2. These timings are exceptional
low (minutes instead of hours) compared to previous publications [39, 25] and reduce
time queries below 550 µs for all tested instances. CH work very well for PT-EUR where
we get speed-ups of more than 37 for time queries and 65 for profile queries. Compared
to plain Dijkstra queries using the time-dependent model (Table 4.16), we even get a
speed-up of 218 (time) and 534 (profile) respectively. These speed-ups are one order
of magnitude larger than previous speed-ups [39]. The network PT-RMV is also suited
for CH, the ratio between elementary connections and stations is however very high, so
there is more work per settled node. More difficult is PT-VBB; in our opinion, this net-
work is less hierarchically structured. We see that on the effect of different hop limits for
precomputation. (We chose 7 as a hop limit for fast preprocessing and then selected 15
to show further trade-off between preprocessing and query time.) The smaller hop limit
increases time query times by about 25%, whereas the other two networks just suffer an

Table 4.17: Performance of CH. We report the preprocessing time, the space overhead
and the increase in edge count. For query performance, we report the #delete mins from
the priority queue, query times, and the speed-up over a plain Dijkstra (Table 4.16).

PREPROCESSING TIME-QUERIES PROFILE-QUERIES

hop- time space edge #del. spd time spd #del. spd time spd
network limit [s] [MiB] inc. mins up [µs] up mins up [ms] up
PT- 7 210 45.7 88% 192 75.7 251 37.5 260 186 3.7 65.1
EUR 15 619 45.3 86% 183 79.3 216 43.5 251 192 3.4 71.4
PT- 7 216 27.9 135% 207 28.8 544 7.3 441 76 27.0 8.0
VBB 15 685 26.9 128% 186 32.1 434 9.2 426 79 24.2 8.9
PT- 7 167 36.0 123% 154 33.1 249 14.0 237 117 9.5 27.1
RMV 15 459 35.0 117% 147 34.6 217 16.1 228 121 8.2 31.3

4.1. Routing with Realistic Transfer Durations 79

increase of about 16%. So important witnesses in PT-VBB contain more edges, indicating
a lack of hierarchy.

We do not really have to worry about preprocessing space since those networks are
very small. The number of edges roughly doubles for all instances. We observe simi-
lar results for static road networks [67], but there we can save space with bidirectional
edges. In timetable networks, we do not have bidirectional edges with the same weight,
so we need to store them separately. CH on timetable networks are inherently space
efficient as they are event-based, they increase the memory consumption by not more
than a factor 2.4 (PT-VBB: 19.6 MiB→ 47.5 MiB). In contrast, time-dependent road net-
works are not event-based and can get very complex travel time functions on shortcuts,
leading to an increased memory consumption (Germany midweek: 0.4 GiB→ 4.4 GiB
[15]). Only with sophisticated approximations, it is possible to reduce space consump-
tion while answering queries exactly [16].

80 Chapter 4. Public Transportation

4.2 Fully Realistic Routing

4.2.1 Central Ideas

In the previous section we investigated how to use node contraction in the restricted sce-
nario with realistic transfer durations. However, in a fully realistic scenario we need new
techniques, especially for routing in poorly structured public transportation networks
that have only little hierarchy. We present a new algorithm for routing on public trans-
portation networks that is fast even when the network is realistically modeled, very large
and poorly structured. These are the challenges faced by public transportation routing on
Google Maps (http://www.google.com/transit), and our algorithm has successfully
addressed them. It is based on the following new idea.

Think of the query A@τ → B, with source station A = Freiburg, target station B =
Zürich, and departure time τ = 10:00. Without assuming anything about the nature of
the network and without any precomputation, we would have to do a Dijkstra-like search
and explore many nodes to compute an optimal connection. Now let us assume that
we are given the following additional information: each and every optimal connection
from Freiburg to Zürich, no matter on which day and at which time of the day, either
is a direct connection (with no transfer in between) or it is a connection with exactly
one transfer at Basel. We call Freiburg – Zürich and Freiburg – Basel – Zürich the
optimal transfer patterns between Freiburg and Zürich (for each optimal connection,
take the source station, the sequence of transfers, and the target station). Note how little
information the set of optimal transfer patterns for this station pair is. Additionally, let us
assume that we have timetable information for each station that allows us to very quickly
determine the next direct connection from a given station to some other station.

With this information, it becomes very easy to answer the query A@τ → B for an
arbitrary given time τ . Say τ = 10:00. Find the next direct connection from Freiburg
to Zürich after τ . Say it leaves Freiburg at 12:55 and arrives in Zürich at 14:52. (There
are only few direct trains between these two stations over the day.) Also find the next
direct connection from Freiburg to Basel after τ . Say it leaves Freiburg at 10:02 and
arrives in Basel at 10:47. Then find the next direct connection from Basel to Zürich after
10:47. Say it leaves Basel at 11:07 and arrives in Zürich at 12:00. In our cost model
(see Section 2.3.2) these two connections are incomparable (one is faster, and the other
has less transfers), and thus we would report both. Since the two given transfer patterns
were the only optimal ones, we can be sure to have found all optimal connections. And
we needed only three direct-connection queries to compute them.

Conceptually, our whole scheme goes as follows. The set of all optimal transfer
patterns between all station pairs is too large to precompute and store. We therefore
precompute a set of parts of transfer patterns such that all optimal transfer patterns can
be combined from these parts. For our three datasets, we can precompute such parts in
20–40 core hours per 1 million departure/arrival events and store them in 10–50 MiB
per 1000 stations. From these parts, also non-optimal transfer patterns can be combined,

http://www.google.com/transit

4.2. Fully Realistic Routing 81

but this only means additional work at query time; it will not let us miss any optimal
connections. Think of storing parts of transfer patterns, to be recombined at query time,
as a lossy compression of the set of all optimal transfer patterns. We also precompute
a data structure for fast direct-connection queries, which, for our three datasets, needs
3–10 MiB per 1000 stations and has a query time of 2–10 µs.

Having this information precomputed, we then proceed as follows for a given query
A@τ→ B. From the precomputed parts, we compute all combinations that yield a trans-
fer pattern between A and B. We overlay all these patterns to form what we call the
query graph. Finding the optimal connection(s) amounts to a shortest-path computa-
tion on the query graph with source A and target B, where each edge evaluation is a
direct-connection query. The query graph for our simple example from above has three
nodes (A = Freiburg, B = Zürich, and C = Basel) and three edges (A → B, A → C, C
→ B). Due to the non-optimal transfer patterns that come from the recombination of the
precomputed parts, our actual query graphs typically have several hundreds of edges.
However, since direct-connection queries can be computed in about 10 µs, this will still
give us query times on the order of a few milliseconds, and by the way our approach
works, these times are independent of the size of the network.

4.2.2 Query
In the fully realistic scenario, we only consider queries with a specific departure time.
This is similar to a time query (Definition 4.5 in Section 4.1.3) but is based on a multi-
criteria cost model. A station-to-station query computes optimal connections between
a pair of stations (Definition 4.18). The more realistic scenario of location-to-location
queries is introduced in Section 4.2.6 after we extend the definition of a consistent con-
nection in Section 4.2.5 to allow walking.

Definition 4.18 A station-to-station query is given as A@τ → B, where A is the source
station, τ is the earliest departure time, and B is the target station. All consistent con-
nections from station A to station B that do not depart before τ are feasible for this
query, but their cost is increased by the waiting time between τ and the departure of the
connection at A. If the cost of a feasible connection is not dominated by any other, we
call them optimal cost and optimal connection, respectively, for the query.

The query’s result is an optimal set of connections, that is, a set of optimal connec-
tions containing exactly one for each optimal cost.

We define the desired results for both types of query in the time-expanded graph
extended by a source and a target node. All times are represented in seconds since
midnight of the timetable’s day 0. We can compute the result of a station-to-station
query in the time-expanded graph using Corollary 4.19.

Corollary 4.19 Consider a station-to-station query A@τ → B. Take the first transfer
node At@τ ′ with τ ′ ≥ τ . For this query, we extend the time-expanded graph by a source

82 Chapter 4. Public Transportation

node S with an edge of duration τ ′−τ and penalty 0 that leads to At@τ ′ and by a target
node T with incoming edges of zero cost from all arrival nodes of B.

Exactly the paths from S to T are the feasible connections for the query. Each of
these paths has the cost of the feasible connection it represents.

Note that the waiting chain at A makes paths from S through all departure nodes after
time τ feasible. We exclude multiple connections for the same optimal cost. They do
occur (even for a single-criterion cost function) but add little value.6

4.2.3 Basic Algorithm
In this section we present a first simple algorithm that illustrates the key ideas. It has
very fast query times but a quadratic precomputation complexity.

Fast direct-connection queries

Definition 4.20 For a direct-connection query A@τ → B, the feasible connections are
defined as in Definition 4.18, except that only connections without transfers are permit-
ted. The result of the query are the optimal costs in this restricted set.

The following data structure answers direct-connection queries in about 10 µs.

1. Group all trains of the timetable into lines L1, L2, . . . such that all trains on a line
share the same sequence of stations, do not overtake each other (FIFO property,
like train routes [121]), and have the same penalty score between any two stations.

The trains of a line are sorted by time and stored in a 2D array like this:

line L17 S154 S097 S987 S111 . . .
train 1 8:15 8:22 8:23 8:27 8:29 8:38 8:39 . . .
train 2 9:14 9:21 9:22 9:28 9:28 9:37 9:38 . . .
. .

2. For each station, precompute the sorted list of lines incident to it and its position(s)
on each line. For example:

S097: (L8, 4) (L17, 2) (L34, 5) (L87, 17) . . .
S111: (L9, 1) (L13, 5) (L17, 4) (L55, 16) . . .

3. To answer a direct-connection query A@τ → B, intersect the incidence lists of A
and B. For each occurrence of A before B on a line, read off the cost of the earliest
feasible train, then choose the optimal costs among all these.

6 Connections of equal cost, relative to query time τ , arrive at the same time. It is preferable to choose
one that departs as late as possible from A; we will return to that in Section 4.2.8. Those that depart latest
often differ in trivial ways (e. g., using this or that tram between two train stations), so returning just one
is fine.

4.2. Fully Realistic Routing 83

In our example, the query S097@9:03→ S111 finds positions 2 and 4 on L17 and the
train that reaches S111 at 9:37.

Lemma 4.21 A query A@τ → B to the direct-connection data structure returns all op-
timal costs of direct connections.

Proof. Each direct connection uses at most one train, as no transfers are allowed. The
non-overtaking and same-penalty constraints on the formation of lines implies that, for
each occurrence, feasible trains after the first on the same line do not achieve a better
cost. Hence Step 3 finds all optimal costs. �

Transfer patterns precomputation

Definition 4.22 For any connection, consider the stations where a transfer happens.
The sequence of these stations is the transfer pattern of the path.

An optimal set of transfer patterns for a pair (A,B) of stations is a set T of transfer
patterns such that for all queries A@τ→ B there is an optimal set of connections whose
transfer patterns are contained in T , and such that each element in T is the transfer
pattern of an optimal connection for a query A@τ → B at some time τ .

For every source station A, we compute optimal sets of transfer patterns to all sta-
tions B reachable from it and store them in one DAG for A. This DAG has three different
types of nodes: one root node labeled A, for each reachable station B a target node la-
beled B, and for each transfer pattern prefix AC1 . . .Ci, occurring in at least one transfer
pattern AC1 . . .Ci . . .B, a prefix node labeled Ci. They are connected in the natural way
such that precisely the transfer patterns we want to store are represented by a path from
their target stations to the root node, labeled in reverse order; Figure 4.18 shows an
example.

A B C D

DC

E

Figure 4.18: DAG for the transfer patterns ‘AE’, ‘ABE’, ‘ABC’, ‘ABDE‘ and ‘ABCDE’.
The root node is the diamond, prefix nodes are circles and target nodes are rectangles.
There are potentially several prefix nodes with the same label: In our example, ‘D’
occurs twice, the top one representing the prefix ‘ABD’ and the bottom one ‘ABCD’.

We use the following algorithm TransferPatterns(A).

1. Run a multi-criteria variant of Dijkstra’s algorithm [105, 134, 100] starting from
labels of cost zero at all transfer nodes of station A.

84 Chapter 4. Public Transportation

2. For every station B, choose optimal connections with the arrival chain algorithm:
For all distinct arrival times τ1 < τ2 < .. . at B, select a dominant subset in the set of
labels consisting of (i) those settled at the arrival node(s) at time τi and (ii) those
selected for time τi−1, with duration increased by τi− τi−1; ties to be broken in
preference of (ii).

3. Trace back the paths of all labels selected in Step 2. Create the DAG of transfer
patterns of these paths by traversing them from the source A.

Lemma 4.23 If c is an optimal cost for the station-to-station query A@τ0→ B, Trans-
ferPatterns(A) computes the transfer pattern of a feasible connection for the query that
realizes cost c.

Proof. The optimal cost c is the cost of an optimal path S→P1→ T in the extended time-
expanded graph from Corollary 4.19, where P1 starts at some node At@τd (the successor
of S) and ends at some node Ba@τa.

We will now attach alternative source and target nodes S′ and T ′ to the graph that
reflect the transfer patterns computation. S′ has an edge of duration 0 and penalty 0 to all
transfer nodes of A. This reflects the initial labels. All arrival nodes Ba@τ with τ ≤ τa
have an edge of duration τa−τ and penalty 0 to T ′. Hence T ′ corresponds to the label set
for arrival time τa. A transfer pattern is computed for a path P′2 such that S′→ P′2→ T ′

has better or equal cost than S′→ P1→ T ′. In particular, P′2 departs from A no earlier
than P1 does.7 That means, we can prepend to P′2 the part of the waiting chain of A
between the first node of P1 and the first node of P′2; let P2 denote this extension of P′2.

To prove that P2 is the claimed path, it remains to show that S→ P1→ T and S→
P2→ T have the same cost. By construction of S′, T ′ and by choice of P′2, the following
inequalities hold for duration and penalty of the paths:

d(S→ P1→ T) = τa− τ0 = d(S→ P2→ T ′)≥ d(S→ P2→ T),
p(S→ P1→ T) = p(S′→ P1→ T ′)≥ p(S′→ P′2→ T ′) = p(S→ P2→ T).

By optimality of S→ P1→ T , equality holds throughout. �
Running TransferPatterns(A) for all stations A is easy to parallelize by splitting the

set of source stations A between machines, but even so, the total running time remains
an issue. We can estimate it as follows. Let s be the number of stations, let n be the
average number of nodes per station (< 569 for all our graphs, with the optimizations
of Section 4.2.8), and let ` be the average number of settled labels per node and per
run of TransferPatterns(A) (< 16 in all our experiments, in the setting of Sections 4.2.8
and 4.2.9). Then the total number of labels settled by TransferPatterns(A) for all sta-
tions A is L = ` ·n · s2.

7 We see here that transfer patterns are computed for paths that are optimal in the sense of Defini-
tion 4.18 and depart as late as possible, see Footnote 6 on page 82.

4.2. Fully Realistic Routing 85

Steps 1–3 have running time essentially linear in L, with logarithmic factors for main-
taining various sets. (For Step 1, this includes the priority queue of Dijkstra’s algorithm.
The bounded out-degree of our graphs bounds the number of unsettled labels linearly
in L.) Since L is quadratic in s, this precomputation is infeasible in practice for large
networks, despite parallelization. We will address this issue in Sections 4.2.4, 4.2.7
and 4.2.9.

Query graph construction and evaluation

For a query A@τ → B, we build the query graph as follows, independent of τ:

1. Fetch the precomputed transfer patterns DAG for station A.

2. Search target node B in the DAG. Assume it has ` successor nodes with labels
C1, . . . ,C`. Add the edges (C1,B), . . . ,(C`,B) to the query graph.

3. Recursively perform Step 2 for each successor node with a label Ci 6= A.

Figure 4.19 shows the query graph from A to E built from the DAG in Figure 4.18.

A EB C D

Figure 4.19: Query graph A→ E from transfer patterns ‘AE’, ‘ABE’, ‘ABDE’ and
‘ABCDE’.

Lemma 4.24 For each transfer pattern AC1 . . .CkB in the DAG there exists the path
〈A,C1, . . . ,Ck,B〉 in the constructed query graph.

Proof. Let AC1 . . .CkB be a transfer pattern in the DAG. Induction over i shows that
there is a path 〈Ci, . . . ,Ck,B〉 in the query graph, and the node Ci in the query graph
gets processed together with the prefix node ‘AC1 . . .Ci−1’ in the DAG (Steps 2 and 3).
Finally, C1 is processed with the root node ‘A’ in the graph, so that also the edge (A,C1)
is added and the path 〈A,C1, . . . ,Ck,B〉 exists in the query graph. �

Given the query graph, evaluating the query is simply a matter of a time-dependent
multi-criteria Dijkstra search [52] on that graph. Labels in the queue are tuples of station
and cost (time and penalty). Relaxing an edge C→D for a label with time τ amounts to
a direct-connection query C@τ → D.

By storing parent pointers from each label to its predecessor on the shortest path, we
eventually obtain, for an optimal label at the target station, the sequence of transfers on
an optimal path from the source to the target, as well as the times at which we arrive at
each of these transfers. More details on the optimal paths can be provided by augmenting
the direct-connection data structure.

86 Chapter 4. Public Transportation

Theorem 4.25 For a given query A@τ → B, the described search on the query graph
from A to B returns the set of optimal costs and for each such cost a corresponding path.

Proof. We precomputed transfer patterns for each optimal cost of the query
(Lemma 4.23) and the paths connecting these transfer stations are in our query graph
(Lemma 4.24). From the correctly answered direct-connection queries (Lemma 4.21),
the time-dependent Dijkstra algorithm on the query graph computes all optimal costs
including matching paths. �

4.2.4 Hub Stations

The preprocessing described in Section 4.2.3 uses quadratic time and produces a result
of quadratic size. To reduce this, we do these expensive global searches only from a
suitably preselected set of hubs and compute transfer patterns from hubs to all other
stations. Note that computing transfer patterns only to other hubs is not faster.

For all non-hub stations, we do local searches computing only those transfer patterns
without hubs or their parts up to the first hub. More precisely, let AC1 . . .CkB be a transfer
pattern from a non-hub A that we would have stored in Section 4.2.3. If any of the Ci
is a hub, we do not store this pattern any more. The hub Ci with minimal i is called an
access station of A. We still store transfer patterns A . . .Ci and Ci . . .B into and out of the
access station. This shrinks transfer patterns enough to allow query processing entirely
from main memory on a single machine, even for large networks. Note that the number
of global searches could be reduced further by introducing several levels of hubs, but in
our implementation the total cost for the global searches is below the total cost for the
local searches already with one level of hubs; see Section 4.2.10.

Selecting the hubs. We create a time-independent graph by overlaying the nodes and
edges of each line (as computed in Section 4.2.3), using the minimum of edge costs.
Then, we perform cost-limited Dijkstra searches from a random sample of source sta-
tions. The stations being on the largest number of shortest paths are chosen as hubs.
Note that we experimented with a variety of hub selection strategies, but they showed
only little difference with respect to preprocessing time and query graph sizes, and so
we stuck with the simplest strategy.

Transfer patterns computation. The global search remains as described in Sec-
tion 4.2.3. The local search additionally marks labels stemming from labels at transfer
nodes of hubs as inactive, and stops as soon as all unsettled labels are inactive [130].
Inactive labels are ignored when the transfer patterns are read off. Before that, inactive
labels are needed to dominate non-optimal paths around hubs.

4.2. Fully Realistic Routing 87

Query graph construction. Processing a query A@τ → B looks up the set X of
access stations of A and constructs the query graph from the transfer patterns between
the station pairs {(A,B)}∪ ({A}×X)∪ (X ×{B}). We construct the query graph as
described in Section 4.2.3, but we extract the transfer patterns from a source station to
multiple target stations at the same time, as they are stored in the same DAG. This usually
speeds up the construction, as some of the transfer patterns share common prefixes. The
evaluation of the query graph remains unchanged.

Lemma 4.26 If c is an optimal cost for the station-to-station query A@τ0→ B, then the
query graph from A to B contains the transfer pattern of a feasible connection for the
query that realizes cost c.

At@τ1 . . . Xa@τa . . . X t@τd . . . Ba@τ2

S S′T ′ T

Xa@τ ′a. . . Ba@τ ′2. . .

P̀ Pg

Q` Qg

Figure 4.20: From the proof of Lemma 4.26: the optimal S-T -path (top row) that trans-
fers at X , and the S-T ′- and S′-T -paths (bottom row) that can be joined (dashed arrow)
to an S-T -path of the same optimal cost in the time-expanded graph.

Proof. For a hub A, the global search from A computes the transfer pattern of a connec-
tion to B with the optimal cost c (Lemma 4.23) and this transfer pattern is contained in
the query graph (Lemma 4.24).

For a non-hub A, we have to show: If the local search from A does not compute the
transfer pattern of any connection to B with the optimal cost c, then there is a hub X
for which the local search from A computes a transfer pattern A . . .X and the global
search from X computes a transfer pattern X . . .B such that there is a connection of
cost c with the concatenated transfer pattern A . . .X . . .B. The claim then follows from
twofold application of Lemma 4.24.

If the local search from A does not compute the transfer pattern of any connection
to B of optimal cost c, it instead computes an inactive label for (a prefix of) such a con-
nection. Hence there exist connections to B of cost c that transfer at a hub. Among
these, choose one whose first transfer at a hub occurs with the earliest arrival time, and
consider the path S→ P→ T representing it in the time-expanded graph from Corol-
lary 4.19 for the query A@τ0→ B. Recall that S is the source node at station A and T

88 Chapter 4. Public Transportation

is the target node at station B. As depicted in Figure 4.20, we can decompose P into a
prefix P̀ = 〈At@τ1, . . . ,Xa@τa〉 up to the arrival at the first hub X at time τa, a suffix
Pg = 〈X t@τd,Xd@τd, . . . ,Ba@τ2〉 from the departure at X at time τd onwards, and the
transfer piece Pt = 〈Xa@τa, . . . ,X t@τd〉 between them.

The searches from A and X do not, in general, find the paths P̀ and Pg or their transfer
patterns, but others that can be combined to yield the same optimal cost. Therefore, we
need a somewhat technical argument to derive them.

To derive what the global search from X computes, we consider the query X@τd→B
that asks to depart from X no earlier than P. Extending the time-expanded graph for this
query per Corollary 4.19 yields a source node S′ at X and the same target node T as
before. By Lemma 4.23, the global search from X computes the transfer pattern X . . .B
of a path S′→ Qg→ T whose cost is better than or equal to the cost of S′→ Pg→ T ;
in particular, its arrival time τ ′2 is no later than the arrival time τ2 of Pg, and its penalty
score is no worse.

Let us now turn to the local search from A, considering the query A@τ0→ X and,
per Corollary 4.19, the source node S at A (as before) and a target node T ′ at X in the
time-expanded graph. As P has its transfer at a hub occurring with the earliest arrival
time, no connection with cost better than or equal to that of S→ P̀ → T ′ transfers at a
hub before reaching Xa@τa. So no inactive label could dominate a label representing
P̀ at Xa@τa. Therefore, and by reasoning analogous to Lemma 4.23, the local search
from A computes the transfer pattern A . . .X of a path S→Q`→ T ′ with cost better than
or equal to that of S→ P̀ → T ′. In particular, Q` arrives at X no later than P̀ . Hence
there is a path Qt through the waiting chain of X from the last node Xa@τ ′a of Q` to the
first node X t@τd of Qg (the dashed arrow in Figure 4.20).

Let Q = Q`→ Qt→ Qg. It remains to show that the cost of S→ Q→ T is no worse
than the cost of S→ P→ T (and then necessarily equal, by optimality of the latter).
Duration is no worse because Qg arrives no later than Pg. Penalty is no worse because Pt
and Qt carry the same transfer penalty of X , and the penalties of Q` and Qg, respectively,
are no worse than those of P̀ and Pg. That proves our claim. �

4.2.5 Walking between Stations

Walking to a nearby station is very important in metropolitan networks. Formally, for
each station S we are given a set NS of nearby stations where we can walk to. For each
T ∈NS, we denote the walking cost by walk(S,T). The duration includes the minimum
transfer duration, as it would be otherwise unclear whether to use the one at S or T . So
S is in NS with duration d(walk(S,S)) = transfer(S) (except if there is never a departure
at S). We do not allow walking from S via a station in NS to another station not in
NS (via walking). A reason is that via walking often results in detours, as it may not
be necessary to walk exactly via this station. Another reason is that we can control the
maximum walking distance to increase the comfort of traveling with luggage.

4.2. Fully Realistic Routing 89

The definition of a consistent connection in Section 2.3 is extended to regard NS.
Let P = (c1, . . . ,ck) be a sequence of elementary connections. Such a sequence P is
called a consistent connection from station Sd(P) to Sa(P) w. r. t. walking if it fulfills the
following two consistency conditions:

1. The departure station Sd(ci+1) of elementary connection ci+1 is in the set of nearby
stations NSa(ci) of the arrival station Sa(ci) of elementary connection ci.

2. The walking costs (including the minimum transfer durations) are respected;
either Sd(ci+1) = Sa(ci) and Zd(ci+1) = Za(ci), or depi+1(P) − arri(P) ≥
d
(
walk

(
Sa(ci),Sd(ci+1)

))
.

With this definition of a consistent connection, Definition 4.18 describes a station-to-
station query that allows to walk on a transfer. Here and in the following, if walking is
considered, a consistent connection and a station-to-station query always allow to walk
on a transfer.

The construction of the time-expanded graph can be easily adapted to consider walk-
ing. Instead of adding transfer edges only within a station S, we add transfer edges
respecting NS: For each arrival node Sa@τ and each T ∈NS, we put an edge to the first
transfer node T t@τ ′ with τ ′≥ τ +d(walk(S,T)) in the waiting chain of T . We add these
edges between arrival nodes and transfer nodes to prohibit via walking. This results in
about twice more arcs in the graph and duplicates certain entities in the algorithm. Corol-
lary 4.19 is still valid to answer a station-to-station query in this time-expanded graph.

Here, we will describe how to adapt the basic algorithms of Section 4.2.3. Using
walking edges together with hubs will be described separately in Section 4.2.7.

Transfer patterns precomputation. As now two stations can be involved in a single
transfer, we need to store both in the transfer pattern. If a transfer happens at a station
without walking, this station appears twice in the pattern. A consecutive pair of stations
in a transfer pattern now either represents riding a train between these two stations, or
walking. As we do not allow via walking, transfer patterns alternate between riding a
train and walking. They always begin and end with riding a train, so the number of

A B B D

C C DD D

D

E

Figure 4.21: DAG for the transfer patterns ‘AE’, ‘ABBE’, ‘ABDE’, ‘ACCD‘ and ‘AC-
CDDE’. The root node is the diamond, prefix nodes are circles and target nodes are
rectangles.

90 Chapter 4. Public Transportation

stations in a pattern is always even.8 Therefore, we can still store them as a simple
sequence of stations, without marking walking explicitly. That allows to store them as
a DAG (Section 4.2.3), as before. Figure 4.21 shows an example. We can use a slightly
modified version of the algorithm TransferPatterns(A) of Section 4.2.3 to compute all
transfer patterns from A. The only modification is that we now need to store two stations
per transfer. Therefore, Lemma 4.27 is a direct consequence of Lemma 4.23.

Lemma 4.27 If c is an optimal cost for the station-to-station query A@τ0→ B, our al-
gorithm computes the transfer pattern of a feasible connection for the query that realizes
cost c.

Query graph construction and evaluation. As we prohibit via walking, not only the
cost of reaching a station is important, but also whether we walked to the station, or
not (and can thus walk to nearby stations). To distinguish these labels, our query graph
can contain now up to two nodes per station S, one departure node Sd and one arrival
node Sa.

An edge from a departure node to an arrival node represents riding a train, whereas an
edge from an arrival node to a departure node represents a transfer (potentially between
different stations). There are no edges between two arrival nodes or two departure nodes.
We build the query graph from a DAG as in Section 4.2.3, but we now alternate between
arrival node and departure node. As we build it backwards, we start with an arrival node.
Figure 4.22 shows the query graph from A to E built from the DAG in Figure 4.21.

Lemma 4.28 For each transfer pattern AC1C2 . . .Ck−1CkB in the DAG there exists the
path 〈Ad,Ca

1,C
d
2 . . . ,C

a
k−1,C

d
k ,B

a〉 in the constructed query graph.

Proof. Let AC1 . . .CkB be a transfer pattern in the DAG. We know that k is even. Induc-
tion over i shows that for even i there is a path 〈Cd

i , . . . ,C
d
k ,B

a〉 in the query graph, and the
node Cd

i in the query graph gets processed together with the prefix node ‘AC1 . . .Ci−1’ in
the DAG. As we alternate between arrival and departure nodes, we add edge (Ca

i−1,C
d
i).

For odd i there is the path 〈Ca
i , . . . ,C

d
k ,B

a〉 in the query graph. Finally, node Ca
1 is pro-

cessed with the root node ‘A’ in the graph, so that also the edge (A,Ca
1) is added and the

path 〈Ad,Ca
1, . . . ,C

d
k ,B

a〉 exists in the query graph. �
The evaluation of the query graph is done similar to Section 4.2.3. We use a time-

dependent multi-criteria Dijkstra search on the query graph. An edge from a departure
node to an arrival node is evaluated as before using a direction-connection query. An
edge from an arrival node to a departure node is evaluated by a simple look-up into a
table that stores the (time-independent) transfer and walking costs between the stations.

Theorem 4.29 For a given query A@τ → B, the described search on the query graph
from Ad to Ba returns the set of optimal costs and for each such cost a corresponding
path.

8We will see in Section 4.2.7 that the decomposition of transfer patterns using hubs changes this.

4.2. Fully Realistic Routing 91

Ad

Ea

Bd

Ba

Cd

Ca

Dd

Da

Figure 4.22: Query graph A→ E from transfer patterns ‘AE’, ‘ABBE’, ‘ABDE’ and
‘ACCDDE’. Departure nodes are circles and arrival nodes are rectangles. Walking edges
are dashed.

Proof. We precomputed transfer patterns for each optimal cost of the query
(Lemma 4.27) and the paths connecting these transfer stations are in our query graph
between Ad to Ba (Lemma 4.28). From the correctly answered direct-connection queries
(Lemma 4.21) and walking queries, the time-dependent Dijkstra algorithm on the query
graph computes all optimal costs including matching paths. �

4.2.6 Location-to-Location Query
Our implementation is able to answer location-to-location queries (Definition 4.30). This
feature is of high practical value for dense metropolitan networks, but, to the best of our
knowledge, disregarded in all earlier work.

Definition 4.30 A location-to-location query is given as Z@τ → Z′, where Z is the
source location, τ is the earliest departure time, and Z′ is the target location. Each
station also has a location assigned. Locations are given in some geographic coordi-
nate system. The walking cost (duration and penalty) between two locations Z1 and Z2
is given by an oracle9 walko(Z1,Z2). Let RZ be the set of stations within a reasonable
walking distance of location Z. All consistent connections from a station A ∈ RZ to a
station B ∈RZ′ that do not depart earlier than τ + d(walko(Z,A)) are feasible for this
query, but their cost is increased by the walking costs walko(Z,A), walko(B,Z′), and the
waiting time until the connection departs at A.

We define optimal connections and optimal costs just as in Definition 4.18 of station-
to-station queries.

We can compute the result of a location-to-location query in the time-expanded graph
using Corollary 4.31.

Corollary 4.31 Consider a location-to-location query Z@τ → Z′. The extended time-
expanded graph for this query has a source node Z with outgoing edges to all sta-
tions A ∈RZ . More precisely, the edge to A points to the first transfer node At@τ ′ such
that τ ′ is no less than τ plus the walking duration to A; its cost has duration τ ′− τ and

9In reality, we may approximate these costs via the straight-line distance between the respective loca-
tions, or we have a separate network of footpaths on which we compute shortest paths.

92 Chapter 4. Public Transportation

the walking penalty. Likewise, the arrival nodes of all stations B ∈RZ′ are connected to
the target node Z′ with edges that carry the walking cost from B.

Exactly the paths from Z to Z′ are the feasible connections for this query. Each of
these paths has the cost of the feasible connection it represents, including the walking
costs from Z and to Z′.

Note that we explicitly distinguish between walking from the source location and
to the target location of a location-to-location query, and walking involved in a transfer
(Section 4.2.5). In particular, the set of locations RS within reasonable walking distance
of the location of station S is usually larger than NS. There are several reasons for that:
Quality of the query result is a concern, as sometimes only a reasonable connection start-
ing quite far away from the current location is available. Also, people tend to accept less
walking when they are on a journey than in the beginning or the end, as they potentially
have a car available there. The third reason is a practical one, a larger NS would make
the time-expanded graph larger and thus the precomputation more expensive.

Query graph construction and evaluation. For a location-to-location query Z@τ→
Z′, the query graph is built from transfer patterns for all pairs of source and target stations
in RZ×RZ′ . As source and target are no stations, we need to add separate nodes for Z
and Z′ to the query graph. For each station A ∈ RZ , we add an edge from Z to Ad of
cost walko(Z,A). And for each station B ∈RZ′ , we add an edge from Ba to Z′ of cost
walko(B,Z′). Figure 4.23 shows an example.

Z Z’

Ad

Bd

Cd

Dd Fd

Ca

Da

Ea

Fa

Figure 4.23: Query graph Z→ Z’ from RZ = {A,B}, RZ′ = {E,F}, and transfer pat-
terns ‘ACCE’, ‘ACDE’, ‘ACDF’, ‘BDDE’, ‘BDCE’, ‘BDDFFE’ and ‘BDDF’. Departure
nodes are circles and arrival nodes are rectangles. Walking edges are dashed.

We construct the query graph as described in Section 4.2.5, but combine it with the
idea of Section 4.2.4 to extract the transfer patterns from a source station to multiple
target stations at the same time, as they are stored in the same DAG. The complete
construction works as follows:

1. For each A ∈RZ , add an edge (Z,Ad).

4.2. Fully Realistic Routing 93

2. For each B ∈RZ′ , add an edge (Ba,Z′).

3. Fetch the precomputed transfer patterns DAG for a station A ∈RZ .

4. For all B ∈RZ′ , search the corresponding target node x in the DAG and put (x,Ba)
in a set S . Keep a mark for each prefix node of the DAG, initially all nodes are
unmarked.

5. Remove a (x,By) from the set S . Let y′ := a if y = d, otherwise y′ := d. Assume
node x has ` unmarked successor prefix nodes x1, . . . ,x` with labels C1, . . . ,C`. Add
the edges (Cy′

1 ,B
y), . . . ,(Cy′

` ,B
y) to the query graph. Set the mark for x1, . . . ,x`, and

add (x1,C
y′
1), . . . ,(x`,C

y′
`) to S . If x has A as successor node, add the edge (Ad,Ca)

to the query graph.

6. Recursively perform Step 5 until the set S is empty.

7. Repeat from Step 3 until all stations A ∈RZ are processed.

The evaluation of the query graph is done as described in Section 4.2.5, with the edges
incident to Z and Z′ being evaluated using a look-up into a table that stores the (time-
independent) transfer and walking costs given by the oracle walko.

Theorem 4.32 For a given location-to-location query Z@τ → Z′, the described search
on the query graph from Z to Z′ returns the set of optimal costs and for each such cost a
corresponding path.

Proof. Every optimal connection of the location-to-location query Z@τ → Z′ also
describes an optimal connection for a station-to-station query A@τ ′→ B with A ∈RZ ,
B∈RZ′ and τ ′= τ+walko(Z,A). Therefore, a transfer pattern for the cost of the optimal
connection was precomputed (Lemma 4.27) and added to our query graph. Following
the proof of Theorem 4.29, and the correctly assigned costs to the edges incident to Z
and Z′, the time-dependent Dijkstra algorithm on the query graph computes all optimal
costs including matching paths. �

4.2.7 Walking and Hubs
Extending transfer patterns, the query graph construction and evaluation to support walk-
ing was more or less straightforward. Improving the preprocessing by using hubs is more
difficult. A transfer can now involve two stations and we need to distinguish the case
where the arrival station is a hub or the departure station is a hub. In Section 4.2.4 we
assumed that both stations are the same and exploited this to get a clean decomposition
of a transfer pattern into a local and a global part as depicted in Figure 4.24(a). It is
clean in the sense that both parts are a transfer pattern that begins and ends with riding a
train. The local part ended with the arrival at the first hub X where a transfer occurred,

94 Chapter 4. Public Transportation

and the global part began with the departure at X . As arrival and departure happened at
the same station, the transfer at station X was implicitly given. But with walking edges,
there is no clean decomposition anymore as we now need to store the transfer explic-
itly. In case that the departure station is a hub (Figure 4.24(b)), the local search needs to
compute a pattern ending with the transfer to X . And in case that the arrival station is a
hub (Figure 4.24(c)), the global part needs to start with a transfer from X .

A . . . X X . . . B
transfer

local global

(a) Without walking

A . . . C X . . . B
transfer

local global

(b) With walking, case 1: departure at hub X

A . . . X C . . . B
transfer

local global

(c) With walking, case 2: arrival at hub X

Figure 4.24: Decomposition of a transfer pattern at the first hub X into the part computed
by the local search and the part computed by the global search.

The local search can be extended efficiently to compute the transfer patterns ending
with an arrival at the first hub (arrival access station), and the ones ending with a transfer
at the first hub (departure access station). But there is a separate global search necessary,
one for each case, making the precomputation significantly more expensive.

We could ignore the second case by requiring that a hub must always be a departure
station, as depicted in Figure 4.24(b). But this limits the effectiveness of the local search,
as we need to compute and store more transfer patterns, or need to increase the number
of hubs. We will illustrate this with Example 4.33.

Example 4.33 Consider the case that we only decompose a transfer pattern at a depar-
ture at a hub. Assume that a smaller city has a main station where all the long distance
trains arrive, and some bus stops in front. Each connection into the city arrives at the
main station and transfers to one of the bus stops. We could therefore not decompose
the transfer pattern of such a connection, and a local search from outside the city could
therefore not compute transfer patterns just to the main station, but into the whole city.
We could fix this by making all bus stops to hubs, but this significantly increases the
number of global searches.

4.2. Fully Realistic Routing 95

Transfer patterns precomputation. As just mentioned, we need two types of global
searches, a global departure search and a global arrival search. The global departure
search from a hub X remains as the normal transfer patterns computation algorithm
described in Section 4.2.5. It computes transfer patterns starting with a departure at
hub X . The global arrival search computes transfer patterns starting with a transfer
from X . Definition 4.34 defines the query for a connection starting with a transfer. It can
be answered in the time-expanded graph using Corollary 4.35.

Definition 4.34 A connecting arrival query X@τ → B has a source hub X, an arrival
time τ at X, and a target station B.

All consistent connections from a station C ∈ NX to station B that do not depart
earlier than τ + d(walk(X ,C)) are feasible for this query, but their cost is increased
by the walking cost walk(X ,C) and the waiting time until the connection departs at C.
We define optimal connections and optimal costs just as in Definition 4.18 of station-to-
station queries.

Corollary 4.35 Consider a connecting arrival query X@τ → B. For this query, we ex-
tend the time-expanded graph by a source node S and a target node T . For all C ∈NX ,
take the first transfer node Ct@τ ′ with τ ′ ≥ τ +d(walk(X ,C)). We add an edge of dura-
tion τ ′− τ and penalty p(walk(X ,C)) that leads to Ct@τ ′. Also add edges of cost zero
from all arrival nodes of B to target node T .

Exactly the paths from S to T are the feasible connections for the query. Each of
these paths has the cost of the feasible connection it represents, including the walking
cost from X.

To compute transfer patterns starting with a transfer from X , we use algorithm
TransferPatternsArrival(X):

1. Run a multi-criteria variant of Dijkstra’s algorithm [105, 134, 100] starting at all
transfer nodes of C ∈NX from labels of the walking cost walk(X ,C).

2. For every station B, choose optimal connections with the arrival chain algorithm:
For all distinct arrival times τ1 < τ2 < .. . at B, select a dominant subset in the
set of labels consisting of (i) those settled at the arrival node(s) at time τi and
(ii) those selected for time τi−1, with duration increased by τi− τi−1; ties to be
broken in preference of (ii). Note that this step is identical to Step 2 of algorithm
TransferPatterns(X) in Section 4.2.3.

3. Trace back the paths of all labels selected in Step 2. Create the DAG of transfer
patterns of these paths under a common root node X by prepending station X to
each transfer pattern. Do this by traversing the labels in the order in which they
have been settled.

96 Chapter 4. Public Transportation

To distinguish between the DAG computed by the global departure search and the global
arrival search from a hub X , the first one has a root node Xd and the second one a root
node Xa.

Lemma 4.36 proves that our global arrival search computes the corresponding opti-
mal transfer patterns.

Lemma 4.36 If c is an optimal cost for the connecting arrival query X@τ0 → B,
TransferPatternsArrival(X) computes the transfer pattern of a feasible connection for
the query that realizes cost c, prepended with station X.

Proof. By definition, the optimal cost c is the cost of an optimal path S→ P1→ T in the
extended time-expanded graph from Corollary 4.35, where P1 starts at some node Ct@τd
with C ∈NX (the successor of S) and ends at some node Ba@τa.

We will now attach alternative source and target nodes S′ and T ′ to the graph that
reflect the transfer patterns computation.

For all C′ ∈NX , S′ has an edge of cost walk(X ,C′) to all transfer nodes of C′. This
reflects the initial labels. All arrival nodes Ba@τ with τ ≤ τa have an edge of duration
τa− τ and penalty 0 to T ′. Hence T ′ corresponds to the label set for arrival time τa.
A transfer pattern is computed for a path P′2 such that S′→ P′2→ T ′ has better or equal
cost than S′ → P1 → T ′. P′2 starts at a node C′t@τ ′d with C′ ∈ NX . In particular, we
need to start walking from X to reach P′2 no earlier than to reach P1. So we can prepend
to P′2 the part of the waiting chain of C′ between the first node C′t@τ ′ with τ ′ ≥ τ0 +
d(walk(X ,C′)) and C′t@τ ′d; let P2 denote this extension of P′2.

To prove that P2 is the claimed path, it remains to show that S→ P1→ T and S→
P2→ T have the same cost. By construction of S′, T ′ and by choice of P′2, the following
inequalities hold for duration and penalty of the paths:

d(S→ P1→ T) = τa− τ0 = d(S→ P2→ T ′)≥ d(S→ P2→ T),
p(S→ P1→ T) = p(S′→ P1→ T ′)≥ p(S′→ P′2→ T ′) = p(S→ P2→ T).

As S→ P1→ T is optimal, equality holds throughout. �
We also need to extend the local search to compute transfer patterns ending with

a transfer to a hub. Currently, the arrival chain algorithm (Section 4.2.3) selects only
labels that arrive at a station, and therefore the transfer pattern ends with riding a train.
Definition 4.37 defines the query for a connection ending with a transfer. To answer such
a query in the time-expanded graph, Corollary 4.38 is used.

Definition 4.37 A local search walking query A@τ → X has a source station A, an
earliest departure time τ and a target hub X.

All consistent connections from station A to a station C with X ∈ NC that do not
depart earlier than τ are feasible for this query, but their cost is increased by the waiting
time until the connection departs at A, the walking cost walk(C,X) plus the waiting time
to the earliest departing connection at X. If there is no such departing connection at X,

4.2. Fully Realistic Routing 97

then the connection is not feasible. We define optimal connections and optimal costs just
as in Definition 4.18 of station-to-station queries.

Corollary 4.38 Consider a local search walking query A@τ→X. Take the first transfer
node At@τ ′ with τ ′ ≥ τ . For this query, we extend the time-expanded graph by a source
node S with an edge of duration τ ′−τ and penalty 0 that leads to At@τ ′ and by a target
node T with incoming edges of zero cost from all transfer nodes of X.

Exactly the paths from S to T are the feasible connections for the query. Each of
these paths has the cost of the feasible connection it represents, including the walking
cost to X and the waiting time to the earliest departing connection at X.

To get transfer patterns ending with riding a train and ending with a transfer to a hub,
we use algorithm LocalSearchWalk(A):

1. Run a multi-criteria variant of Dijkstra’s algorithm [105, 134, 100] starting from
labels of cost zero at all transfer nodes of station A. Mark labels stemming from
labels at transfer nodes of hubs as inactive (as in Section 4.2.4). Further mark
labels at transfer nodes with their direct parent being at an arrival node of a hub
as inactive. A label is always inactive if its parent is inactive. Stop as soon as all
unsettled labels are inactive.

2a. For every station B with active labels, choose optimal connections with the arrival
chain algorithm: For all distinct arrival times τ1 < τ2 < .. . at B, select a dominant
subset in the set of labels consisting of (i) those settled at the arrival node(s) at
time τi and (ii) those selected for time τi−1, with duration increased by τi− τi−1;
ties to be broken in preference of (ii).

2b. For every hub X with active labels, choose optimal departing connections with
the departure chain algorithm: For all distinct departure times τ1 < τ2 < ... at
X , select a dominant subset in the set of labels consisting of (i) those settled at
transfer node(s) at time τi, (ii) those settled at an arrival node of X having an
edge to a transfer node X t@τi, and (iii) those selected for time τi−1 with duration
increased by τi− τi−1; ties to be broken in preference of (ii).

3. Trace back the paths of all labels selected in Steps 2a and 2b. Create the DAG of
transfer patterns of these paths by traversing them from the source A.

Note that contrary to the arrival chain, the departure chain already exists in the graph as
the waiting chain (with potentially multiple transfer nodes per departure time), so that
we could use the multi-criteria variant of Dijkstra’s algorithm to compute the dominant
connections. However, the propagation through the whole chain can be incomplete, as
we stop the search once all unsettled labels are inactive.

To store all transfer patterns of a local search from a station A in a single DAG, we
need to distinguish between transfer patterns that end with riding a train and that end

98 Chapter 4. Public Transportation

with a transfer. Transfer patterns that end with riding a train at a station S have a target
node Sa, the others ending with a transfer have a target node Sd, see Figure 4.25. The
root node is always Ad, as all transfer patterns begin with riding a train.

Ad

B B

C C Da

Ea

Dd

Figure 4.25: DAG for the transfer patterns ‘AE’, ‘ABBE’, ‘ABD’, and ‘ACCD’. The root
node is the diamond, prefix nodes are circles and target nodes are rectangles. A target
node Sa denotes an arrival as the transfer pattern ends with riding a train, and a target
node Sd denotes a departure as the transfer pattern ends with a transfer.

Lemma 4.39 proves that our extended local search computes the corresponding opti-
mal transfer patterns.

Lemma 4.39 If c is an optimal cost for the local search walking query A@τ0→ X, and
there is no feasible connection with cost c that has a transfer at a hub before reaching
a transfer node at X (in particular, does not arrive at X), then LocalSearchWalk(A)
computes the transfer pattern of a feasible connection for the query that realizes cost c.

Proof. By definition, the optimal cost c is the cost of an optimal path S→ P1→ T in the
extended time-expanded graph from Corollary 4.38, where P1 starts at some node At@τ1
(the successor of S) and ends at some node X t@τ2.

We will now attach alternative source and target nodes S′ and T ′ to the graph that
reflect the transfer patterns computation with LocalSearchWalk(A). S′ has an edge of
duration 0 and penalty 0 to all transfer nodes of A. This reflects the initial labels. All
transfer nodes X t@τ with τ ≤ τ2 have an edge of duration τ2− τ and penalty 0 to T ′.
Hence T ′ corresponds to the label set for departure time τ2 in the departure waiting
chain. By definition, there is no feasible connection with cost c that has a transfer at a
hub before reaching a transfer node at X . Therefore, a label at T ′ that would represent
path P1 could not be dominated by an inactive label. But as there is potentially an active
label dominating such a label (or a predecessor), we only know that there is a dominant
label for a path P′2 such that S′→ P′2→ T ′ has better or equal cost than S′→ P1→ T ′.

In particular, P′2 departs from A no earlier than P1 does. That means, we can prepend
to P′2 the part of the waiting chain of A between the first node of P1 and the first node of
P′2; let P2 denote this extension of P′2.

To prove that P2 is the claimed path, it remains to show that S→ P1→ T and S→
P2→ T have the same cost. By construction of S′, T ′ and by choice of P′2, the following
inequalities hold for duration and penalty of the paths:

d(S→ P1→ T) = τa− τ0 = d(S→ P2→ T ′)≥ d(S→ P2→ T),
p(S→ P1→ T) = p(S′→ P1→ T ′)≥ p(S′→ P′2→ T ′) = p(S→ P2→ T).

4.2. Fully Realistic Routing 99

By optimality of S→ P1→ T , equality holds throughout. �

Query graph construction. We combine the query graph construction algorithms of
Section 4.2.4 and Section 4.2.5. For a query A@τ → B, we look-up the set X of access
stations of A. Note that a hub X may occur twice in X , once as arrival access station Xa

and once as departure access station Xd. We construct the query graph from the transfer
patterns stored in the precomputed DAGs. The pairs of (root node, target node) where the
transfer patterns are stored are

{
(Ad,Ba)

}
∪ (
{

Ad}×X)∪ (X ×{Ba}). The evaluation
of the query graph remains as described in Section 4.2.5. Therefore, Lemma 4.40 is
sufficient to prove the correctness of our query.

Lemma 4.40 If c is an optimal cost for the station-to-station query A@τ0→ B, then the
query graph from A to B contains the transfer pattern of a feasible connection for the
query that realizes cost c.

Proof. For a hub A, the global search from A computes the transfer pattern of a connec-
tion to B with the optimal cost c (Lemma 4.27) and this transfer pattern is contained in
the query graph (Lemma 4.28).

For a non-hub A, we have to show: If the local search from A does not compute the
transfer pattern of any connection to B with the optimal cost c, then there is a hub X for
which the local search from A computes a transfer pattern A . . .X and a global search
from X computes a transfer pattern X . . .B such that there is a connection of cost c with
the concatenated transfer pattern A . . .X . . .B.

If the local search from A does not compute the transfer pattern of any connection
to B of optimal cost c, it instead computes an inactive label for (a prefix of) such a con-
nection. Hence there exist connections to B of cost c that transfer at a hub. Among these,
choose one whose first transfer at a hub occurs with the earliest time at the hub, and
consider the path S→ P→ T representing it in the time-expanded graph from Corol-
lary 4.19 for the query A@τ0→ B. Recall that S is the source node at station A and T
is the target node at station B. We need to distinguish between X as a departure access
station and an arrival access station.

Case 1: X is a departure access station. As depicted in Figure 4.26(a), we can de-
compose P into P̀ = 〈At@τ1, . . . ,Ca@τ2,X t@τ3〉 up to the first transfer node at station X
at time τ3, and Pg = 〈X t@τ3, . . . ,Ba@τ4〉 till the arrival at station B.

The local search from A and the global departure search from X do not, in general,
find the paths P̀ and Pg or their transfer patterns, but others that can be combined to yield
the same optimal cost.

To derive what the global departure search from X computes, we consider the station-
to-station query X@τ3→ B that asks to depart from X no earlier than P. Extending the
time-expanded graph for this query per Corollary 4.19 yields a source node S′ at X and
the same target node T as before. By Lemma 4.27 the global departure search from X
computes the transfer pattern X . . .B of a path S′→ Qg→ T whose cost is better than or

100 Chapter 4. Public Transportation

At@τ1 . . . Ca@τ2 X t@τ3 . . . Ba@τ4

S S′

T ′ T

C′a@τ ′2 X t@τ ′3. . . Ba@τ ′4. . .

P̀ Pg

Q` Qg

(a) Case 1: departure at hub X

At@τ1 . . . Xa@τ2 Ct@τ3 . . . Ba@τ4

S S′T ′ T

Xa@τ ′2. . . C′t@τ ′3 Ba@τ ′4. . .

P̀ Pg

Q` Qg

(b) Case 2: arrival at hub X

Figure 4.26: From the proof of Lemma 4.40: In each subfigure are the optimal S-T -path
(top row), and the S-T ′- and S′-T -paths (bottom row) that can be joined (dashed arrow)
to an S-T -path of the same optimal cost in the time-expanded graph.

equal to the cost of S′→ Pg→ T ; in particular, arrival time τ ′4 is no later than the arrival
time τ4 of Pg, and its penalty score is no worse.

Let us now turn to the local search from A, considering the local search walking
query A@τ0→ X and, per Corollary 4.38, the source node S at A (as before) and a target
node T ′ at X in the extended time-dependent graph. As P has its transfer at a hub occur-
ring with the earliest arrival time, no connection with cost better than or equal to that of
S→ P̀ → T ′ transfers at a hub before reaching X t@τ3. Therefore, by Lemma 4.39, the
local search from A computes the transfer pattern A . . .X of a path S→Q`→ T ′ with cost
better than or equal to that of S→ P̀ → T ′. In particular, Q` arrives at X no later than P̀ .
Hence there is a path Qt through the waiting chain of X from the last node X t@τ ′3 of Q`

to the first node X t@τ3 of Qg (the dashed arrow in Figure 4.26(a)). Note that Q` can
arrive at a station C′ that is different from the arrival station C of P̀ . But as we only care
about a timely transfer to X , this is no problem.

4.2. Fully Realistic Routing 101

Let Q = Q`→ Qt→ Qg. It remains to show that the cost of S→ Q→ T is no worse
than the cost of S→ P→ T (and then necessarily equal, by optimality of the latter).
Duration is no worse because Qg arrives no later than Pg. Penalty is no worse because
Qt carries no penalty as it only represents waiting at X , and the penalties of Q` and Qg,
respectively, are no worse than those of P̀ and Pg.

Case 2: X is an arrival access station. As depicted in Figure 4.26(b), we can de-
compose P into a prefix P̀ = 〈At@τ1, . . . ,Xa@τ2〉 up to the arrival node at station X at
time τ2, a suffix Pg = 〈Ct@τ3, . . . ,Ba@τ4〉 from the first transfer node at C onwards, and
the transfer piece Pt = 〈Xa@τ2,Ct@τ3〉 between them.

Again, the local search from A and the global arrival search from X do not, in general,
find the paths P̀ and Pt→ Pg or their transfer patterns, but others that can be combined
to yield the same optimal cost.

To derive what the global arrival search from X computes, we consider the connect-
ing arrival query X@τ2 → B that asks for a connection after arriving at time τ2 at X .
Extending the time-expanded graph for this query per Corollary 4.35 yields a source
node S′ with edges to all nearby stations C ∈NX and the same target node T as before.
Note that the cost of the path 〈S′,Ct@τ3〉 is the same as the cost of Pt. By Lemma 4.36 the
global arrival search from X computes the transfer pattern C′. . .B of a path S′→Qg→ T
prepended by station X whose cost is better than or equal to the cost of S′→ Pg→ T ; in
particular, the cost includes walking from station X at time τ2 to station C′, the arrival
time τ ′4 is no later than the arrival time τ4 of Pg, and its penalty score is no worse.

Let us now turn to the local search from A, considering the station-to-station query
A@τ0 → X and, per Corollary 4.19, the source node S at A (as before) and a target
node T ′ at X in the time-expanded graph. As P has its transfer at a hub occurring with
the earliest arrival time, no connection with cost better than or equal to that of S→ P̀ →
T ′ transfers at a hub before reaching Xa@τ2. So no inactive label could dominate a
label representing P̀ at Xa@τ2. Therefore, and by reasoning analogous to Lemmas 4.23
and 4.27 the local search from A computes the transfer pattern A . . .X of a path S→
Q`→ T ′ with cost better than or equal to that of S→ P̀ → T ′. In particular, Q` arrives
at X no later than P̀ . Hence there is an edge to a transfer node C′t@τ ′′3 with τ ′′3 ≤ τ ′3.
Therefore, there is a path Qt from Xa@τ ′2 through the waiting chain of C′ to the first
node C′t@τ ′3 of Qg (the dashed arrow in Figure 4.26(b)).

Let Q = Q`→ Qt→ Qg. It remains to show that the cost of S→ Q→ T is no worse
than the cost of S→ P→ T (and then necessarily equal, by optimality of the latter).
Duration is no worse because Qg arrives no later than Pg. Penalty is no worse because
the penalty of Q` is no worse than the one of P̀ , and the penalty of Qt→Qg is the penalty
of S′→ Qg→ T and is therefore no worse than the penalty of Pt→ Pg. That proves our
claim. �

The query described here answers a station-to-station query (Definition 4.18). To an-
swer a location-to-location query (Definition 4.30) with hubs, compared to Section 4.2.6,
the creation of the query graph has to be adapted to consider hub stations as described in
this section.

102 Chapter 4. Public Transportation

4.2.8 Further Refinements
In the previous sections, we simplified the presentation of our algorithm. Our actual
implementation includes the following refinements.

More compact graph model. In the precomputation, we optimize the representation
of the graph from Section 2.3.2 in two ways. Departure nodes are removed and their
predecessors (transfer node and maybe arrival node) are linked directly to their successor
(the next arrival node), cf. [121, §8.1.2]. To exploit the periodicity of timetables, we roll
up the graph modulo one day, that is, we label nodes with times modulo 24 hours and
use bit masks to indicate each connection’s traffic days.

Query graph search. After we have determined the earliest arrival time at the target
station, we execute a backward search to find the optimal connection that departs latest,
see Footnote 6 on Page 82.

4.2.9 Heuristic Optimizations
The system described so far gives exact results, that is, for each query we get an opti-
mal connection for every optimal cost. However, despite the use of hubs (Sections 4.2.4
and 4.2.7), the precomputation is not significantly faster than the quadratic precompu-
tation described in Sections 4.2.3 and 4.2.5. The reason is that, although the results of
the local searches (the local transfer patterns) are reasonably small, almost every local
search has a local path of very large cost and hence has to visit a large portion of the
whole network before it can stop. A typical example is an overnight connection to a
nearby village for a departure time right after the last bus for the day to that village has
left. Such a connection can easily take, say, 15 hours, and in order to compute it, a
large fraction of the whole network has to be searched. This 15 hours to the nearby vil-
lage problem is actually at the core of what makes precomputing a public transportation
network so hard [9].

The good news is that with our transfer patterns approach we don’t have this problem
at query time but only in the precomputation. Note here that our approach is unique in
that it precomputes information for all queries, not just for queries where source and
target are sufficiently “far apart”. The bad news is that, despite intensive thought, we did
not find a solution that is both fast and exact. We eventually resorted to the following
simple but approximate solution: limit the local searches to at most two transfers, that is,
using at most three trains. This is related to the stall-in-advance technique of highway-
node routing [130]. We call this the 3-legs heuristic, and as we will see in Section 4.2.10,
it indeed makes the local searches reasonably fast. Theoretically, we may now miss
some optimal transfer patterns, but we found this to play no role in the practical use of
our algorithm. For example, on our PT-CH graph (Section 4.2.10), on 10 000 random
queries the 3-leg heuristic gave only three non-optimal results, and all three of these

4.2. Fully Realistic Routing 103

were only a few percent off the optimum. We remark that errors in the input data are a
much bigger issue in practice.

Having accepted a small fraction of non-optimal results, we also developed and apply
various other heuristics, which may lead to a non-optimal solution at query time, but
whose measured effect in practice is again tolerable. Together, they speed up our query
times by a factor of 3–5. But they are not essential for the feasibility of our approach.

Tightening the dominance relation. To reduce the number of dominant labels at a
node during precomputation, we use the idea of relaxed Pareto dominance [108, 109].
This idea was initially developed to compute more labels, so that also slightly sub-
optimal but still reasonable connections are found, but we use it to compute less la-
bels. We change our dominance relation so that cost (d1, p1) dominates cost (d2, p2) iff
d1 + k · (p1− p2)< d2 for a relaxation factor k ≥ 0. A label with larger duration is only
dominated if its penalty is not sufficiently smaller. In a sense, we only optimize duration,
but relax it by penalty. That way, we actually tighten the previous dominance relation
that regards both duration and penalty in the Pareto sense. We had a choice of relaxing
duration by penalty, or penalty by duration. But as duration (contrary to penalty) decides
on the consistency of a connection (we may miss a connecting train) we chose the first.

The value of k lets us choose the tightness of our dominance relation. The smaller k,
the fewer labels are dominant. For k = 0, we only compute the fastest connection and
ignore penalty. We found that k below 10 is a good value that balances preprocessing
performance and quality of the solutions at query time. However, it is not essential for
precomputation, as in our experience, it reduces the precomputation time and RAM only
by a constant factor of about 2.

Perform only one global search. We combine the global arrival and the global depar-
ture search (Section 4.2.7) by combining the initial labels. Therefore, for a hub X , the
combined global search starts from labels of cost zero at all transfer nodes of station X ,
and for all nearby stations A ∈NX \ {X} from labels of cost walk(X ,A) at all transfer
nodes of station A. Selecting dominant labels with the arrival chain algorithm regards
all labels. Also, we store the transfer patterns in one DAG. The extraction of the transfer
patterns needs to distinguish between the labels that originated at station X and those
that not, as we need to prepend station X to the transfer pattern of the latter.

Prune at hubs without transfer. In local searches, we mark labels as inactive that just
travel through hubs without transfer. This measure reduces the number of access stations
without affecting long distance queries too much. However, we observed two problems
for which we provide fixes.

The first problem is that we force a transfer at the hub where a transfer is po-
tentially not necessary. We fix this during query graph construction. For every path

104 Chapter 4. Public Transportation〈
Cd,Xa,Xd,Da〉 through hub X that represents a transfer at X , we add an edge (Cd,Da)

iff there is a direct connection between C and D.
The second problem can arise if the first hub X is on a direct connection from a sta-

tion A to another hub Y . For example, assume that we have an optimal connection with
transfer pattern AYY B, and hub X is on the direct connection from A to Y . Also, assume
that there is a connection with transfer pattern XCCB that is slightly faster than the sub-
connection with transfer pattern XYY B, both with same penalty score. Then the global
search from X would only compute the transfer pattern XCCB and not XYY B. Thus the
search in the query graph could only find the connection with transfers at X and C, and
not the one with just a single transfer at Y . We observed that usually stations X and Y are
pretty close. So we reactivate each inactive label at stations close to X (a few hundred
meters) that became inactive due to this heuristic and that does not represent a connec-
tion that has a transfer after passing through station X . This is a simple postprocessing
step after we finished the multi-criteria variant of Dijkstra’s algorithm and before we use
the arrival chain algorithm. Note however, that we do not compute all inactive labels
within this distance from X , as we stop generating labels as soon as all unsettled labels
are inactive. In theory, we could enforce the computation of these labels by storing the
distance since the label became inactive. But we resorted to a more practical and space-
efficient solution. We additionally observed that mostly queries where affected where
also the hub was close to the source station. So we only stop generating labels if at least
a certain number of labels (around a million) is settled.

Drop rare transfer patterns. Rare transfer patterns usually occur at times when ser-
vices change, for example when service frequencies change in the night. Due to mo-
mentary shifts in the time schedule, some transfer pattern is optimal at this certain time
of day. The transfer pattern that is optimal at all other times is usually not much worse,
and therefore we drop such a rare transfer pattern. Of course, sometimes there are ex-
tra connections for rush hours that are significantly faster and we do not want to drop
these although they are rare. So we want to ensure that all dropped transfer patterns are
covered by the remaining transfer patterns with delay and cost increase bounded by a
percentage xd and xc. More formally, a transfer pattern is covered by a set of transfer
patterns iff for each connection P with this transfer pattern there are connections Q and
Q′ having their transfer patterns in the set with

1. dep(P)≤ dep(Q) and dep(P)≤ dep(Q′),

2. arr(Q)− arr(P)≤ xd ·d(P),

3. and (arr(Q′)− arr(P))+(p(Q′)− p(P))≤ xc · (d(P)+ p(P)).

We use a greedy approach to select the transfer patterns between a pair of stations that
we want to keep. The transfer patterns are primarily sorted descending by the number
of labels they represent and secondarily ascending by average of the sum of duration

4.2. Fully Realistic Routing 105

and penalty. In this order we test transfer patterns, drop the covered ones and select the
remaining. For efficiency, the coverage test only considers the connections represented
by the labels computed by the multi-criteria variant of Dijkstra’s algorithm, and not all
connections of a transfer pattern.

Single-criterion search in the query graph. Additionally to a multi-criteria search,
we also consider a single-criterion search in the query graph that only keeps the label
with the smallest duration, with ties broken by lower penalty. We stop the search im-
mediately after the first label is settled at the target station. By ordering the priority
queue by the sum of duration and penalty, we do not necessarily compute the earliest
arriving connection, but our investigations showed that it is in almost all cases a very
good connection from a human prospective. Furthermore, we apply the A∗ heuristic to
goal-direct the search using minimal durations between station pairs (computed along
with the direct-connection data structure) as lower bounds. We compute the potential
function for A∗ by an initial backward search from the target stations before the actual
search [34].

4.2.10 Experiments

Environment. The experimental results we provide in this section are for a fully-
fledged C++ implementation. Our experiments were run on a compute cluster of Opteron
and Xeon-based 64-bit servers. Queries were answered by a single machine of the clus-
ter, with all data in main memory. Note that we did not have exclusive access to machines
of the cluster, so the timings may not be 100% accurate.

Instances. We ran our experiments on three different networks: the train + local trans-
port network of most of Switzerland (PT-CH), the complete transport network of the
larger New York area (PT-NY), and the train + local transport network of much of North
America (PT-NA). We modeled each network as a time-dependent graph, and Table 4.27
summarizes the different sizes and types.

#stations #nodes #edges space
name [×103] [×106] [×106] [MiB] type
PT-CH 20.6 3.5 11.9 64 trains + local, well-structured
PT-NY 29.4 16.7 79.8 301 mostly local, poor structure
PT-NA 338.1 113.2 449.1 2 038 trains + local, poor structure

Table 4.27: The three public transportation graphs from our experiments.

106 Chapter 4. Public Transportation

Setup. We distinguish between four precomputation settings and four query settings.
They always include transfers with walking and we include all the refinements from
Section 4.2.8. Our precomputation setting without hubs is based on Section 4.2.5, the
setting with hubs is based on Section 4.2.7, the 3 legs setting further uses just the 3 legs
heuristic of Section 4.2.9, and the heuristic setting uses all tricks of Section 4.2.9.

The four query settings result from two types of queries with two different types of
searches in the query graph, each. We use station-to-station queries based on Defini-
tion 4.18 and location-to-location queries based on Definition 4.30. The first search type
performs a time-dependent multi-criteria Dijkstra search on the query graph that uses
domination in the Pareto sense, orders the priority queue lexicographically by duration
and penalty, and only stops after all unsettled labels are dominated by the labels at the
target node. So in case of the first and second precomputation setting, the result is ex-
act in the sense of Definition 4.18 or 4.30. The second search type performs only the
single-criterion search described in Section 4.2.9.

precomp. output size query time
name time [min] [MiB] [µs]
PT-CH < 1 68 2
PT-NY 4 335 5–9
PT-NA 49 3 399 9–14

Table 4.28: Direct-connection data structure: construction time and size. The query time
range is from getting the fastest to all Pareto-optimal connections.

Direct-connection queries. Table 4.28 shows that the preprocessing time for the
direct-connection data structure is negligible compared to the transfer patterns precom-
putation time. The space requirement is from 3 MiB per 1000 stations for PT-CH to
10 MiB per 1000 stations for PT-NY and PT-NA. A query takes from 2 µs for PT-CH to
around 10 µs for PT-NY and PT-NA. Note that the larger direct-connection query time
for PT-NY and PT-NA is a yardstick for their poor structure (not for their size).

Transfer patterns precomputation. We analyze the effect of hubs and heuristics on
the precomputation in Table 4.29. Without hubs, the size of the transfer patterns is
more than 18 GiB for PT-CH. With hubs, we significantly reduce the required size to
around 800 MiB. But even on this well-structured network, the total precomputation
time does not decrease significantly. The local searches consumes 96% of the whole
precomputation time, broadly showing the need for an improved local search. Just by
employing the 3 legs heuristic, we reduce the time for the local search by a factor of 9.
Using additionally the remaining heuristics from Section 4.2.9 does not further reduce
the time on PT-CH but reduces it by a factor of 2 for PT-NY. The tightened dominance
relation and dropping rare transfer patterns reduces the output size of the global searches

4.2. Fully Realistic Routing 107

by a factor of 3.1–3.8. The time for global searches is reduced by a factor of 5–6 resulting
from a single global search per station and tightened dominance relation.

The heuristic precomputation setting is the only practically feasible one for the large
PT-NA instance. We will compare all three instances in this setting. The precomputation
time is 20–40 (CPU core) hours per 1 million nodes and the resulting (parts of) transfer
patterns can be stored in 10–50 MiB per 1000 stations. These ratios depend mostly on
the structure of the network (best for PT-CH, worst for PT-NY and PT-NA), and not on
its size.

name precomp. time [h] output size [MiB] #TP/station pair
local global local global local global

PT-CH w/o hubs – 635 – 18 562 – 11.0
PT-CH w/ hubs 562 24 229 590 2.6 25.8
PT-CH 3 legs 64 24 131 590 2.2 25.8
PT-CH heuristic 57 4 60 154 2.0 6.8
PT-NY 3 legs 1 359 306 2 311 2 451 5.0 27.0
PT-NY heuristic 724 64 787 786 3.7 16.4
PT-NA heuristic 2 632 571 6 849 7 151 3.4 10.5

Table 4.29: Transfer patterns precomputation times and results.

Query graph construction and evaluation. Table 4.30 shows that, on average, query
graph construction and evaluation take 5 µs and 15 µs per edge, respectively. The typical
number of edges in a query graph for a station-to-station query (1:1) is below 1000 and
the typical query time is below 10ms. Location-to-location queries with 50 source and
50 target stations (50:50) take about 50ms.

name constr. #edges search eval. #edge
[ms] 50 mean 90 99 [ms] eval.

PT-CH w/o hubs 1:1 < 1 32 34 56 86 Pareto < 1 89
PT-CH w/ hubs 1:1 1 189 264 569 1 286 Pareto 3 540
PT-CH heuristic 1:1 < 1 80 102 184 560 Pareto < 1 194
PT-NY heuristic 1:1 2 433 741 1 917 3 597 Pareto 6 721
PT-NY heuristic 1:1 2 433 741 1 917 3 597 single 3 248
PT-NY heuristic 50:50 32 3 214 6 060 15 878 35 382 single 18 1 413
PT-NA heuristic 1:1 2 261 536 1 277 3 934 Pareto 10 705
PT-NA heuristic 1:1 2 261 536 1 277 3 934 single 5 321
PT-NA heuristic 50:50 22 2 005 3 484 7 240 25 775 single 21 1 596

Table 4.30: Average query graph construction time, size, and evaluation time. The third
column also provides the median, 90%-ile and 99%-ile.

108 Chapter 4. Public Transportation

4.3 Concluding Remarks
Review. Our algorithm for the scenario with realistic transfer durations is successful
because of two main contributions. First of all the station graph model, which has just
one node per station, is clearly superior to the time-dependent model, that uses mul-
tiple nodes per station for the given scenario. We provide efficient algorithms for the
link and minima operation that run in almost linear time. Furthermore, a query in our
station graph model is faster than in the time-dependent model, as we need to execute
these operations less often. Also all known speed-up techniques that work for the time-
dependent model should work for our new model. Most likely, they even work better
since the hierarchy of the network is more visible because of the one-to-one mapping of
stations to nodes and the absence of parallel edges. The second component is the com-
bination of node contraction and the station graph model. With preprocessing times of a
few minutes, we answer time queries in half a millisecond. This algorithm is therefore
suitable for applications where small query times are very important and can compensate
for our restricted scenario.

Our second algorithm based on transfer patterns is designed for the fully realistic
scenario. It decomposes the problem of computing optimal connections into the compu-
tation of optimal transfer patterns and direct-connection queries. Although the basic idea
is very intuitive, we are the first to exploit it in an efficient algorithm. By precomput-
ing the transfer patterns in advance, we can find all optimal connections between a pair
of stations very fast at query time. The most difficult part of the algorithm, and there-
fore one of our most significant contributions, is a feasible computation of the optimal
transfer patterns. As just a hierarchical approach with hubs does not really accelerate
the precomputation, we add intelligent heuristics. This reduces the precomputation time
by an order of magnitude, and introduces virtually no errors. The resulting algorithm is
able to answer location-to-location queries on poor-structured networks with hundreds
of thousands of stations within 50 ms, and is used for public transportation routing on
Google Maps.

Future Work. Extending the station graph model to a more realistic scenario seems
straightforward. But it is an open problem how to efficiently implement link and minima
operation when multi-criteria costs are considered. Therefore, it is more promising to
improve the transfer patterns approach. A feasible exact algorithm to compute transfer
patterns is desirable, as the current one is only sufficiently fast on large networks when
heuristics are used. For that, it seems that we need a completely new definition of lo-
cality, that allows an effective pruning of local searches. Again, it is an open problem
whether this is even possible, as even for road networks, we cannot fully understand the
observed efficiency of hierarchical algorithms. From a practical viewpoint, we mainly
want to reduce the precomputation time and the query time. To reduce the precompu-
tation time, currently the local searches seem to be the biggest problem. However, for
even larger graphs, we can expect the global searches to become more time-consuming.

4.3. Concluding Remarks 109

So it may be good to contract the graph before we execute global searches. To reach the
latter goal of reducing the query time, we need to reduce the size of the query graphs,
and/or speed up the direct-connection queries. One potential idea would be to add goal-
direction for the selection of the access stations. Interestingly, both goals a closely re-
lated. We can only run global searches on a contracted graph when we have access
stations not only at the source, but also at the target. This further increases the number
of transfer patterns in the query graph, so techniques to reduce it are required if we do
not want an increasing query time.

The transfer patterns also allow further interesting types of queries. It would be
interesting to provide guidebook routing, that is a small set of transfer patterns between
a pair of stations, that provide at all times almost optimal connections. More concrete,
also the answer of profile queries is desired, that compute all optimal connections for a
whole departure time window.

References. Section 4.1 is based on a technical report [60] and a conference paper [61]
solely published by the author of this thesis. Section 4.2 is based on a conference paper
[10], which the author of this thesis published together with Hannah Bast, Erik Carlsson,
Arno Eigenwillig, Chris Harrelson, Veselin Raychev, and Fabien Viger. Some wordings
of these articles are used in this thesis.

110 Chapter 4. Public Transportation

5
Flexible Queries in Road Networks

5.1 Central Ideas
A major drawback of most existing speed-up techniques (Section 1.2) is their inflexi-
bility. They are very fast at answering shortest-path queries between a source node s
and a target node t, but due to the performed precomputation, they do not allow to spec-
ify further query parameters. In this chapter, we consider the scenario with multiple
edge weights (Section 5.2) and the scenario with edge restrictions (Section 5.3). We
show how to augment the important basic concepts of speed-up techniques (Chapter 3)
to these flexible scenarios. Remember our definition of a flexible scenario from Sec-
tion 2.2.3: For each value of the query parameter p, we can construct a static graph to
answer arbitrary shortest path queries. So in principle, we can apply the basic concepts
on each of these graphs separately. However, this is not efficient and in practice often
not feasible. Working directly on the flexible graph allows to exploit the special proper-
ties of the specific flexible scenario under consideration. The augmentation of the basic
concepts usually works as follows:

• The node contraction adds shortcuts so that the shortest paths between the remain-
ing nodes are preserved for all values of the query parameter p. In general, this
would require separate witness searches for each value of p, to decide on the ne-
cessity of the shortcuts. But for the specific flexible scenarios that are considered
in this theses, we are able to reduce the number of witness searches without losing
exactness: We can still guarantee that all shortest-path distances are preserved.
Also, we do not add too many unnecessary shortcuts. The main difficulty was to
find these few efficient witness searches, as they depend on the currently regarded
flexible scenario.

• A straightforward adaption of ALT would use lower bounds that are valid for all
values of the query parameter p. However, as these are usually not very tight for
most values of p, it is better to compute several lower bounds for selected values of
p. Then, the tightest lower bounds that are still provably lower bounds are used to
answer a specific query with its given value of p. Sometimes, it is even possible to

112 Chapter 5. Flexible Queries in Road Networks

combine lower bounds to get a lower bound for a value of p that was not selected
for precomputation. However, this again depends on the specific flexible scenario.

Adding flexibility has its price, usually the precomputation time and space, and the query
time increase compared to the static scenario (Section 2.2.1). Nevertheless, the resulting
algorithms have a significant speed-up over Dijkstra’s algorithm. Still, it is desirable to
develop new techniques that are only possible in specific flexible scenarios. We came up
with the following enhancing concepts concerning node contraction:

• Use not only a single node order for node contraction, but several depending on
the value of the query parameter p. The idea behind this concept is that the im-
portance of nodes changes, depending on the value of p, and it is beneficial for
query performance to adapt the node order. Often unimportant nodes, for example
within a living area, where all streets are the same, stay unimportant independent
of the value of p. So a refinement of this concept performs an initial contrac-
tion and adapts node orders only for a smaller core. This reduces preprocessing
time and space, as computing different node orders effectively requires separated
computations.

• We ensure that for each value of the query parameter p, there are sufficient short-
cuts to preserve shortest-path distances. The witness searches during node con-
traction also ensure that there are not too many unnecessary shortcuts. Still, for a
specific value of p, we usually do not need all of them. So we should store some
additional information to detect at query time the necessary shortcuts for the cur-
rent value of p. Only relaxing the necessary shortcuts, and pruning the other ones,
speeds up the query.

5.2. Multiple Edge Weights 113

5.2 Multiple Edge Weights
The flexible scenario with multiple edge weight functions considers a graph G = (V,E)
with multiple edge weight functions c(1)(e), . . . ,c(r)(e) as introduced in Section 2.2.3.
The query parameter is an r-dimensional coefficient vector used to linearly combine
the edge weights. We restrict ourselves to exactly two edge weight functions c(1)(e)
and c(2)(e). We combine them using a parameter p ∈ [L,U] := {x ∈ Z | L≤ x≤U} to a
single edge weight cp(e) := c(1)(e)+ p ·c(2)(e). It is necessary that cp(e) is non-negative
for all p ∈ [L,U]. Having a discrete parameter in a bounded finite interval allows the
development of an very efficient algorithm that exploits each of these properties. Our
goal is to efficiently answer a flexible query following Definition 5.1.

Definition 5.1 A flexible query in the scenario with multiple edge weights computes the
shortest-path distance µp(s, t) between a source node s and a target node t for a query
parameter p subject to the edge weight function cp(e) := c(1)(e)+ p · c(2)(e).

Note that for simplicity we assume that p is integral. However, we will see that it
is only important that p is discrete, that is given a value of p, we can compute the next
(+1) and the previous (−1) value. An equivalent combination of the two edge weight
functions would be cp(e) :=(1− p) ·c(1)(e)+ p ·c(2)(e). The equivalence is easily visible
by the equation (1− p) · c(1)(e)+ p · c(2)(e) = c(1)(e)+ p ·

(
c(2)(e)− c(1)(e)

)
.

5.2.1 Node Contraction
Remember from Section 3.2, that to contract a node v ∈ V , we remove it and all its
adjacent edges from the graph and add shortcuts to preserve shortest path distances in
the remaining graph. All original edges together with all shortcuts are the result of the
preprocessing. As we want to add no unnecessary shortcuts, we face the following many-
to-many shortest path problem: For each uncontracted source node u ∈ V with (u,v) ∈
E, each uncontracted target node w ∈ V with (v,w) ∈ E and each integer parameter
p ∈ [L,U], we want to compare the shortest u-w-paths Qp with minimal cp(Qp) with the
shortcut 〈u,v,w〉 in order to decide whether the shortcut is really needed.

Compared to single-criteria contraction, we cannot avoid parallel edges. However,
in practice, their number is very small. Furthermore, their number is bounded by the
number of possible values of p, and also by the number of Pareto-optimal paths. So we
are never worse than in a Pareto-optimal setting. We keep identifying edges by their two
endpoints since the particular edge should always be clear from the context.

Witness Search. We extend the concept of a witness introduced in Section 3.2 to our
flexible scenario. Here, a witness allows to omit a shortcut for a single value of p. A
simple implementation of the witness search could perform for each value of p a for-
ward shortest-path search in the remaining graph from each source, ignoring node v,

114 Chapter 5. Flexible Queries in Road Networks

c

Qp

〈u,v,
w〉

pL U

(a) c(2)(Qp)≥ c(2)(u,v)+ c(2)(v,w)

c

〈u,v,
w〉

Qp

pL U

(b) c(2)(Qp)≤ c(2)(u,v)+ c(2)(v,w)

Figure 5.1: The cost of a path represents a linear function in dependence of the parameter
value p.

until all targets have been settled. Still, if the cardinality of [L,U] is large, this is in-
feasible in practice as we need to perform too many witness searches. Another possible
implementation could use a Pareto-Dijkstra, cf. Section 1.3.3. Using a Pareto-Dijkstra
would also lift the requirement to have discrete parameter values. However, this re-
quires the storage of multiple labels per node and also the results of Delling and Wag-
ner [45] suggest that there can be too many labels. So instead, we do something tai-
lored to our linear combination of two edge weights combined with discrete parameter
values: Let Qp be a u-w-path with cp(Qp) ≤ cp(u,v) + cp(v,w). As depicted in Fig-
ure 5.1, c(2)(Qp) can be seen as slope of a linear function. Therefore, we observe that if
c(2)(Qp)≥ c(2)(u,v)+c(2)(v,w), then cq(Qp)≤ cq(u,v)+cq(v,w) for all q ∈ [L, p]. And
if c(2)(Qp) ≤ c(2)(u,v)+ c(2)(v,w), then cq(Qp) ≤ cq(u,v)+ cq(v,w) for all q ∈ [p,U].
This observation implies Lemma 5.2.

Lemma 5.2 Let 〈u,v,w〉 be a potential shortcut. Any parameter interval [L,U] can be
partitioned into three, possibly empty partitions [L,L′], [L′+ 1,U ′− 1] and [U ′,U] with
integers L′,U ′ and the following properties:

(1) If [L,L′] is not empty, then there exists a single witness path for all p ∈ [L,L′].

(2) If [U ′,U] is not empty, then there exists a single witness path for all p ∈ [U ′,U].

(3) If [L′+1,U ′−1] is not empty, then for all values of p in it, there exists no witness
path.

Our witness search (Algorithm 5.1) will compute the interval [L′+ 1,U ′− 1] from
Lemma 5.2, using the previous observation. First, we start a parameter increasing wit-
ness search (Algorithm 5.2) with p := L. When we find a witness path Q, we compute

5.2. Multiple Edge Weights 115

the largest p′ ≥ p for which Q is still a witness path. This works in constant time since
the cost of a path is basically a linear function over the parameter p, and p′ is the possible
intersection of the cost of the witness path and the cost of the possible shortcut. Then,
we continue with p := p′+1 and repeat the procedure increasing p until we either reach
U or find no witness path. Note that because of this ‘+1’, we only support discrete pa-
rameter values. If we reach U , we know that no shortcut is necessary as [L′+1,U ′−1] is
empty, and our witness search is done. Otherwise, we perform the symmetric parameter
increasing witness search, starting with p :=U to compute U ′.

Algorithm 5.1: WitnessSearch(〈u,v,w〉, L, U)
input : path 〈u,v,w〉, interval [L,U]
output : interval [L′+1,U ′−1] for which a shortcut “could be” necessary

1 L′:= ParamIncreasingWitnessSearch(〈u,v,w〉, [L,U]);
// no witness necessary

2 if L′ ≥U return /0;
// else [L′+1,U ′−1] 6= /0

3 U ′:= ParamDecreasingWitnessSearch(〈u,v,w〉, [L,U]);
4 return [L′+1,U ′−1];

Algorithm 5.2: ParameterIncreasingWitnessSearch(〈u,v,w〉, L, U)
input : path 〈u,v,w〉, interval [L,U]
output : p with witness on [L, p]

1 p := L;
2 while p smaller or equal to U do

// Witness search for p returning a potential witness P.
3 P :=WitnessSearch(u, w, v, p);
4 if cp(P)> cp(〈u,v,w〉) return p−1;
5 p := max{k ∈ Z | ck(P)≤ ck(〈u,v,w〉)}+1;

6 return U;

The necessity interval [L′+ 1,U ′− 1] obtained by the witness search is stored as
NI(e) with a necessary shortcut e to remember that e is only necessary for p ∈ NI(e).
We will use NI(e) for our query algorithm that we will describe later. But we can also use
the necessity intervals to reduce the number of witness searches during the contraction
of a node v, see Algorithm 5.3. Given an incoming edge (u,v) and an outgoing edge
(v,w), the potential shortcut (u,w) representing the path 〈u,v,w〉 is only necessary for
the intersection of the necessity intervals of (u,v) and (v,w).

As our witness searches may be limited, for example by the number of hops, we
cannot guarantee that we compute the smallest interval. But we can guarantee that we

116 Chapter 5. Flexible Queries in Road Networks

Algorithm 5.3: Contraction(v, L, U)
input : node v, interval [L,U]

1 foreach (u,v) ∈ E with u not contracted, (v,w) ∈ E with w not contracted do
// Shortcut only potentially necessary for intersection of necessity intervals.

2 I := NI(u,v)∩NI(v,w)∩ [L,U];
3 if I = /0 then continue;
4 [L′+1,U ′−1] :=WitnessSearch(〈u,v,w〉, I);
5 if [L′+1,U ′−1] 6= /0 then

// Add shortcut (u,w) with necessity interval [L′+1,U ′−1].
6 e := (u,w);
7 E := E ∪{e};
8 c(1)(e):= c(1)(u,v)+ c(1)(v,w);
9 c(2)(e):= c(2)(u,v)+ c(2)(v,w);

10 NI(e):= [L′+1,U ′−1];

always compute an interval containing the smallest. The correctness of the contraction
as stated in Lemma 5.3 follows directly.

Lemma 5.3 Consider the contraction of node v. Let (u,v) ∈ E, (v,w) ∈ E with u, w not
being contracted. A shortcut with the cost of 〈u,v,w〉 is only omitted if for each p∈ [L,U]
there exists a witness path Pp with cp(Pp) ≤ cp(〈u,v,w〉). The necessity interval of a
shortcut includes all values of p where no witness path exists.

In practice, we observe an average of two performed shortest path queries. Since in
some cases a large number of queries may be necessary to find the minimal necessity
interval, we limit the number of single source shortest paths queries to 30.

Parameter Interval Reduction. Due to the locality of our witness searches, that for
example uses a hop limit, we may insert unnecessary shortcuts. Also edges of the origi-
nal graph might not be necessary for all parameters. So whenever we perform a witness
search from u, we compare the incident edges (u,x) with the computed path 〈u, . . . ,x〉.
When there are values of p where 〈u, . . . ,x〉 is shorter than (u,x), we reduce its necessity
interval and delete the edge when the interval is empty.

Parameter Splitting. Preliminary experiments revealed that a single node order for
a large parameter interval will result in too many shortcuts. That is because a single
node order is no longer sufficient when the shortest paths significantly change over the
whole parameter interval. One simple solution would be to split the intervals into small
adequate pieces beforehand, and contract the graph for each interval separately. But we
can do better: we observed that a lot of shortcuts are required for the whole parameter

5.2. Multiple Edge Weights 117

interval. Such a shortcut for a path 〈u,v,w〉 would be present in each of the constructed
hierarchies that contracts v before u and w. Therefore, we use a classical divide and
conquer approach. We repeatedly split the parameter intervals during the contraction
and compute separated node orders for the remaining nodes. For that, we need to decide
on when to split and how to split the interval.

A split should happen when there are too many “differences” in the classification of
importance between different values of p in the remaining graph. An indicator for these
“differences” are the necessity intervals of the added shortcuts. When a lot of partial
shortcuts, i. e. shortcuts not necessary for the whole parameter interval, are added, a split
seems advisable. So we trigger the split when the number of partial shortcuts exceeds a
certain limit. However, in our experience, this heuristic needs to be adjusted depending
on the metrics used. One reason for this imperfection is the difficult prediction of the
future contraction behavior. Sometimes it is good to split earlier although the contraction
currently works well and not too many partial shortcuts are created. But due to the shared
node order, the contraction becomes more difficult later, even when we split then.

A very simple method to split a parameter interval is to cut into halves (half split).
However, this may not be the best method in every case. The “different” parameters can
be unequally distributed among the parameter interval and a half split would return two
unequally difficult intervals. So we may also try a variable split where we look again
on the shortcuts and their necessity intervals to improve the parameter interval splitting.
One possibility is to split at the smallest (largest) parameter which lets more than half of
the edges become necessary. If no such parameter exists, we cut into halves.

To reduce main memory consumption, we also use hard disk space during contrac-
tion. Before we split, we swap the shortcuts introduced since the last split to disk. When
we have finished contraction of one half of an interval, and we need to contract the other
half, we load the state of the graph before the split from disk. This saves us a significant
amount of main memory and allows the processing of large graphs.

We limit the witness search to initially 8 hops, cf. Section 3.2.1. This may add
superfluous shortcuts but does not affect the correctness. Furthermore, as we have to
contract dense cores more often due to the splitting, we use a staged hop limit [67] to
reduce the precomputation time: Once the average degree in the remaining graph reaches
30 we switch to a hop limit of 6.

Node Ordering. We select the node order as described in Section 3.2 using a heuristic
that keeps the nodes in a priority queue, sorted by some estimate of how attractive it is
to contract a node. We measure the attractiveness with a linear combination of several
priority terms. After some initial tests with previously introduced priority terms [67], we
decided to use the following terms. The first term is a slightly modified version of the
edge difference; instead of the difference, we count the number of added shortcuts (factor
15) and the number of deleted edges (factor -4). The second term is for uniformity,
namely deleted neighbors (factor 15). The third term favors the contraction in more
sparse regions of the graph. We count the number of relaxed edges during a witness

118 Chapter 5. Flexible Queries in Road Networks

search as the search space (factor 8). Our last terms focus on the shortcuts we create. For
each shortcut we store the number of original edges it represents. Furthermore, for every
new shortcut (u,w) the contraction of a node v would yield, we calculate the difference
between the number of original edges represented by (u,v) and (u,w) (both factor 1).
Also, we use the same heuristics for priority updates, i. e. updating only neighbors of a
contracted node and using lazy updates.

5.2.2 A* Search using Landmarks (ALT)
For a hierarchy given by some node order, we call the K most important nodes the core
of the hierarchy as defined in Section 3.4. We observed that preprocessing the core
takes long because the remaining graph is dense and we have to do it several times
due to parameter splitting. Therefore we use the combination of node contraction and
ALT [69] described in Section 3.4. Remember that we have a choice to use ALT on an
uncontracted or a contracted core. Not contracting the core speeds up the preprocessing,
whereas contracting it speeds up the query. For both variants, we extended ALT to our
bi-criteria scenario. We need to compute appropriate landmarks and distances for that.

Again, the straightforward approach, to compute landmarks and distances for every
value of p separately, is too time-consuming. Also, space consumption becomes an issue
if we compute a landmark set for every value of p. Another idea would be to compute
lower bounds separately for each edge weight function, and then combine them given
the current value of p. But we can do better: Given a core for a parameter interval [L,U],
we compute two sets of landmarks and distances: one for the edge weight function cL
and one for cU .

Given two nodes s and t, a lower bound φL ≤ µL(s, t) for parameter value L and a
lower bound φU ≤ µU(s, t) for parameter value U can be combined to a lower bound
φp ≤ µp(s, t) for any parameter value p ∈ [L,U]:

φp := (1−α) ·φL +α ·φU with α := (p−L)/(U−L) (5.1)

The correctness (Lemma 5.5) of the lower bound (5.1) is mainly based on
Lemma 5.4.

Lemma 5.4 Let the source node s and target node t of a query be fixed. Let φ(p) :=
µp(s, t) be the shortest path distance for a real-valued parameter p in [L,U]. Then, φ(·)
is concave, i. e. for p,q ∈ [L,U],α ∈ [0,1] : φ((1−α)p+αq)≥ (1−α)φ(p)+αφ(q).

Proof. Assume p,q,α as defined above exist with φ((1−α)p+αq) < (1−α)φ(p)+
αφ(q). Let P be a shortest path for parameter (1−α)p+αq. In the case cp(P)≥ φ(p),
we deduce directly cq(P)< φ(q), and analogously for cq(P)≥ φ(p), we deduce cp(P)<
φ(p). This contradicts the definition of φ(·). �

Lemma 5.5 The lower bound φp in equation (5.1) is a feasible lower bound.

5.2. Multiple Edge Weights 119

Proof. This is a direct consequence of Lemma 5.4 and the choice of α , as it holds
(1−α)cL +αcU = cp. �

The lower bound (5.1) is lower in quality as an individual bound for any value of p,
since shortest paths are not all the same for p ∈ [L,U], but is better than the lower bound
obtained from landmarks for the two input edge weight functions c(1)(·) and c(2)(·).

5.2.3 Query
Dijkstra’s algorithm (Section 3.1) can be easily adapted to the flexible scenario with
multiple edge weights by computing cp(e) for each relaxed edge e on demand. The
same adaption is done to the original CH query algorithm (Section 3.2.2). Furthermore,
we use the necessity intervals to only relax edges that are necessary for the current value
of p. The parameter splitting during the contraction results in multiple node orders.
Therefore we have to augment the definition of the upward and downward graph. Our
upward/downward graph contains all edges that are directed upwards/downwards in the
hierarchy for their parameter interval. Therefore, the upward edges are

→
E := {e = (u,v) ∈ E | ∃p : p ∈ NI(e),u contracted before v for p}

and the downward edges are

←
E := {e = (u,v) ∈ E | ∃p : p ∈ NI(e),u contracted after v for p} .

If there are edges that are upwards and downwards, depending on a parameter in their
necessity interval, we split them into several parallel edges and adjust their necessity
interval. Otherwise the definition of the search graph G∗ in Section 3.2.2 remains the
same. Then, our query Algorithm 5.4 can recognize an edge not being directed up-
wards/downwards for the given value of p by looking at its necessity interval. Compared
to the original Algorithm 3.3 in Section 3.2.2, we only changed Lines 15 and 16.
During experiments, we observed that a query scans over a lot of edges that are not
necessary for the respective parameter value. We essentially scan much more edges than
we relax. We alleviate this problem with buckets for smaller parameter intervals. As
data structure, we use an adjacency array, with a node array and an edge array. As an
additional level of indirection, we add a bucket array, storing the edge indices necessary
for each bucket. These indices are ordered like the edge array, so a single offset into this
additional array is enough per node. Each node stores one offset per bucket array. By
this method we essentially trade fast edge access for space consumption. A lot of edges
are necessary for the whole parameter interval, almost all edges of the original graph
and additionally many shortcuts. We store them separately, since otherwise, we would
have an entry in each bucket array for each of these edges. This single action makes
the buckets twice more space-efficient. Note that we can access the edges resident in all
buckets without the further level of indirection, we just use another offset per node that
points into a separate array.

120 Chapter 5. Flexible Queries in Road Networks

Algorithm 5.4: FlexibleEdgeWeightCHQuery(s, t, p)
input : source s, target p, parameter value p
output : shortest path distance δ

1
→
δ := 〈∞, . . . ,∞〉; // tentative forward distances

2
←
δ := 〈∞, . . . ,∞〉; // tentative backward distances

3
→
δ (s) := 0; // forward search starts at node s

4
←
δ (t) := 0; // backward search starts at node t

5 δ := ∞; // tentative shortest path distance
6
→
Q.insert(0, s); // forward priority queue

7
←
Q.insert(0, t); // backward priority queue

8 ∼:=→; // current direction
9 while (

→
Q 6= /0) or (

←
Q 6= /0) do

10 if δ < min
{→

Q.min(),
←
Q.min()

}
then break;

11 if
¬∼
Q 6= /0 then ∼:= ¬ ∼; // interleave direction, ¬←=→ and ¬→=←

12 (·,u) :=
∼
Q.deleteMin(); // u is settled

13 δ := min
{

δ ,
→
δ (u)+

←
δ (u)

}
; // u is potential candidate

14 foreach e = (u,v) ∈ E∗ with ∼(e) do // relax edges
15 if p ∈ NI(e) and

(∼
δ (u)+ cp(e)

)
<
∼
δ (v) then // shorter path via u?

16
∼
δ (v) :=

∼
δ (u)+ cp(e); // update tentative distance

17
∼
Q.update

(∼
δ (v), v

)
; // update priority queue

18 return δ ;

Theorem 5.6 Given a source node s, a target node t and a parameter p ∈ [L,U], our
CH query for the flexible scenario with two edge weights computes µp(s, t).

Proof. Let us construct a static graph induced by the edges {e ∈ E | p ∈ NI(e)} with
edge weight function cp(e). Obviously, our query for parameter value p corresponds
to the static CH query on this constructed graph. As Lemma 5.3 proves that we add all
necessary shortcuts for p, we can deduce from Corollary 3.2 that our algorithm computes
µp(s, t). �

Combination with ALT. We perform the two-phased query of Section 3.4, but aug-
mented to our flexible scenario. We use the augmented CH query algorithm of the pre-
vious paragraph, and perform the potential computation as described in Section 5.2.2.

We also looked into storing proxy nodes in advance instead of computing them at
query time. This would result in an extra number of 3 · |#cores| integers we would have
to store for every node. And the speedup of the query would be marginal, as the proxy
search is very fast and takes only a small part of the whole query time. We observed a
number of 7% to 13% of the settled nodes to be a result of the proxy searches. For the

5.2. Multiple Edge Weights 121

relaxed edges, the part of the proxy search varied between 3% and 5%. So we decided
to compute the proxy nodes for every query anew.

As the potential functions obtained by the landmarks are not necessarily consistent,
we have a choice of making them consistent for queries on an uncontracted core, cf.
Section 3.4. However, this did not pay off in preliminary experiments.

Theorem 5.7 Given a source node s, a target node t and a parameter p ∈ [L,U], our
query for the flexible scenario with two edge weights combined with ALT computes
µp(s, t).

Proof. Let us construct a static graph Gp induced by the edges {e ∈ E | p ∈ NI(e)} with
edge weight function cp(e). Obviously, our query for parameter value p corresponds to
a static query on this graph. As Lemma 5.3 proves that we add all necessary shortcuts
for p, and Lemma 5.5 proves that our lower bounds are feasible, the correctness of our
query follows directly from the correctness of the static query [38, Theorem 4.1]. �

Profile Query. Our algorithm can also be utilized to find a set of shortest paths between
a given source and target node so that for each value of p a shortest path is in the set
(Definition 5.8).

Definition 5.8 A profile query between a source node s and a target node t for an inter-
val [p1, p2] returns a set S of s-t-paths such that

(1) ∀p ∈ [p1, p2] : ∃P ∈S : cp(P) = µp(s, t)

(2) ∀P ∈S : ∃p ∈ [p1, p2] : cp(P) = µp(s, t)

(3) ∀P,Q ∈S : P 6= Q⇒
(
c(1)(P) 6= c(1)(Q)∨ c(2)(P) 6= c(2)(Q)

)
(1) ensures that there is a shortest path for every value of p, (2) ensures that each path in
S is a shortest path, and (3) ensures that no two paths have same cost. Note that such
a set S is not necessarily unique, as even for a fixed value of p there can be multiple
shortest paths. We give an algorithm to compute such a set |S | with 3 · |S |−2 flexible
queries. It is based on the following Lemma 5.9.

Lemma 5.9 (Cutting Point Lemma) Let P1 be a shortest s-t-path for a parameter
value p1, P2 be a shortest s-t-path for a parameter value p2, and

(
c(1)(P1),c(2)(P1)

)
6=(

c(1)(P2),c(2)(P2)
)
. If a shortest s-t-path P′ for a parameter value p′ exists with

p1 < p′ < p2 and
(
c(1)(P1),c(2)(P1)

)
6=
(
c(1)(P′),c(2)(P′)

)
6=
(
c(1)(P2),c(2)(P2)

)
, then

there exists also such a path P at the “cutting point” parameter value p defined by
cp(P1) = cp(P2) as in Figure 5.2.

122 Chapter 5. Flexible Queries in Road Networks

Proof. Let us assume that a path P′ and parameter value p′ exist with p1 < p′ < p2
and cp′(P′) < cp′(P1) and cp′(P′) < cp′(P2). Furthermore, we assume that at p with
cp(P1) = cp(P2) no path P exists that fulfills cp(P) < cp(P1) = cp(P2). Also let WLOG
p1 < p′< p. Since cp1(P1) is minimal over all existing s-t-paths at p1, cp1(P

′)≥ cp1(P1).
With the assumption also cp(P′)≥ cp(P1) holds. This cannot be true for linear functions
of degree one, as cp′(P′)< cp′(P1). �

P1

P2
P

p1 p2p

c

Figure 5.2: The cost of each path is plotted in dependency of the parameter value. The
profile query can locate an additional shortest path P in the interval (p1, p2) by looking
at the “cutting point” p of the shortest paths P1 and P2.

Due to Lemma 5.9, we can compute the set S recursively by a divide and conquer
algorithm that divides at the cutting point p, or rather bpc or dpe if p is not integral. To
decide whether we can stop the recursion, and to add paths to S , we perform flexible
queries for bpc and dpe to see whether the found paths are better than the ones for p1
and p2 (Algorithm 5.5). Note that a second query on dpe is only necessary if the path
found by the query for bpc is not shorter compared to the path found for p1. Let k = |S |.
For the case k = 1 we obviously need two queries. For k ≥ 2, Lemma 5.10 proves that
we need at most 3k−2 flexible queries. Note that for a continuous interval of parameter
values, only 2k−1 flexible queries would be necessary, as we would not need to round
the cutting point.

Lemma 5.10 Let source node s and target node t be fixed. Let [p1, p2] be an integral
parameter interval. Let S be the set of paths computed by our profile query. Let k :=
|S |. If k ≥ 2, our profile query needs to perform at most 3k− 2 parameter queries to
compute S . Also, this set fulfills the properties of Definition 5.8.

Proof. Let k≥ 2. Let T (k) be the maximum number of flexible queries our profile query
needs to perform for an arbitrary integral interval [p1, p2], when the flexible queries for
parameter values p1 and p2 are already performed. We will prove by induction, that
T (k) ≤ 3k− 4. This will prove our claim, as this just excludes the two flexible queries

5.2. Multiple Edge Weights 123

Algorithm 5.5: ProfileSearch(s, t, p1, p2, P1, P2)
input : source s, target t, integral interval [p1, p2], shortest s-t-path P1 for p1, P2 for p2
output : set S by Definition 5.8

1 determine the “cutting point” p between P1 and P2 following Lemma 5.9;
2 perform flexible query for parameter value bpc resulting in path P;
3 if cbpc(P)< cbpc(P1) then // more than one path in

[
p1,bpc

]
4 S1 := ProfileSearch(s, t, p1, bpc, P1, P);
5 if cbpc(P)< cbpc(P2) then // more than one path in

[
bpc , p2

]
6 S2 := ProfileSearch(s, t, bpc, p2, P, P2);

7 else S2 := {P2};
8 else
9 S1 := {P1};

10 perform flexible query for parameter value dpe resulting in path P′;
11 if cdpe(P′)< cdpe(P2) then // more than one path in

[
dpe , p2

]
12 S2 := ProfileSearch(s, t, dpe, p2, P′, P2);

13 else S2 := {P2};
14 return S1∪S2;

for the boundary values. Let P1 be the path found by our query for parameter value p1
and P2 for p2. Let p be the “cutting point”: cp(P1) = cp(P2). For the base case k = 2, we
need 2 flexible queries, one for bpc and one for dpe. Induction step: For k ≥ 3, let P be
the path computed for parameter value bpc. It holds

T (k)≤

{
2+T (k−1) if cbpc(P) = cbpc(P1) or cbpc(P) = cbpc(P2)

1+T (k1)+T (k2) else, with k1 = |S1|, and k2 = |S2|

In the first case holds

T (k)≤ 2+T (k−1)
IH
≤ 2+3(k−1)−4 = 3k−5 < 3k−4 .

In the second case we know that the costs of the path P is different from the paths P1
and P2, therefore k1 ≥ 2 and k2 ≥ 2 and we can apply the induction hypothesis. Also
k1 + k2 = k+1, as the intersection of S1 and S2 contains exactly the path P. Therefore
holds

T (k)≤ 1+T (k1)+T (k2)
IH
≤ 1+(3k1−4)+(3k2−4) = 3(k+1)−7 = 3k−4 .

What is left is to prove is that for the computed set the properties (1) – (3) of Def-
inition 5.8 hold. Property (2) holds by construction, as we only add a path to S that
is returned by a flexible query. Property (1) holds, as in case that for a s-t-path Q and
an interval [q1,q2] holds cq1(Q) = µq1(s, t) and cq2(Q) = µq2(s, t), then the path Q is a
shortest path for the whole interval (Lemma 5.4). Property (3) holds, as we only add
paths that have different cost than the boundary paths P1 and P2. �

124 Chapter 5. Flexible Queries in Road Networks

Profile Query with Sampling. As an alternative to a complete profile query, our al-
gorithm can also be used to perform queries for a sample subset S = {p1, p2, . . . , pk} ⊆
[L,U]. To do so, we adapt our algorithm from the profile query. We start with a query
for the minimal parameter value p1 and the maximal parameter value pk in S. For two
paths Pi at parameter pi and Pj at parameter p j with pi < p j we calculate the next query
parameter as p`, `= bi+(j− i)/2c. By this method we recursively continue. If we find
the already known path Pi (Pj) again at p`, we do not need to continue the recursion
between p` and pi (p j).

Approximated Profile Query. Since the large number of queries result in a relatively
long computation time for a profile query, we also offer the possibility of an approxi-
mated profile query with ε-guarantee:

Lemma 5.11 For two shortest s-t-paths P1 at parameter value p1 and P2 at parameter
value p2, p1 < p2 and c(1)(P2)≤ (1+ε) ·c(1)(P1) or c(2)(P1)≤ (1+ε) ·c(2)(P2) holds: if
a shortest s-t-path P at parameter value p exists with p1 < p < p2 then either c(1)(P)≤
(1+ ε) · c(1)(P1)∧ c(2)(P) ≤ (1+ ε) · c(2)(P1) or c(1)(P) ≤ (1+ ε) · c(1)(P2)∧ c(2)(P) ≤
(1+ ε) · c(2)(P2) holds.

Proof. First let c(1)(P2) ≤ (1+ ε) · c(1)(P1). In this case we can use P2 to approximate
P. From p < p2 follows c(2)(P2)≤ c(2)(P). From p1 < p follows c(1)(P)≥ c(1)(P1) and
with c(1)(P2)≤ (1+ε) ·c(1)(P1) follows c(1)(P2)≤ (1+ε) ·c(1)(P). In the same way we
can use P1 in case that c(2)(P1)≤ (1+ ε) · c(2)(P2) holds. �

Therefore, we can guarantee that for every omitted path P a path P′ will be found
with c(1)(P′)≤ (1+ε) ·c(1)(P) and c(2)(P′)≤ (1+ε) ·c(2)(P). Since we essentially need
two queries to terminate our search for further paths between two already found paths,
the approximation might help to reduce the number of “unnecessary” searches without
omitting too many paths. Note that the approximation method can also be applied to our
profile query with sampling.

5.2.4 Experiments

Instances. We present experiments performed on road networks from the year 2006,
provided by PTV AG. The German road network (GER) consists of 4 692 751 nodes and
10 806 191 directed edges. The European road network (EUR) consists of 29 764 455
nodes and 67 657 778 directed edges. For comparison with Pareto-SHARC, we also
performed experiments with their older network of Western Europe (WEU) having
18 017 748 nodes and 42 189 056 directed edges.

5.2. Multiple Edge Weights 125

Environment. We did experiments on one core of a single AMD Opteron Proces-
sor 270 clocked at 2.0 GHz, with 8 GiB main memory and 2×1 MiB L2 cache. Only the
preprocessing of EUR has been done on one core of a Intel Xeon 5345 processor clocked
at 2.33 GHz with 16 GiB main memory and 2×4 MiB L2 cache, as more main memory
was required. We run SuSE Linux 11.1 (kernel 2.6.27) and use the GNU C++ compiler
4.3.2 with optimization level 3.

Annotation. In our tables we denote with param the number of different parameters
in the interval [0,x− 1]. For core approaches we may give the kind of core used by a
string of two signifiers core size/#landmarks. The core size indicates how many nodes
the core contains. The second number gives the number of landmarks used in the core.
A core is usually uncontracted, only the contracted cores are additionally marked with
C. The preprocessing time is given in the format hh:mm and is split into the compute
time and the I/O time needed for reading/writing to disk. Query performance is given
in milliseconds. For the speed-up we compare our algorithm to the timings of a plain
unidirectional Dijkstra algorithm.

Weight Functions. For our experiments, we combined the travel time and the approx-
imate monetary cost for traversing an edge. The travel time was computed from the
length of an edge and the provided average speed. To approximate the cost, we chose to
calculate the needed mechanical work for a standard car. We use the standard formulas
for rolling and air resistance to compute the force F(v) = FN · cr +A · cw · ρ

2 · v
2 with FN

the normal force, cr the rolling resistance coefficient, A representing the reference area
in square meters, cw being the drag coefficient, ρ the air density and v the average speed
on the desired road. We estimated the constants as FN = 15000kg m/s2, cr = 0.015,
A = 2.67m2, cw = 0.3 and ρ = 1.2kg/m3. The resulting cost function is defined as
C̃(v, `) = (` · c ·F(v))/η with ` denoting the length of the road, c denoting the cost of
energy and η denoting the efficiency of the engine. We estimated c = 0.041C/MJ, this
corresponds to a fuel price of about 1.42C/`, and η = 0.25. For inner city roads, we
multiply the cost by a factor of 1.5 to compensate for traffic lights and right of way sit-
uations. Note that this method is a good approximation for higher speeds but disregards
the bad efficiency of the engine and transmission on low speeds. To get a more realistic
model, we favor an average speed of 50 km/h and define our final weight function as

C(v, `) =
{

C̃(50+
√

50− v, `) if v < 50
C̃(v, `) otherwise

}
.

Figure 5.3 plots C(v,1) against the travel speed.

Parameter Interval. A good parameter interval for the travel time and the energy cost
function is between 0 and 0.1. For p = 0, we find the fastest path and for p = 0.1,

126 Chapter 5. Flexible Queries in Road Networks

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 20 40 60 80 100 120 140

Average Travel Speed [km/h]

Default
City

C
o
s
t
P

e
r

M
e
te

r
[c

e
n
t]

Figure 5.3: Energy costs per meter against the travel speed. The upper curve is for inner
city roads.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 200 400 600 800 1000

R
el

at
iv

e
V

ar
ia

tio
n

Parameter p

Travel Time
Energy Cost

Figure 5.4: Average increase of the travel time and decrease of the energy cost as ratio
to the best possible routes.

we observe an increase of the average travel time by 65% on GER. This increase is
reasonable, and also Pareto-SHARC considers at most 50% increase.

Since we only support integer parameters, we scale all weights by a factor of 10 000
to be able to adjust the parameter with four digits after the decimal point. This results
in a parameter interval of [0,1000], but actually we rounded to [0,1023]. To prove the
robustness of our approach, we additionally perform some experiments for the larger
parameter interval [0,2047] using the same scale factor of 10000.

5.2. Multiple Edge Weights 127

←
re

cu
rs

io
n

de
pt

h

 0 200 400 600 800 1000

Parameter p

Splits

Figure 5.5: The vertical lines present the split positions. The higher a line, the lower is
the recursion depth of the split.

Parameter Splitting. During the contraction, we maintain a threshold T ; when there
are more than T partial shortcuts since the last split, we trigger a split. After a split, we
increase T since there are more shortcuts necessary in the upper hierarchy. We start with
T = 1.3% of the number of edges in the input graph. After a split, we multiply T with
1.2. We do not split parameter intervals of size 16 or below.

We use only half split, preliminary experiments with variable split did not yield sig-
nificant improvements. In Figure 5.5, the splits of the parameter interval are visualized.
The longer a line, the earlier the split happened. We see that in the interval [0,511]
7 splits happened whereas in [512,1023] only 3 happen. This correlates quite well with
the observations from Figure 5.4, where great changes are especially visible for the first
half of the interval.

Performance. We summarize the performance of different variants of our algorithm
in Table 5.6. When we only use contraction, preprocessing on GER takes 2.4 hours,
resulting in an average query time of 2.9 ms. Note that the average is over 100 000
queries, where source, target and the value of p are selected uniformly at random. We
split the precomputation time into the compute part and the I/O part. The I/O part is the
time to write the intermediate results to disk when a split happens. You see that it can
take a significant percentage of the overall precomputation time, up to one third, but can
easily be avoided by using more main memory.

We usually select 64 avoid landmarks [72] per core. Compared to full contraction, a
5k uncontracted core has 12% better query time and significantly decreases the precom-
putation by one third. As expected, a 3k core results in even better query times, at the
cost of precomputation time. However, switching to 32 landmarks is not significantly
better for precomputation time and space, but increases the query time by 7%. Our best

128 Chapter 5. Flexible Queries in Road Networks

Table 5.6: Preprocessing and query performance for different graphs. param specifies
the number of different parameters x in the interval [0,x−1]. The core size and number
of landmarks are given. The preprocessing time in hh:mm is split into the compute time
and the I/O time needed for reading/writing to disk. Also the number of splits and the
space consumption in Byte/node are given. The query performance is given as query
time in milliseconds, speed-up compared to plain Dijkstra, number of settled nodes and
number of relaxed edges.

core/ preproc [hh:mm] # space query speed settled relaxed
graph param landmark contr IO splits [B/node] [ms] -up nodes edges
GER 1024 -/- - - - 60 2.04s 1 2.36M 5.44M
GER 1024 0/0 1:54 0:29 11 159 2.90 698 579 4819
GER 1024 10k,C/64 2:06 0:29 11 183 0.63 3234 170 2059
GER 1024 3k/64 1:13 0:29 11 164 2.33 874 620 9039
GER 1024 5k/32 1:05 0:30 11 161 2.76 738 796 11137
GER 1024 5k/64 1:06 0:30 11 167 2.58 789 735 10191
GER 2048 5k/64 1:30 0:37 14 191 2.64 771 734 9835
EUR 1024 -/- - - - 59 15.1s 1 6.08M 13.9M
EUR 1024 5k/64 12:55 2:32 11 142 6.80 2226 1578 32573
EUR 1024 10k/64 11:58 2:31 11 144 8.48 1784 2151 39030
EUR 1024 10k,C/64 18:37 2:35 11 145 1.87 8097 455 7638
WEU 16 10k,C/64 1:00 0:10 0 60 0.42 14427 270 2103
WEU 1024 10k,C/64 5:12 1:12 7 151 0.98 6183 364 3360

query times are with a 10k contracted core yielding speed-up of more than 3 000.

You cannot directly compare our performance to previously published results of
single-criteria CH, since the performance heavily depends on the edge weight function.
We computed single-criteria CH for GER with p = 0, p = 1000 and for p = 300, one of
the most difficult parameters from Figure 5.8. The preprocessing time varied by about
100% between these parameters and the query time even by 270%. Only space consump-
tion1 is quite constant, it changed by less than 3% and is around 22 B/node. We compare
our 5k/64 core to economical CH [59] as both have the best preprocessing times. Our
space consumption is a factor 7.6 larger, however we could greatly reduce space in re-
lation to our 1 024 different parameters, even below the number of 12 different cores
that exist due to 11 splits. Also, we could compute 18.9 different hierarchies within the
time needed by our new algorithm. For this comparison, we ignored the preprocessing
I/O time since the single-criteria CH also needs to be written to disk. The reduction in
preprocessing time is therefore not as large as for space, but still good. However, our
efficient preprocessing comes at the cost of higher query times. Single-criterion CH has
0.82 ms query time on average but our query time is about three times larger. One reason
for our higher query time is the shared node order within a parameter interval that is

1do not mistake it for space overhead

5.2. Multiple Edge Weights 129

not split, but we also have a larger constant factor because of the data structure: there
is an additional level of indirection due to the buckets, and we store two weights and
a parameter interval per edge, resulting in more cache faults. The frequently occurring
weight comparisons are also more expensive and noticeable, since multiplications and
additions are necessary. But e. g. for web services, the query time is still much lower
than other delays, e. g., for communication latency. Using landmarks on a contracted
core would yield even faster query times than single-criteria CH, but this would not be a
fair comparison as we should use landmarks there as well.

Our algorithm scales well with the size of the interval. Increasing it to twice the size
only increases the preprocessing time by 32% and the space by 14% without affecting
query time much. We also did some experiments on EUR that worked well for GER, but
we could not perform a thorough investigation, since the precomputation took very long.
The query times are very good, yielding speed-ups of more than 8 000. Better speed-ups
are expected for larger graphs, as for single-criteria CH, too. The space consumption
is even better, the dense road network of GER is more difficult than the rest of EUR.
Preprocessing time is however super-linear, but we expect that tuning the node ordering
parameters and the split heuristic will alleviate the problem.

Edge Buckets. As already explained earlier, the number of scanned edges has a large
impact on the quality of the query. When the number of memory accesses for non-
necessary edges is large enough, it pays of to omit the respective edges, even if an ad-
ditional level of indirection has to be used for some of the edges. By default, for each
parameter interval that was not further split, we have one bucket, i. e. with 11 splits we
have 12 buckets that split the parameter interval as in Figure 5.5. To investigate the effect
further, we take two computed hierarchies from Table 5.6, remove the original buckets
and use different numbers of buckets that split the parameter interval in equally spaced
pieces. The results are in Table 5.7 and show the different trade-offs between query time
and space consumption. If we compare the data to Table 5.6, we can see that even with
buckets, the number of scanned edges is more than two times larger than the number
of relaxed edges. Comparing the different numbers of buckets, we notice that around a
quarter of all edges would be stored in all buckets. Therefore, storing them separately
helps to control the space, since buckets already consume a major part. About 40% of
our space is due to buckets, but we get almost the same percentage as improvement of
the query time. Using just two buckets even increases the query time as another level of
indirection is necessary to address the edges in the buckets even though we only halve
the number of scanned edges. Our choice of 12 buckets is in favor of fast query times,
more buckets bring only marginal improvements. Figure 5.8 visualizes the effects of
buckets for different values of p. We see that ≥ 4 buckets improve the query time for
all parameters but in the interval [0,511] more buckets are necessary than in [512,1023]
as 12 buckets show the most uniform performance over the whole interval. When we
ignore the different bucket sizes, we also note that our algorithm achieves the best query
times for p = 0, when we optimize solely for travel time. Therefore, our performance

130 Chapter 5. Flexible Queries in Road Networks

depends on the chosen value of p and furthermore on the chosen edge weights functions
as they have a strong impact on the hierarchical structure of the network.

Table 5.7: Query performance for different numbers of edge buckets.
edges memory

core/ in all query scanned overhead
graph landmark buckets buckets [ms] edges [B/node]
GER 10k,C/64 1 100.0% 0.96 41613 0
GER 10k,C/64 2 26.9% 1.02 23486 19
GER 10k,C/64 4 26.5% 0.81 13388 28
GER 10k,C/64 8 26.4% 0.69 7757 49
GER 10k,C/64 12 26.4% 0.63 5769 71
GER 10k,C/64 16 26.4% 0.62 5270 96
GER 3k/64 1 100.0% 3.75 170483 0
GER 3k/64 2 27.5% 3.90 94876 18
GER 3k/64 4 27.0% 3.18 53082 28
GER 3k/64 8 26.9% 2.60 29866 48
GER 3k/64 12 26,9% 2.33 21694 70
GER 3k/64 16 26.9% 2.32 20754 95

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0 200 400 600 800 1000

Q
u
e
ry

 T
im

e
 [
m

s
]

Parameter p

0 Buckets
2 Buckets
4 Buckets
8 Buckets

12 Buckets
16 Buckets

Figure 5.8: Average query time in dependence of the value of p and the used number of
buckets. We used the GER graph with 10k contracted core and 64 landmarks.

Profile Query. Utilizing our flexible fast query algorithm, we can also compute the
shortest paths for all values of p. We get about k = 31 different paths on average and

5.2. Multiple Edge Weights 131

need 88 queries for different values of p to compute them (Table 5.9). This is close to
the bound of 3k−2 = 91 queries, which are theoretically necessary. So applications that
need all shortest paths between two locations should use our fastest version.

Table 5.9: Performance of the profile search in different versions.
core/ found flexible time

graph landmark paths queries [ms]
GER 10k,C/64 30.7 88.1 59.4
GER 3k/64 30.7 88.1 307.0
GER 5k/64 30.7 88.1 349.6

When a reasonable subset of all such paths is sufficient, our sampling approach pro-
vides better performance. A possible application could be to present a number of sam-
ples for the user to choose from and maybe calculate more detailed information on de-
mand for certain parameter intervals of the presented choices. In Table 5.10, we give
an overview over the performance of our sampling version of the profile query, with the
main focus on the number of found routes and running time for different numbers of
equidistant sample values of p. As expected, we see a linear increase of the query time
compared to the number of performed queries. Up to 9 samples, we get a new path with
almost every query. However, the more samples we choose, the more queries are done in
vain. Still, we can choose at query time very fine-grained how many different paths we
want. This is a clear advantage over Pareto-SHARC, were the average number of target
labels (= #paths) is limited to 5–6 since otherwise the precomputation and query time
gets out of hand.

Table 5.10: Performance of sampled profile search on GER with a contracted core of
10000 nodes using 64 avoid landmarks.

flexible found time
samples queries paths [ms]

2 1.8 1.8 1.0
3 2.7 2.7 1.7
5 4.4 4.3 2.9
9 8.0 7.2 5.5

17 15.8 11.4 10.2
33 31.4 17.3 18.9
65 58.3 22.8 34.3

129 95.9 27.1 57.1

Approximated Profile Query. Another possibility to reduce the profile query time is
using ε-approximation. We prune our profile query when all paths that we may miss

132 Chapter 5. Flexible Queries in Road Networks

are within an ε factor of the currently found paths. By that, we balance the query time
without missing significant differently valued paths as it may happen with sampling.
In Table 5.11 we see the same ratio between found paths and query time as for the
sampling approach. Many of the 31 different paths are very close as for a small ε = 1%
the number of paths is cut in halves. Still, there are significant differences in the paths
as even ε = 16% still has more than 4 different paths.

Table 5.11: Performance of the approximated profile query on GER with a contracted
core of 10000 nodes an 64 avoid landmarks.

found flexible time
ε paths queries [ms]

0 30.7 88.3 59.4
0.00125 26.5 55.0 36.4
0.0025 23.7 46.0 30.0
0.005 20.4 36.9 24.4
0.01 17.0 28.3 18.9
0.02 13.3 20.1 13.5
0.04 9.7 12.9 8.7
0.08 6.5 7.6 5.3
0.16 4.2 4.4 3.0
0.32 2.7 2.7 1.7

Comparison with Previous Work. Even though Pareto-SHARC [45] can handle
continent-sized networks only heuristically and we have exact shortest paths, we per-
form very well in comparison since we do not rely on Pareto-optimality. We used the
same network of Western Europe (WEU) and costs as Pareto-SHARC. With 16 values
of p, the average travel time increases by 4.3%. This case allows in our opinion the clos-
est comparison to Pareto-SHARC with simple label reduction with ε = 0.02 (4:10 hours
preprocessing and 48.1 ms query). Our precomputation is 3.6 times faster (see Table 5.6)
and our profile query (2 ms) is more than 24 times faster. For 1024 different values of
p, the average travel time increases by 43.4%, that might be close to heuristic Pareto-
SHARC with strong label reduction (ε = 0.5 and γ = 1.0, 7:12 hours preprocessing and
35.4 ms query). On WEU, we could not reach an average increase of 50%, even doubling
the values of p yields less than 44% travel time increase. We need 12% less preprocess-
ing time, and an approximate profile query with ε = 0.01 returning 5.7 different paths
(6.2 ms) is 5.7 times faster. Contrary to Pareto-SHARC, we can also just compute a
single path for a single value of p, taking just 0.4 ms. Furthermore, we provide more
flexibility with 12.5 different paths available on average over the whole parameter in-
terval. But compared to GER, we have less different paths. This is due to the different
“costs”: Pareto-SHARC uses a simple model to calculate fuel- and toll-costs whereas
our model of the energy cost is based upon laws of physics. The only downside of our

5.2. Multiple Edge Weights 133

algorithm is that we need more space than Pareto-SHARC (22.5 B/node preprocessing
+ 23.7 B/node input graph for Pareto-SHARC). However, we can also provide more dif-
ferent routes. In conclusion, our linear combination of two edge weight functions allows
a faster computation than a combination based on Pareto-optimality. We scale better
since we can split parameter intervals, whereas Pareto-optimal weights naturally can-
not be split and distributed to buckets. Adapting the SHARC algorithm to our flexible
scenario is possible. However, such a Flexible-SHARC algorithm also needs, for effi-
ciency, necessity intervals, edge buckets, or maybe multiple arc flags for different parts
of the parameter interval. Therefore it is not clear, whether it will turn out to be more
space-efficient than our CH-based algorithm.

134 Chapter 5. Flexible Queries in Road Networks

5.3 Edge Restrictions
Edge restrictions extend a static graph by threshold functions on edges, for example
bridge height. A query then specifies constraints, for example vehicle height, and omits
all restricted edges for the shortest-path computation. More formally, edge restrictions
extend a static graph G = (V,E) by an r-dimensional threshold function vector a =
〈a1, . . . ,ar〉 such that ai : E→R+∪{∞} assigns thresholds to edges (Section 2.2.3). The
query parameter is a vector p = 〈p1, . . . , pr〉 that constraints edges according to their
threshold following Definition 5.12.

Definition 5.12 A flexible query in the scenario with edge restrictions computes the
shortest-path distance µp(s, t) between a source node s and a target node t for query
constraint parameters p = 〈p1, . . . , pr〉 such that for every edge e of the according short-
est path holds pi ≤ ai(e), i = 1..r.

5.3.1 Preliminaries
In this section, we define some mathematical notations for working with thresholds on
edges and paths.

Definition 5.13 Given two edges e and e′, we define the minimum threshold vector for
these two edges to be:

a(e)fa(e′) = 〈min(a1(e),a1(e′)),min(a2(e),a2(e′)), . . . ,min(ar(e),ar(e′))〉

Definition 5.14 We define the maximum threshold vector analogously:
a(e)ga(e′) = 〈max(a1(e),a1(e′)),max(a2(e),a2(e′)), . . . ,max(ar(e),ar(e′))〉

The minimum/maximum threshold operators define the most/least restrictive set of
threshold values between the two edges’ threshold function vectors, respectively.

Definition 5.15 For any path P = 〈e1,e2, . . . ,ek〉, we define the path threshold as the
minimum threshold over all of its edges (e. g., see Figure 5.12):

a(P) = a(e1)fa(e2)f . . .fa(ek)

The path threshold operation effectively defines the most restrictive set of possible
query constraint parameters for which the associated path will still be unrestricted.

u

v

w

x

y
(3,〈2

,8〉) (2,〈3,5〉) (4,〈4
,6〉) (2,〈5,3〉)

Figure 5.12: For the path P = 〈(u,v),(v,w),(w,x),(x,y)〉, we have a(P) = 〈2,3〉.

5.3. Edge Restrictions 135

Definition 5.16 Given two threshold vectors a and a′, we define a weak dominance
relation as follows:

a� a′⇔∀i ∈ {1, . . . ,r} , ai ≤ a′i
a� a′⇔∃i ∈ {1, . . . ,r} , ai > a′i

In this context, we say that a′ weakly dominates a (a � a′) if it is no more restric-
tive than a for all possible restrictions. Likewise, we say that a is non-dominated by
a′ (a � a′) if it is less restrictive than a′ for at least one restriction. We addition-
ally apply this notation to reflect the relation between any query constraint parame-
ters p = 〈p1, . . . , pr〉, and the threshold function vectors. For example, we say that
p � a(e)⇔ ∀i ∈ {1, . . . ,r} , pi ≤ ai(e) to indicate that p is not restricted by a(e). By
that we can more easily write the static graph Gp = (V,Ep) introduced in Section 2.2.3
by Ep := {e ∈ E | p� a(e)}. A similar notation holds for � as well.

5.3.2 Node Contraction
In the following, we show how to augment the concept of node contraction to our flexible
scenario with edge restrictions. When contracting a node v, we need to consider edge
restrictions. For each pair of edges (u,v) and (v,w) in the remaining (uncontracted)
graph the potential shortcut (u,w) represents the path 〈u,v,w〉 with path threshold p =
a(u,v)f a(v,w). To avoid the shortcut, we need to find a witness path whose witness
path threshold weakly dominates p. We do this by performing the witness search in the
graph Gp that only contains edges that weakly dominate p, see Figure 5.13. As before
with the static node contraction, we then only add a shortcut edge (v,w) if the resulting
path P has greater length than the path 〈u,v,w〉, and we omit it otherwise.

Note that contrary to the static scenario, we cannot omit parallel edges, see Exam-
ple 5.17. We need to keep parallel edges for each Pareto-optimal pair of threshold vector

u

w
x

y

v

no
de

or
de

r

(2,〈3,8〉)

(1,
〈6,

7〉)
(1,〈2,8

〉) (1,〈5,4〉)

(2,
〈5,

6〉)
(4,〈3,6〉)

Figure 5.13: Contracting node v for flexible edge restrictions. The shortcut edge is
represented by a dashed line. In this case, we have that p = a(u,v)f a(v,w) = 〈3,6〉.
Since there is no valid path P for this witness search which ignores node v (i. e., edge
(x,y) is restricted for p1 = 3 and edge (y,w) is restricted for p2 = 6), a shortcut edge
(u,w) must be added with weight c(u,v)+ c(v,w) = 4 and threshold function vector p.

136 Chapter 5. Flexible Queries in Road Networks

and edge weight. However, we keep identifying edges by their two endpoints in cases
where the particular edge is clear from the context.

Example 5.17 Assume we have an edge with weight 2 and threshold 〈2,6〉, and a par-
allel edge with weight 4 and threshold 〈3,8〉. We cannot just keep the edge with weight
2, as a query with constraints 〈3,8〉 must not use this edge. Therefore, parallel edges are
required.

The formal definition for the correctness of our node contraction states Lemma 5.18.
The proof of this lemma follows directly of our definition of node contraction and the
transitivity of the threshold dominance.

Lemma 5.18 Consider the contraction of node v in the scenario with flexible edge re-
strictions. Let u, w be two uncontracted neighbors of v with edge (u,v), (v,w). Let p
be a set of query constraint parameters with p� a(u,v)fa(v,w). If there exists no wit-
ness path P with c(P) ≤ c(〈u,v,w〉) and p � a(P), a shortcut of weight c(〈u,v,w〉) and
threshold vector a(u,v)fa(v,w) is added.

Multi-Target Witness Search. To establish a minimal number of possible shortcut
edges for a given node ordering, in general, a witness search must be carried out sep-
arately for every pair of neighbors for which a shortcut may need to be added. This is
necessary, since the exact constraints applied to any particular witness search will de-
pend upon the threshold values of the specific pair of edges being bypassed by a given
(potential) shortcut edge. Therefore, when contracting a node v, where S = {(u,v) ∈ E |
u contracted after v} and T = {(v,w) ∈ E | v contracted before w}, the naïve algorithm
must perform a total of |S| · |T | separate witness searches2. The overall efficiency of
the contraction of v can be improved by instead performing only a single witness search
from the source u of each incoming edge (u,v) ∈ S until all targets w of outgoing edges
(v,w) ∈ T,w 6= u have been settled, or until a distance of c(u,v)+max{c(v,w) | (v,w) ∈
T,w 6= u} has been reached. We use the maximum threshold of all the outgoing edges in
T to obtain the path threshold p= a(u,v)f

(
g(v,w)∈T,w 6=u a(v,w)

)
(e. g., see Figure 5.14).

We perform the multi-target witness search in Gp. However, this does not affect the cor-
rectness of Lemma 5.18, since the witness search constraint parameters p are guaranteed
to be as or more restrictive than the constraint parameters for any explicit pair with (u,v)
as the incoming edge. Therefore, any resulting witness paths are still valid, even though
this approach may result in the addition of unnecessary shortcuts. As we will see in later
experiments, this multi-target approach scales much better in practice.

We limit the witness search to 7 hops, cf. Section 3.2.1. This may add superfluous
shortcuts but does not affect the correctness.

2Pairs (u,v) ∈ S,(v,w) ∈ T where u = w may be ignored.

5.3. Edge Restrictions 137

u

w
x

y

v
no

de
or

de
r

(3,〈2,9〉)

(6
,〈

4,
2〉
)

(2
,〈3
,5
〉)

(4,〈6,
4〉)

Figure 5.14: Multi-target witness search from u to {w,x,y}. In this scenario, the query
constraint parameters are defined as p = a(u,v)f (a(v,w)ga(v,x)ga(v,y)) = 〈2,9〉f
(〈4,2〉g 〈3,5〉g 〈6,4〉) = 〈2,9〉f 〈6,5〉= 〈2,5〉.

Edge Reduction. The edge reduction (Section 3.2.1) removes edges that do not repre-
sent shortest paths. We adapt this idea to our flexible scenario as follows. After perform-
ing a multi-target witness search (discussed above) from the source u of some incoming
edge (u,v), we have computed a shortest-path tree rooted at node u. Let Px be the path
in the tree from root node u to node x. Then, for all outgoing edges (u,x) from u, we
may remove edge (u,x) if c(Px)≤ c(u,x), Px 6= 〈(u,x)〉 and a(u,x)� a(Px). In this case,
it is easy to show that edge (u,x) can be replaced by Px in any shortest path. Therefore,
edge (u,x) can easily be removed in this scenario without affecting the correctness of
any subsequent shortest-path queries.

Witness Restrictions. Based on the preprocessing described so far, a query algorithm
tends to have a much larger search space (i. e., a larger number of relaxed edges and set-
tled nodes) for less restricted queries than for more restricted queries. This comes from
the fact that more restricted queries will filter out more edges from the search. However,
a lot of shortcuts are added during the node contraction that are only necessary for more
restricted queries, and for less restricted queries there would be a witness preventing the
shortcut. In the flexible scenario with two edge weights, we computed a necessity inter-
val for each edge so that only necessary edges are relaxed (Section 5.2.1). For the current
scenario, we developed a corresponding concept, however tailored to edge restrictions.
We call this new concept witness restrictions. It stores the information about these wit-
nesses for less restricted queries with the shortcuts. More precisely, this information is
a set of witness path thresholds. There can be more than one witness path threshold for
a given shortcut edge, see Figure 5.15. This is contrary to the scenario with two edge
weights, where a single necessity interval stores all corresponding information.

Note that the witness paths considered for the set of witness path thresholds must
be strictly shorter than the shortcut. This is necessary, as the shortcut may be used as a
witness when all the interior nodes on the witness path get contracted before its source
and target node. Also note that it is sufficient to store a Pareto-optimal set of witness
path thresholds.

However, storing a whole set of witness path thresholds would require a variable

138 Chapter 5. Flexible Queries in Road Networks

u

w

v

no
de

or
de

r

(2,〈3,8〉)
(2,
〈5,

6〉)
(4,〈3,6〉)
(2,〈1,7〉)
(3,〈2,5〉)

Figure 5.15: Contracting node v with two witnesses (dotted) available for a subset of
potential query constraint parameters. The shortcut edge is represented by a dashed
line. The witness path thresholds of the shortcut (u,w) are {〈1,7〉,〈2,5〉}. The shortcut
is necessary, e. g. for a query with constraint parameters 〈3,5〉, as this restricts both
potential witnesses. But, for example, a query with constraint parameters 〈0,6〉 or 〈2,5〉
does not need the shortcut, as a witness is available. Note that we cannot just store the
maximum of the two witness paths thresholds 〈2,7〉, as for this set of query constraint
parameters, no witness is available.

amount of storage overhead per edge, which is impractical. Also, it is too time-
consuming to compute all Pareto-optimal witness path thresholds. Therefore, for practi-
cality, we will only store a single witness path threshold a∗(e) with a shortcut e. For
non-shortcuts e, we set a∗(e) = 〈−∞,−∞, . . . ,−∞〉. During preprocessing, when a
new shortcut edge e = (u,w) is added, we then perform an additional unconstrained
shortest-path query that tries to find the shortest overall witness path Pu,w. We then set
a∗(u,w) = a(Pu,w) and continue as before. Note that in our actual implementation, we
delay the computation of a∗(e) until one of its endpoints gets contracted. This improves
the preprocessing performance, as the computation is then executed on a smaller remain-
ing graph, and the edge reduction technique may removed e in between.

During the execution of a query with query constraint parameters p, we can prune
the relaxation of an edge e with p� a∗(e). The correctness of the query algorithm is not
affected due to Lemma 5.19.

Lemma 5.19 For an edge e = (u,w) ∈ E and a set of query constraint parameters p
with p� a∗(e) holds µp(u,w)< c(e).

Proof. Follows from the fact that witness paths considered to compute a∗(e) must be
strictly shorter than the edge e. �

As will be seen in later experiments, using witness restrictions can result in signifi-
cantly smaller search space sizes and query times, especially for less restricted queries.
The only downside of witness restrictions is that they increase the space required to store
an edge. We therefore also propose to store them only for edges inside a core of the most
important nodes, similar to the core-based landmarks described in Section 3.4.

5.3. Edge Restrictions 139

Node Ordering. As described in Section 3.2, we assign each node v a priority on how
attractive it is to contract v. Then, we contract a most attractive node and update the
priorities of the remaining nodes. We repeat this until all nodes are contracted. This
results in an ordering of the nodes and, at the same time, adds all necessary shortcuts to
the graph. The priority is a linear combination of two terms. The first term is the edge
difference between the number of necessary shortcuts to contract v and the number of
incident edges to remaining nodes. The second term is the sum of the original edges
represented by the necessary shortcuts to contract v. We weight the first term with 1
and the second term with 2 (these weights were determined from initial experiments on
graphs with binary restrictions [122]). We use the heuristics for priority updates, i. e.
updating only neighbors of a contracted node and using lazy updates.

5.3.3 A* Search using Landmarks (ALT)

We can easily combine our algorithm based on node contraction with ALT [69]. We
described the basic concept in Section 3.4. The ALT technique has been previously
studied within the context of dynamic graphs [44], where it is noted that the potential
functions computed from landmarks in ALT remain correct for dynamic scenarios in
which edge weights are only allowed to increase from their original value. Therefore,
it is easy to see that ALT remains correct even in the current flexible scenario, since
restricting an edge is equivalent to increasing its weight to infinity for the duration of the
query.

Multiple Landmark Sets. Using ALT landmark distances can result in ineffective
potential functions for very heavily-constrained shortest-path queries [122]. This is due
primarily to the fact that, even though the potential functions remain correct, the resulting
lower bounds become much weaker (i. e., less accurate) when large numbers of edges
become restricted.

Therefore, in an attempt to alleviate this problem, we propose the new concept of
using multiple landmark sets L = {L1,L2, . . . ,Lk}. In this context, we broadly define a
landmark set L ⊆ V as being a set of landmarks created specifically for a single set of
query constraint parameters pL = 〈p1, p2, . . . , pr〉. The distances for the landmark set L
are based on the edge-restricted graph determined by the query constraints of pL.

One possibility to support this for flexible edge restrictions would be to estab-
lish a unique landmark set for all possible combinations of query constraint values.
However, this is clearly infeasible for any real-world implementation. A more real-
istic approach would therefore be to establish a unique landmark set specific to each
unique threshold function ai in the threshold function vector for the graph. That
is, L = {L1,L2, . . . ,Lr,Lr+1}, such that ∀i ∈ {1, . . . ,r}, pLi = 〈p1 = 0, . . . , pi−1 = 0,
pi = ∞, pi+1 = 0, . . . , pr = 0〉 (i. e., each landmark set Li restricts only edges with finite
threshold values for ai). Landmark set Lr+1 is established for the fully unrestricted set

140 Chapter 5. Flexible Queries in Road Networks

of query constraint parameters pLr+1 = 〈0,0, . . . ,0〉 to ensure that there is always at least
one set of valid landmarks to choose from.

5.3.4 Query
After preprocessing is complete, that is, all necessary shortcuts are added to G, we can
use an augmented version of the query algorithm described in Sections 3.2.2. It runs
on the search graph G∗, defined just as in Sections 3.2.2. We give pseudo-code in Algo-
rithm 5.6. The only necessary augmentation is to restrict edges using the query constraint
parameters p (Line 14).

Algorithm 5.6: FlexibleEdgeRestrictedCHQuery(s, t, p)
input : source s, target t, query constraint parameters p
output : shortest-path distance δ

1
→
δ := 〈∞, . . . ,∞〉; // tentative forward distances

2
←
δ := 〈∞, . . . ,∞〉; // tentative backward distances

3
→
δ (s) := 0; // forward search starts at node s

4
←
δ (t) := 0; // backward search starts at node t

5 δ := ∞; // tentative shortest-path distance
6
→
Q.update(0, s); // forward priority queue

7
←
Q.update(0, t); // backward priority queue

8 ∼:=→; // current direction
9 while (

→
Q 6= /0) or (

←
Q 6= /0) do

10 if δ < min
{→

Q.min(),
←
Q.min()

}
then break;

11 if
¬∼
Q 6= /0 then ∼:= ¬ ∼; // change direction, ¬←=→ and ¬→=←

12 (·,u) :=
∼
Q.deleteMin(); // u is settled

13 δ := min
{

δ ,
→
δ (u)+

←
δ (u)

}
; // u is potential candidate

14 foreach e = (u,v) ∈ E∗ with ∼(e) and p� a(e) and p� a∗(e) do // relax edges
15 if

(∼
δ (u)+ c(e)

)
<
∼
δ (v) then // shorter path via u?

16
∼
δ (v) :=

∼
δ (u)+ c(e); // update tentative distance

17
∼
Q.update

(∼
δ (v), v

)
; // update priority queue

18 return δ ;

Theorem 5.20 Given a source node s, a target node t and query constraint parameters
p, our CH query for the flexible scenario with edge restrictions computes µp(s, t).

Proof. Let us construct a static graph induced by the edges {e∈E | p� a(e)}. Obviously,
our query for parameter value p corresponds to the static CH query on this constructed
graph. Lemma 5.18 proves that we add all necessary shortcuts for p on paths that could

5.3. Edge Restrictions 141

u v

(2,〈2,6〉)

(4,〈3,8〉)

(5,〈7,9〉)

Figure 5.16: Skipping parallel edges. Edges to a given target node are accessed in
order of increasing weight to allow pruning. For example, for a query with constraint
parameters p = 〈1,3〉, we may skip the bottom two parallel edges from node u to node
v, since we can successfully relax the topmost edge.

be part of a shortest path w. r. t. the query constraint parameters p. We can further ignore
edges e with p � a∗(e) as they would never be part of a shortest path with query con-
straint parameters p (Lemma 5.19). Therefore, we can deduce from Corollary 3.2 that
our algorithm computes µp(s, t). �

Parallel Edge Skipping. Due to the presence of multi-edges within the resulting CH
graphs, a naïve shortest-path query on the upward/downward edge-restricted graph may
perform redundant or unnecessary work on any parallel edges during a given search.
However, if we sort and store the adjacent edges of a given node first by their target node
and then by their weight, then, when we relax the first valid (i. e., unrestricted) edge
leading to a given target node, we can automatically skip over any remaining parallel
edges leading to that same target node, since no remaining parallel edges to that node
can improve the current path distance (see Figure 5.16). This will save on unnecessary
(and ultimately, unsuccessful) attempts to update tentative shortest-path distances. Addi-
tionally, and perhaps more importantly, when incorporating goal-directed search into the
query, skipping of parallel edges will also allow us to save on redundant calls to compute
the potential function value for the same target node, which can be relatively expensive.

Combination with ALT. We perform the two-phased query of Section 3.4, but con-
sider edge restrictions. Instead of the static CH query algorithm we use the algorithm
augmented to our flexible scenario.

Using this concept of multiple landmarks, for a given query with constraint parameter
p, we may then choose only from the set of landmarks Lp = {L ∈L | pL � p}. That is,
we may select only a set of landmarks L, whose associated query constraint parameters
pL are no more restrictive than the incoming query constraint parameters p. By that, we
maintain valid lower bounds for the resulting potential function values. Using multiple
landmark sets allows us to derive better potential functions, in general, by more closely
approximating the shortest path distances associated with the dynamic query constraints
of p.

Instead of deriving the lower bounds from all landmarks in Lp, we only use a subset
of 4 landmarks that give the highest lower bounds on the s-t distance [69]. This speeds

142 Chapter 5. Flexible Queries in Road Networks

up the overall query, as the computation of the lower bounds is much faster but still
provides good lower bounds.

In the ALT algorithm, the heuristic potential function serves to establish a lower
bound on the possible shortest-path distance of a given query. Since we maintain a
tentative upper bound on the shortest-path distance for our current query, we may also
skip over any nodes whose resulting key value (which is a lower bound on the length of
a path that visits that node) is greater than or equal to the current upper bound seen thus
far [72]. This simple optimization can also be seen to have a significant impact on the
resulting shortest-path query times.

5.3.5 Experiments

Environment. All experiments were carried out on a 64-bit server machine running
Linux CentOS 5.3 with 2 quad-core CPUs clocked at 2.53 GHz with 72 GiB RAM
(although only one core was used per experiment). All programs were written in C++
and compiled using the GNU C++ compiler 4.1.2 with optimization level 3.

Test Instances. Experiments were carried out on two of the largest available real-world
road networks: a graph of North America3 (NAV-NA) and a graph of Europe4 (NAV-
EU). NAV-NA has a total of 21133774 nodes and 52523592 directed edges, while
NAV-EU has 40980553 nodes and 94680598 directed edges. Table 5.17 summarizes
the different real-world restrictions supported by each graph dataset. Both datasets (in-
cluding restrictions) were derived from NAVTEQ transportation data products, under
their permission. Of the 18 unique restrictions, only two of these are true parameterized
restrictions: Height and Weight Limit. The remaining 16 restrictions are binary restric-
tions only. For the parameterized restrictions, the data distinguishes between 29 different
height limit values and 57 different weight limit values.

Unless otherwise stated, all query performance results are averaged over the shortest-
path distance queries between 10 000 source-target pairs. Source and target node are
selected uniformly at random. We performed for each source-target pair an unrestricted
and a fully-restricted query and we report the mean performance. This covers both ends
of the restriction spectrum.

3This includes only the US and Canada.
4This includes Albania, Andorra, Austria, Belarus, Belgium, Bosnia and Herzegovina, Bulgaria, Croa-

tia, Czech Republic, Denmark, Estonia, Finland, France, Germany, Gibraltar, Greece, Hungary, Ireland,
Italy, Latvia, Liechtenstein, Lithuania, Luxembourg, Macedonia, Moldova, Monaco, Montenegro, Nether-
lands, Norway, Poland, Portugal, Romania, Russia, San Marino, Serbia, Slovakia, Slovenia, Spain, Swe-
den, Switzerland, Turkey, Ukraine, United Kingdom, and Vatican City.

5.3. Edge Restrictions 143

Table 5.17: Supported restriction types for both graphs.
edges

restrictions NAV-NA NAV-EU
Ferry 2 610 11 334

Toll Road 47 388 237 304
Unpaved Road 3 645 458 14 434 228
Private Road 1 662 314 1 957 380

Limited Access Road 682 396 N/A
4-Wheel-Drive-Only Road 139 284 N/A

Parking Lot Road 160 850 N/A
Hazmat Prohibited 45 950 N/A

All Vehicles Prohibited 64 414 2 326 232
Delivery Vehicles Prohibited 148 010 3 674 338

Trucks Prohibited 475 472 5 347 498
Taxis Prohibited 147 628 3 765 140
Buses Prohibited 151 272 3 811 704

Automobiles Prohibited 114 192 3 772 628
Pedestrians Prohibited 1 253 030 1 653 448

Through Traffic Prohibited 2 050 562 7 210 664
Height Limit 23 873 N/A
Weight Limit 24 627 N/A

Engineering an Efficient Algorithm. There is a significant performance difference
between a basic and an optimized implementation5. We analyze this in Table 5.18 for
NAV-NA. Single-target (i. e., pairwise-edge) witness search provides no feasible pre-
computation, as it does not finish within 3 days. With multi-target witness search, we
significantly decrease precomputation time to 16 hours. Additionally using edge re-
duction decreases the precomputation to 7 hours, and also reduces the query time from
7.3 ms to 4.6 ms. Skipping parallel edges reduces the number of relaxed edges by 70%.
But as we still need to traverse the edges in the graph, and of course the same number
of nodes is settled, the query time is only reduced by 7%. Using witness restrictions
increases the precomputation by less than 20 minutes and improves the query time by
22%. However, it increases the space-consumption by 9 B/node. Using witness restric-
tions only on a core, we even get a slightly improved query time and virtually no space
overhead for witness restrictions. It seems that the time needed to evaluate the witness
restrictions outside the core is higher than the time saved from pruning some shortcuts.
Compared to the baseline bidirectional Dijkstra search, MEPWC has a speed-up of more
than 1 000 and even requires less space6.

5The initial publication on binary edge restrictions [122] missed some optimizations, namely edge
reduction, witness restrictions, the combination with ALT, and lower-bound pruning.

6This is possible as edges need to be stored only with the less important node.

144 Chapter 5. Flexible Queries in Road Networks

Table 5.18: Experiments on NAV-NA showing combinations of results for (S)ingle-target
witness search, (M)ulti-target witness search, (E)dge reduction, (P)arallel edge skipping,
(W)itness restrictions (WC for core-only witness restrictions for a core size of 10 000),
and (G)oal-directed search for both single (G1) and multiple (GN) landmark sets with
fixed core sizes of 10 000 (10k), 5 000 (5k), and 3 000 (3k) for both (U)ncontracted and
(C)ontracted cores, with the option of (L)ower-bound pruning. All results are compared
against the baseline bidirectional (D)ijkstra search (with no preprocessing).

preprocessing queries
time space time settled stalled relaxed

algorithm [hh:mm] [B/node] [ms] nodes nodes edges
D 0:00 35 3 462.75 7 212 135 N/A 17 961 846
S 72:00+ - - - - -
M 16:05 33 7.29 1 033 624 49 436

ME 6:56 32 4.61 946 563 31 320
MEP 6:56 32 4.29 946 563 8 979

MEPW 7:15 41 3.36 834 450 6 769
MEPWC 7:11 32 3.27 855 470 6 881

MEPWCG110kU 0:49 32 6.88 3 806 135 51 437
MEPWCG15kU 1:19 32 5.34 2 342 184 36 607
MEPWCG13kU 1:56 32 4.51 1 744 227 28 377

MEPWCG110kUL 0:49 32 5.35 2 715 133 28 536
MEPWCG15kUL 1:19 32 4.22 1 794 182 20 754
MEPWCG13kUL 1:56 32 3.66 1 410 223 16 191

MEPWCGN10kUL 0:56 37 4.38 1 971 133 19 428
MEPWCGN5kUL 1:26 34 3.87 1 440 182 15 706
MEPWCGN3kUL 2:02 33 3.42 1 192 223 12 803
MEPWCGN10kCL 7:21 37 1.18 491 133 3 073
MEPWCGN5kCL 7:20 34 1.50 578 180 3 675
MEPWCGN3kCL 7:20 33 1.75 648 221 4 072

We can significantly decrease the precomputation time when we do not contract core
nodes. As a query would then settle almost all nodes in the core, we use ALT in the
core to improve query performance. We can trade precomputation time for query time
by choosing different core sizes. It is important to use lower-bound pruning, as this
reduces query time especially on large cores by around 22%. The resulting algorithm
MEPWCG110kUL with a core size of 10 000 nodes has a preprocessing time of just 50
minutes, but the query time is more than 63% larger compared to MEPWC. Leaving only
3 000 nodes uncontracted results in roughly 2 hours precomputation time, but increases
the query time only by 12%. As we need to store the landmark distances only for core
nodes, the space consumption does not visibly change.

We can further decrease the query time by using multiple landmark sets. This slightly

5.3. Edge Restrictions 145

Table 5.19: Experiments on NAV-EU with the same settings as in Table 5.18.
preprocessing queries

time space time settled stalled relaxed
algorithm [hh:mm] [B/node] [ms] nodes nodes edges

D 0:00 33 6 273.21 11 366 174 N/A 25 842 792
S 72:00+ - - - - -
M 40:11 31 10.09 1 240 761 58 854

ME 17:27 30 6.60 1 222 704 42 815
MEP 17:27 30 6.05 1 222 704 15 301

MEPW 18:22 39 4.90 1 091 572 11 717
MEPWC 18:10 30 4.52 1 119 601 11 897

MEPWCG110kU 2:03 30 15.31 5 757 196 111 698
MEPWCG15kU 3:36 30 12.99 3 726 287 87 378
MEPWCG13kU 5:40 30 10.75 2 764 368 68 973

MEPWCG110kUL 2:03 30 13.50 4 380 192 69 579
MEPWCG15kUL 3:36 30 11.03 2 914 277 58 413
MEPWCG13kUL 5:40 30 9.36 2 251 354 47 068

MEPWCGN10kUL 2:15 33 11.09 3 410 192 51 873
MEPWCGN5kUL 3:49 31 9.50 2 484 277 49 193
MEPWCGN3kUL 6:07 31 8.64 1 999 354 41 068
MEPWCGN10kCL 18:29 33 2.68 791 191 8 505
MEPWCGN5kCL 18:28 31 3.65 990 276 11 806
MEPWCGN3kCL 18:28 31 3.86 1 096 355 12 337

increases the precomputation time by about 6–7 minutes. The space consumption in-
creases by 3% (for 3k core) to 16% (for 10k core). The resulting query time for the 3k
core is now only 5% above MEPWC.

The fastest query times are achieved using landmarks on a large contracted core. On
a 10k core, our MEPWCGN10kCL algorithm achieves a query time of 1.18 ms, that is
2 900 times faster than bidirectional Dijkstra.

Table 5.19 provides the performance results on NAV-EU. We see a similar perfor-
mance compared to NAV-NA, although the absolute numbers are larger as the network
is larger. In general, landmarks do not decrease the query time as much as for NAV-
NA. The speed-up of MEPWC over Dijkstra’s algorithm is around 1 300, while the best
speed-up with landmarks is around 2 300.

Restricted Search. To assess the performance of our algorithm for different values of
query constraint parameters, we measure query performance for different restriction car-
dinalities of the query constraint parameters p= 〈p1, p2, . . . , pr〉. We define the cardinal-
ity of p in this context as the number of pi 6= 0. For uniformity with binary restrictions,
the parameterized restrictions are either set to 0 or the maximum value. On NAV-NA, for

146 Chapter 5. Flexible Queries in Road Networks

0 1 2 3 4 5 6 7 8 9 10 12 14 16 18

1
2

3
4

5
6

Restriction Cardinality

Q
u
e
ry

 T
im

e
 [
m

s
]

MEP
MEPWC

MEPWCGN10kCL

Figure 5.20: Experiments on NAV-NA comparing the query times of the MEP, MEPWC,
and MEPWCGN10kCL configurations across different restriction cardinalities.

0 1 2 3 4 5 6 7 8 9 10 11 12

2
4

6
8

1
0

Restriction Cardinality

Q
u
e
ry

 T
im

e
 [
m

s
]

MEP
MEPWC

MEPWCGN10kCL

Figure 5.21: Experiments on NAV-EU comparing the query times of the MEP, MEPWC,
and MEPWCGN10kCL configurations across different restriction cardinalities.

5.3. Edge Restrictions 147

each possible cardinality (0-18), we test the average query times of 10 000 source-target
pairs, where each query is based on a uniform random set of query constraint parameters
of the specified cardinality. We provide query times for three different algorithms in Fig-
ure 5.20. We see that without witness restrictions (MEP), the query time decreases with
increasing restriction cardinality, as we need to relax fewer edges. As expected, witness
restrictions significantly improve the performance of less restricted queries with small
restriction cardinality up to 30%. For more restricted queries, MEP is slightly faster, but
the overall performance is better for MEPWC. Witness restrictions decrease the factor
between unrestricted and restricted queries from 3.1 to 2.0. For MEPWCGN10kCL, our
algorithm with the best query times, this factor is reduced even further to 1.4, providing
very good performance independent of the restriction cardinality.

On NAV-EU, we observe similar results in Figure 5.21, where we have only twelve
different restrictions. The absolute query times are larger, as the network is bigger.
Witness restrictions improve the time of unrestricted queries by 34%.

Comparison to Static Contraction Hierarchies. In Table 5.22 we evaluate the per-
formance of static (inflexible) contraction hierarchies for unrestricted queries ignoring
any restrictions (IGNORE), and fully restricted queries having any restricted edge re-
moved from the graph (REMOVE). We see that the preprocessing is much faster as it
does not need to consider restrictions. IGNORE STATIC is 25 times faster than FLEXI-
BLE on NAV-NA, but we can still consider our preprocessing as efficient, as we consider
216 ·29 ·57 = 108331008 different choices of query constraint parameters, and on aver-
age, there are 29.4 different shortest paths over choices of query constraint parameters
(Table 5.23). Also the query times of IGNORE STATIC are 11 times faster than FLEX-
IBLE, as the node order is tailored to the restriction set and not used for all possible
restrictions. To evaluate this further, we perform the contraction with the node order
computed by our flexible algorithm. The resulting query time is now only 4 times faster
than FLEXIBLE, although the number of settled nodes and relaxed edges is almost the
same. A big advantage of our flexible algorithm is its space-efficiency: its space con-
sumption increases by less than 50%, mainly due to the larger edge data structure stor-
ing thresholds. This larger edge data structure also affects the cache-efficiency of our
query algorithm, thus explaining some of its slowdown. For fully restricted queries (RE-
MOVE), we see that the gap in the query time is much smaller, only a factor of 5. This
is expected, as our flexible query algorithm can skip a lot of edges for such heavily-
restricted queries. Also, it seems that the flexible node order is somewhat “closer” to the
REMOVE node order, as using it only slightly increases the query time from 0.42 ms to
0.53 ms.

For NAV-EU, the gap between the static and our flexible algorithm is a bit larger.
The preprocessing is now 39 times slower, although there are only 15.6 different short-
est paths on average (Table 5.23). The graph seems to significantly change with re-
stricted edges, indicated by the much higher number of edges carrying restrictions, cf.
Table 5.17. One reason is possibly that, in Europe, many countries demand toll on all

148 Chapter 5. Flexible Queries in Road Networks

Table 5.22: Static contraction results based on ignoring edge restrictions (IGNORE)
and removing edges with restrictions (REMOVE), compared to our flexible algorithm
(MEPWC). We also give query performance in the case where we use the flexible node
order (FLEX). In this case we report the flexible node ordering time (for MEP, this is the
same node order as MEPWC but does not compute witness restrictions) + the static con-
traction time. The performances are compared to our flexible algorithm (FLEXIBLE).

gr
ap

h query preprocessing queries
constraint time space time settled stalled relaxed
parameters algorithm [hh:mm] [B/node] [ms] nodes nodes edges

N
AV

-N
A IGNORE

STATIC 0:17 22 0.41 795 382 3 207
STATIC (FLEX) 6:56 + 0:04 22 1.07 1 030 550 9 539

FLEXIBLE 7:11 32 4.34 1 068 588 9 765

REMOVE
STATIC 0:11 19 0.42 727 344 3 361

STATIC (FLEX) 6:56 + 0:03 19 0.53 641 353 3 997
FLEXIBLE 7:11 32 2.20 641 353 3 997

N
AV

-E
U IGNORE

STATIC 0:28 21 0.35 659 336 2 346
STATIC (FLEX) 17:27 + 0:07 21 1.79 1 370 697 16 475

FLEXIBLE 18:10 30 6.01 1 419 745 16 786

REMOVE
STATIC 0:21 17 0.82 1 062 575 6 014

STATIC (FLEX) 17:27 + 0:04 17 0.94 819 456 7 008
FLEXIBLE 18:10 30 3.12 819 456 7 007

Table 5.23: Average and maximum number of unique shortest paths for individual s-t
pairs over all possible query constraint parameters (when tested on 1000 s-t pairs).

graph avg. path count max. path count
NAV-NA 29.4 338
NAV-EU 15.6 135

their highways, whereas in North America only few highways require toll, mostly on the
east coast of the United States. The results of Sanders and Schultes [130] suggest that
restricting these highways highly affects the efficiency of our algorithms. Therefore, the
balancing act of creating a node order suiting all restrictions is much harder, affecting the
preprocessing and query time. Still, our algorithm is reasonably fast for web services,
and more importantly, requires only about the space of two static contraction hierarchies.

Static Node Ordering. We are further interested in using statically computed node
orders for our flexible contraction. In practice, the node ordering is much slower than
contraction given a node order, as computing and updating the node priorities takes the
majority of the time. Therefore, we hope that by performing a static node ordering, we
can significantly decrease the overall precomputation time. The results are summarized

5.3. Edge Restrictions 149

Table 5.24: Flexible contraction with restrictions, based on 2 static node orderings (from
above): IGNORE and REMOVE. The preprocessing time is split into the static node
ordering time + the flexible contraction time. We compare it to the flexible algorithm
MEPWC. Query results are based on averages between fully restricted and unrestricted
queries.

preprocessing queries
time space time settled stalled relaxed

graph node order [hh:mm] [B/node] [ms] nodes nodes edges

NAV-NA
FLEXIBLE 7:11 30 3.27 855 470 6 881
IGNORE 0:17 + 4:04 48 5.84 977 544 6 780
REMOVE 0:11 + 48:00+ - - - - -

NAV-EU
FLEXIBLE 18:10 30 4.52 1 119 601 11 897
IGNORE 0:28 + 39:21 45 22.09 1 426 930 20 215
REMOVE 0:21 + 48:00+ - - - - -

in Table 5.24. We used the node orders IGNORE and REMOVE computed in the pre-
vious section. The IGNORE node order improves the precomputation time, as it only
takes about 4 hours for the contraction plus an additional 17 minutes to compute the
static node order, instead of 7:11. However, the query time increases by 79%. We ana-
lyzed this in more detail and found out that an unrestricted query takes now 2.53 ms and
a fully restricted query takes 9.14 ms. So the static node order is only good for unre-
stricted queries, and is even faster than the flexible one for such queries. But restricted
queries become slow, and the space consumption also increases by 60%, as a lot more
shortcuts are necessary, since this static node order does not consider restrictions. We
strongly see the blindness of a static node order towards unconsidered restrictions for
the REMOVE node order. There, our contraction did not finish within two days. So we
recommend the usage of static node orders only for people with profound knowledge of
the algorithm and of their most commonly-expected query constraint scenarios, as a lot
of things can go wrong.

150 Chapter 5. Flexible Queries in Road Networks

5.4 Concluding Remarks
Review. Our algorithms are the first ones for fast flexible queries, and we still achieve
query times comparable with static algorithms. We were able to engineer the prepro-
cessing to be very time- and space-efficient. The resulting experiments for the flexible
scenarios with multiple edge weights and edge restrictions show preprocessing times of
several hours, and query times at the order of a few milliseconds. The speed-up over
Dijkstra’s algorithm is more than three orders of magnitude. We achieve this by incor-
porating an augmented version of ALT into our algorithm, and by further optimizations
tailored to the specific flexible scenarios.

In the flexible scenario with two edges weights, our linear combination with a single
parameter proved useful. It allows a very efficient node contraction. We improve the
overall performance with the technique of parameter interval splitting, that adjusts the
node ordering for different values of query parameters. Storing necessity intervals with
edges helps to reduce the number of relaxed edges during query time. Finally, profile
queries efficiently return all shortest paths within a value range of query parameters.

The flexible scenario with edge restrictions considers restrictions, such as bridge
heights, that play an important role for the feasibility of a path. We develop witness re-
strictions, the equivalent of necessity intervals, that prune the relaxation of edges during
less restricted queries. Using multiple sets of landmarks for different restrictions im-
proves the performance. Also, this does not significantly increase the space overhead, as
we store the landmark distances only for the most important nodes forming a core.

Future Work. We present two important flexible scenarios and developed efficient
algorithms for each of them. However, in practice, they should be combined into a single
algorithm. We provide the theoretical background to do so. But it is hard to estimate how
many shortcuts will be necessary in such a combined scenario. Therefore, potentially
more research is necessary to improve efficiency. A more advanced parameter splitting
technique seems necessary to cope with the diverse possible values of query parameters.
Such a parameter splitting technique can be used to easily parallelize and/or distribute
the preprocessing. As the data stored with the edges becomes particularly large, even
memory compression and external memory algorithms may be necessary if the available
main memory is too small.

And, it is desirable to include further scenarios beyond the two scenarios tackled
in this chapter. Among these are time-dependency and dynamization. Especially time-
dependency imposes further challenges, as even the simple bi-criteria combination of
time-dependent travel time and time-independent travel distance cannot be computed in
forward direction but only in backward direction [75].

References. Section 5.2 is based on a conference paper [62], which the author of this
thesis published together with Moritz Kobitzsch, and Peter Sanders, and on the diploma
thesis of Moritz Kobitzsch [95]. Section 5.3 is based on a cooperation with Michael

5.4. Concluding Remarks 151

Rice, Peter Sanders, and Vassilis Tsotras and the resulting paper [65] is currently under
review by the Journal of Experimental Algorithms. Some wordings of these articles are
used in this thesis.

152 Chapter 5. Flexible Queries in Road Networks

6
Batched Shortest Paths Computation

6.1 Central Ideas
In this chapter, we consider shortest-path problems with multiple source-target pairs.
The classical problem is the computation of a distance table: given a set of source nodes
S and a set of target nodes T , we want to compute the shortest-path distances between
all node pairs (s, t) ∈ S× T . Computing these is important to solve routing problems
for logistics, supply chain management and similar industries, but there are many more
interesting applications.

In general, we have a set of queries Π⊆V ×V , and we need to compute the shortest-
path distances between the pairs in Π. Define S(Π) := {s | (s, t) ∈Π} and T (Π) :=
{t | (s, t) ∈Π}, and assume that |S(Π)| and/or |T (Π)| are much smaller than |Π|. There
is a certain class of speed-up techniques that allows us to exploit this property. This class
comprises of techniques that are bidirected, i. e. using a small forward search space

→
σ (s) :=

{
(u,
→
δ (u))

∣∣∣ u reached in forward search with distance
→
δ (u)

}
(6.1)

from the source node s and a small backward search space

←
σ (t) :=

{
(u,
←
δ (u))

∣∣∣ u reached in backward search with distance
←
δ (u)

}
(6.2)

from the target node t to find the shortest-path distance, and non-goaldirected, i. e. the
small forward search does not depend on the target node and vice versa. The shortest-
path distance is computed from the intersection of both search spaces, as these tech-
niques ensure that

µ(s, t) = min
u∈V

{→
δ (u)+

←
δ (u)

∣∣∣ (u,→δ (u)) ∈ →σ (s),(u,
←
δ (u)) ∈ ←σ (t)

}
. (6.3)

If |S(Π)| is much smaller than |Π|, we can compute →σ (s) only once for each s∈ S(Π),
and store it for repeated use. And symmetrically, if |T (Π)| is much smaller than |Π|, we
can compute ←σ (t) only once for each t ∈ T (Π), and store it for repeated use. Then, for
the computation of the shortest path distance µ(s, t), we only need to load →σ (s) and ←σ (t)
and intersect them.

154 Chapter 6. Batched Shortest Paths Computation

6.1.1 Buckets
Instead of storing forward and/or backward search spaces with the origin of the search,
it is sometimes more efficient to store them into buckets at the reached nodes [94]. More
precisely, we store forward buckets

→
β (u) :=

{
(s,
→
δs(u)) | (u,

→
δs(u)) ∈ →σ (s),s ∈ S(Π)

}
(6.4)

and/or backward buckets
←
β (u) :=

{
(t,
←
δt(u)) | (u,

←
δt(u)) ∈ ←σ (t), t ∈ T (Π)

}
. (6.5)

This bucketing approach is especially helpful for online scenarios where, for example,
target nodes rarely change, and the algorithm needs to answer shortest-path queries from
an arbitrary source node to all of these target nodes immediately when the query arrives.
In this case, we can store the backward search spaces from all target nodes in backward
buckets. Then, upon the arrival of a query, we compute the forward search from the
source node, and scan the backward buckets at the nodes reached by the forward search
using

µ(s, t) = min
{→

δ (u)+
←
δt(u)

∣∣∣ (u,→δ (u)) ∈ →σ (s),(t,
←
δt(u)) ∈

←
β (u)

}
. (6.6)

Equation (6.6) is derived directly from (6.3) and (6.5).
In case that source nodes rarely change, a symmetric algorithm stores forward buck-

ets, and computes the shortest-path distances using (6.7) deduced from (6.3) and (6.4).

µ(s, t) = min
{→

δs(u)+
←
δ (u)

∣∣∣ (u,←δ (u)) ∈ ←σ (t),(s,
→
δs(u)) ∈

→
β (u)

}
(6.7)

But not only online scenarios benefit from buckets, as scanning these buckets is very
cache-efficient when their entries are stored in consecutive pieces of memory. Also note
that the computation of the distances from a source node s to all target nodes t ∈ T (Π)
can be done simultaneously by maintaining an array of tentative distances, with one
entry for each t ∈ T (Π). Initially, the tentative distances are ∞, and we decrease them
while scanning the buckets.

6.1.2 Further Optimizations
The ideas described so far allow to compute the shortest-path distances between all pairs
in Π, but depending on the exact problem definition, additional algorithmic ingredients
can speed the distance computation up:

• In the time-dependent scenario, travel times depend on the departure time, and
edge weights are represented as travel time functions that map a departure time
to a travel time. There, it pays of to compute additional data to speed up the
intersection of →σ (s) and ←σ (t).

6.1. Central Ideas 155

• The ridesharing problem is to compute the offer with minimal detour to pickup
a request. We precompute and store forward buckets from the start locations and
backward buckets to the end locations for all offers. This allows to use them
repeatedly to match against requests. Also by limiting the detour, we can prune
the search and gain additional speed-up.

• To locate close points-of-interest (POI), we precompute and store forward and
backward buckets from the POI. Ordering the buckets by distance allows early
pruning.

156 Chapter 6. Batched Shortest Paths Computation

6.2 Time-dependent Travel Time Table Computation

A travel time table between a set of source nodes S and a set of target nodes T reduces
the computation of minimum travel times to simple table lookups. In the time-dependent
scenario (Section 2.2.2, [33, 54, 91]), these travel times depend on the departure time at
the source node. Each cell in the travel time table corresponds to a travel time function
(TTF) over the departure time. In contrast to the time-independent case, such a time-
dependent table takes a lot longer to compute and occupies a lot more space. Therefore,
we refine the problem of computing a table to the problem of implementing a query
interface: Given s ∈ S and t ∈ T , we want to know the earliest arrival time when we
depart at time τ (or the travel time profile for all τ). So any algorithm that previously
used a table now just needs to replace its table lookups with calls to this interface. An
algorithm behind this interface uses a precomputed data structure with the knowledge
of the graph, S and T to answer these queries fast. We contribute five such algorithms
that allow different trade-offs between precomputation time and space and query time.
Heuristic versions of these algorithms with approximation guarantees allow substantially
faster and more space-efficient algorithms.

6.2.1 Preliminaries

The basic concepts of Chapter 3 can be augmented to the time-dependent scenario. In
particular, we use time-dependent modifications of Dijkstra’s algorithm (Section 3.1) and
node contraction (Section 3.2). We further introduce approximate travel time functions,
an important ingredient for optimizations.

Dijkstra’s Algorithm. Given a departure time τ at the source node s, Dijkstra’s al-
gorithm is augmented by evaluating an edge (u,v) with the arrival time at node u [33].
This modified algorithm computes earliest arrival times at all nodes in the graph. The
FIFO-property ensures the correctness of this modification.

To compute the travel time profiles from the source node s independent of the de-
parture time, additional changes are necessary [116]. The modifications to this resulting
profile search are as follows:

• Node labels. Each node v has a tentative TTF δ (v) from s to v.

• Priority queue (PQ). The keys used are the global minima of the labels. Reinserts
into the PQ are possible and happen (label correcting).

• Edge Relaxation. Consider the relaxation of an edge (u,v). The label δ (v) of the
node v is updated by computing the minimum TTF of δ (v) and c(u,v)∗δ (u).

6.2. Time-dependent Travel Time Table Computation 157

Node Contraction. The basic idea of node contraction remains the same in the time-
dependent scenario: We contract nodes and add shortcuts to preserve shortest paths dis-
tances. However, we must ensure that these paths are preserved at any time. A witness
search is therefore a profile search and we only can omit a shortcut if there is a wit-
ness that is not slower as the shortcut for any possible time τ . Note that we only need
to perform node contraction once per graph independent of S and T . Time-dependent
Contraction Hierarchies (TCH) [15, 16] is currently the most efficient time-dependent
algorithm based on node contraction.

Furthermore, a query becomes more complex, as there are potentially several optimal
candidate nodes. A profile query can be answered by performing a bidirectional upward
profile search where both search scopes meet at candidate nodes u. The travel time
profile is min

{←
δ (u)∗

→
δ (u) | u candidate

}
.

Approximations. Approximate TTFs usually have fewer points and are therefore
faster to process and require less memory.

Definition 6.1 Let f be a TTF. A lower bound is a TTF f ↓ with f ↓ ≤ f and a lower
ε-bound if further (1− ε) f ≤ f ↓. An upper bound is a TTF f ↑ with f ≤ f ↑ and an upper
ε-bound if further f ↑ ≤ (1+ ε) f . An ε-approximation is a TTF f l with (1− ε) f ≤ f l ≤
(1+ ε) f .

For example, the simplest lower/upper bound is τ 7→min f /max f .
A profile search based on lower/upper bounds is a bounded approximate search [15].

It runs usually much faster than an exact profile search, whose tentative TTFs contain a
lot of points. Essentially, the bounded approximate search is two profile searches, one
based on lower bounds of the edge TTFs and one based on upper bounds of the edge
TTFs. But in practice, both searches are executed together. The results are a lower and
an upper bound on the travel time profile. The fastest variant of bounded approximate
search is based on the global minima and maxima of the edge TTFs, we call it min-max
search.

158 Chapter 6. Batched Shortest Paths Computation

6.2.2 Five Algorithms
We engineer five algorithms with different precomputation time, space and query time to
implement the time query interface (s, t,τ) which computes the earliest arrival time at t ∈
T when we depart at s∈ S at time τ , and the profile query interface (s, t) which computes
the travel time profile between s∈ S and t ∈ T . Our algorithms have in common that they
need to precompute ∀s ∈ S the forward search spaces

→
σ (s) :=

{
(u,
→
δ (u)) |

→
δ (u) is TTF from s to u in forward upward search

}
and ∀t ∈ T the symmetric backward search spaces

→
σ (s) :=

{
(u,
←
δ (u)) |

→
δ (u) is TTF from u to t in backward upward search

}
.

Note that in comparison to the static table computation algorithm [94], we need to store
a TTF not at the candidate node u, but at the source or target node, as this is necessary
to perform the intersection. The algorithms are ordered by decreasing query time.

Algorithm 6.1: IntersectTimeQuery(s,t,τ)
input : source node s, target node t, departure time τ

output : earliest arrival time

1 δ := ∞; // tentative arrival time
2 foreach (u,

→
δ (u)) ∈ →σ (s), (u,

←
δ (u)) ∈ ←σ (t) do // candidate nodes

3 if τ +min
→
δ (u)+min

←
δ (u)< δ then // prune using minimum

4 δ ′ :=
→
δ (u)(τ)+ τ; // evaluate TTFs

5 δ ′ :=
←
δ (u)(δ ′)+δ ′;

6 δ := min(δ ,δ ′); // update tentative arrival time

7 return δ

Algorithm INTERSECT computes and stores →σ (s) and ←σ (t). Algorithm 6.1 shows the
time query computing the earliest arrival time. The main part is to evaluate all paths via
the candidate nodes. At most 2·#candidates TTF evaluations are required for a query.
However, the TTF evaluations are the most expensive part, so we prune them using the
(precomputed) minima of

→
δ (u),

←
δ (u).

A profile query computing the travel time profile between s and t is similar to a
time query, but links the two TTFs at the candidate instead of evaluating them. But
as the link operation is even more expensive as the evaluation operation, we imple-
ment more sophisticated pruning steps, see Algorithm 6.2. During the computation
of the search spaces, for each (u,

→
δ (u)) ∈ →σ (s) we compute and store lower/upper ε-

bounds
→
δ ↓(u)

/→
δ ↑(u) and for each (u,

←
δ (u)) ∈ ←σ (t) we compute and store lower/upper

ε-bounds
←
δ ↓(u)

/←
δ ↑(u). Then we pass three times through the search spaces →σ (s), ←σ (t):

6.2. Time-dependent Travel Time Table Computation 159

Algorithm 6.2: IntersectProfileQuery(s,t)
input : source node s, target node t
output : travel time profile

1 δ := ∞; // upper bound based on maxima
2 δ := ∞; // lower bound based on minima
3 u :=⊥; // minimum candidate
4 foreach (u, ·) ∈ →σ (s), (u, ·) ∈ ←σ (t) do // candidate nodes
5 if max

→
δ (u)+max

←
δ (u)< δ then

6 δ := max
→
δ (u)+max

←
δ (u); // update upper bound

7 if min
→
δ (u)+min

←
δ (u)< δ then

8 δ := min
→
δ (u)+min

←
δ (u); // update lower bound

9 u = u; // update minimum candidate

10 δ ↑ :=
←
δ ↑(u)∗

→
δ ↑(u); // upper bound based on approximate TTFs

11 δ := min(δ ,maxδ ↑); // tighten upper bound
12 foreach (u, ·) ∈ →σ (s), (u, ·) ∈ ←σ (t) do // candidate nodes
13 if min

→
δ (u)+min

←
δ (u)≤ δ then // prune using minima

14 δ ↑ := min
(

δ ↑,
←
δ ↑(u)∗

→
δ ↑(u)

)
; // update upper bound

15 δ :=
←
δ (u)∗

→
δ (u); // tentative travel time profile

16 foreach (u,
→
δ (u)) ∈ →σ (s), (u,

←
δ (u)) ∈ ←σ (t) do // candidate nodes

17 if ¬
(←

δ ↓(u)∗
→
δ ↓(u)> δ ↑

)
then // prune using lower bounds

18 δ := min
(

δ ,
←
δ (u)∗

→
δ (u)

)
; // update travel time profile

19 return δ

1. (Lines 1–9) First, we compute an upper bound δ based on the maxima of the search
space TTFs. In the same pass, we compute a candidate u with minimum sum of
the minima of the search space TTFs. This candidate is usually very important
and a good starting point to obtain a tight lower bound.

2. (Lines 10–14) Then, we compute a tighter upper bound δ ↑ based on the minimum
over all upper ε-bounds. We use δ for pruning, and additionally initialize δ ↑ with
the upper ε-bound via candidate u.

3. (Lines 15–18) Finally, we compute the travel time profile. We initialize the ten-
tative travel time profile with the TTF via candidate u. We prune each candidate
whose lower ε-bound is larger than the computed upper bound δ ↑ for all departure
times. So we execute the very expensive link and minima operations (Line 18)
only at a few relevant candidates.

An important observation is that the computation time and space of a single search

160 Chapter 6. Batched Shortest Paths Computation

space depend only on the graph, and are independent of |S| and |T |. INTERSECT requires
therefore Θ(|S|+ |T |) preprocessing time and space, and Θ(1) query time, if only |S| and
|T | are considered as changing variables.

Algorithm MINCANDIDATE precomputes and stores the minimum candidate in a table
cmin(s, t).

cmin(s, t) := argmin
u candidate

{
min

→
δ (u)+min

←
δ (u)

}
By that, we can use it to obtain a good initial upper bound for a time query, by initializing
δ in Line 1 of Algorithm 6.1 with the travel time via cmin(s, t). This allows to prune more
candidates and results in faster query times. However, preprocessing time and space are
now in Θ(|S| · |T |), but with a very small constant factor.

Algorithm RELEVANTCANDIDATES precomputes a set of candidate nodes crel(s, t) for
each s-t-pair by using lower and upper bounds on the TTFs in →σ (s) and ←σ (t).

crel(s, t) :=
{

u
∣∣∣∣ ¬(←δ ↓(u)∗→δ ↓(u)> min

v candidate

{←
δ
↑(v)∗

→
δ
↑(v)
})}

This is exactly the set of nodes that are evaluated in Line 18 of Algorithm 6.2. So it is
sufficient to evaluate the candidates in crel(s, t) to answer a query correctly. In practice,
crel(s, t) is stored as an array with cmin(s, t) on the first position. Additionally, we can
save space by not storing (u,

→
δ (u)) in →σ (s) if ∀t ∈ T : u 6∈ crel(s, t), and symmetrically for

←
σ (t). The precomputation time depends on the used lower and upper bounds: Using only
min-max-values is fast but results in larger sets, using ε-bounds is slower but reduces the
size of the sets.

Algorithm OPTCANDIDATE precomputes for every departure time τ an optimal can-
didate copt(s, t,τ), so a time query only needs to evaluate one candidate.

copt(s, t,τ) := argmin
u candidate

{(←
δ (u)∗

→
δ (u)

)
(τ)
}

A candidate is usually optimal for a whole period of time, we store these periods as
consecutive, non-overlapping, intervals [τ1,τ2). In practice, there are only very few
intervals per pair (s, t) so that we can find the optimal candidate very fast. The downside
of this algorithm is its very high precomputation time since it requires the computation
of the travel time profile for each pair (s, t) ∈ S× T with the INTERSECT algorithm.
Still, storing only the optimal candidates requires usually less space than the travel time
profile.

6.2. Time-dependent Travel Time Table Computation 161

Algorithm TABLE computes and stores all travel time profiles in a table.

table(s, t) := min
u candidate

{←
δ (u)∗

→
δ (u)

}
It provides the fastest query times, but the space requirements in Θ(|S| · |T |) have a large
constant factor. The table cells are computed with the INTERSECT algorithm.

Correctness. We will only prove the correctness of the INTERSECT algorithm in Lem-
mas 6.2 and 6.3. The correctness of the other four algorithms follows, as they essentially
do the same, but move some computation to the preprocessing.

Lemma 6.2 Algorithm 6.1 returns µ(s, t,τ).

Proof. Under the assumption that no pruning would happen, the algorithm would be
correct due to the correctness of a TCH query. If we prune candidate u (Line 3), then
τ +min

→
δ (u)+min

←
δ (u) ≥ δ ⇒ τ +

→
δ (u)(τ)+

←
δ (u)(τ +

→
δ (u)) ≥ δ . So candidate u

would not decrease δ . �

Lemma 6.3 Algorithm 6.2 returns µ(s, t).

Proof. Under the assumption that no pruning would happen, the algorithm would be
correct due to the correctness of a TCH query. Naturally, δ ↑ is an upper bound on
µ(s, t), the pruning in Line 13 could only potentially worsen the tightness of the upper
bound. If we prune candidate u based on δ ↑ (Line 17), then µ(s, t)≤ δ ↑ <

←
δ (u)∗

→
δ (u).

So candidate u would not decrease δ for any time τ . �

6.2.3 Computation of Search Spaces
The computation of the target-independent forward profile search spaces →σ (s) for s ∈ S,
and the source-independent backward profile search spaces ←σ (t) for t ∈ T is done using
a suitable hierarchical speed-up technique. We use TCH [16], and will now describe in
detail how to efficiently compute the search spaces. The simplest way to compute them is
to use upward profile searches as described in Section 6.2.1 To reduce the computational
effort, we initially perform a min-max search using the stall-on-demand technique and
use it to prune the following profile search. This technique stalls nodes that are reached
suboptimally. Note that a node can be reached suboptimally, as our upward search does
not relax downward edges of a settled node. These stalled nodes will never be a candidate
to an shortest path, as they are reached suboptimally. Furthermore, we prune an edge
(u,v), if the minimum duration computed for u plus the minimum duration of the edge is
larger than the maximum duration computed for v. Finally, we perform a profile search
to compute the search space only using nodes that are not stalled and edges that are not
pruned. The conditions under which nodes are stalled and edges are pruned ensure that

162 Chapter 6. Batched Shortest Paths Computation

the correctness of our algorithms is not affected. Also, stalling does not only speed-up
the computation of the search spaces →σ (s), ←σ (t), but also reduces the size of them, as
we do not need to store stalled nodes.

Note that the point-to-point TCH algorithm [16] applies further pruning techniques
before the final profile search is executed. These techniques are usable once an upper
bound on the whole shortest-path distance is obtained. However, as we want the search
spaces only to be dependent on source or target node, but not on both, we cannot use
these further pruning techniques.

6.2.4 Approximate Travel Time Functions
Approximate TTFs [16] reduce preprocessing time, space and query time of the algo-
rithms in the previous section by several orders of magnitude. We consider three places
to approximate TTFs: the TTFs assigned to the edges of the TCH, the node label TTFs
after the computation of the forward/backward searches and finally the TABLE entries.
Approximating the latter two can be applied straightforwardly. But replacing the exact
edge TTFs in the TCH with approximate ones requires some caution.

To ensure that the computation of the search spaces (Section 6.2.3) works as ex-
pected, we need to modify the stall-on-demand technique. This is necessary, as the TCH
was constructed with exact TTFs.1 As we use the stall-on-demand technique only dur-
ing min-max search, we perform the min-max search on the min-max values of the exact
TTFs. The latter profile query is then performed on the approximate TTFs.

The query algorithms stay the same, except that INTERSECT profile queries no longer
use ε-bounds for pruning, as the overhead does no longer pay off.

Lemmas 6.4–6.6 enable us to compute theoretical error bounds. Note that we are
the first to provide these theoretical error bounds and they can also be applied to the
approximate point-to-point TCH algorithm [16]. With Lemma 6.6 we have an error
bound on the search space TTFs when we approximate the edge TTFs with εe:

ε1 := εe(1+α)/(1−αεe)

The error bound for approximating the search space TTFs with εs follows directly from
Definition 6.1 of an εs-approximation:

ε2 := (1+ εs)(1+ ε1)−1

Lemma 6.4 gives an error bound when we link the forward and backward search TTF on
a candidate node:

ε3 := ε2(1+(1+ ε2)α)

With Lemma 6.5 we know that ε3 is an error bound on the approximate travel time
profile, the minimum over all candidate TTFs. When we additionally approximate the

1Note that approximating the TTFs on the original graphs makes usually no sense, as these TTFs are
already very simple.

6.2. Time-dependent Travel Time Table Computation 163

resulting profile TTF for the table with εt, the error bound follows directly from Defini-
tion 6.1 of an εt-approximation:

ε4 := (1+ εt)(1+ ε3)−1

In Table 6.18 we compute the resulting error bounds for our test instances.

Lemma 6.4 Let f l be an ε f -approximation of TTF f and gl be an εg-approximation of
TTF g. Let α be the maximum slope of g, i. e. ∀τ ′ > τ : g(τ ′)−g(τ)≤ α(τ ′− τ). Then
gl ∗ f l is a max

{
εg,ε f (1+(1+ εg)α)

}
-approximation of g∗ f .

Proof. Let τ be a time.
(gl ∗ f l)(τ) = gl(f l(τ)+ τ)+ f l(τ)

≤ (1+ εg)(g(f l(τ)+ τ))+(1+ ε f) f (τ)
≤ (1+ εg)(g(f (τ)+ τ)

+α |(f l(τ)+ τ)− (f (τ)+ τ)|)+(1+ ε f) f (τ)
≤ (1+ εg)(g(f (τ)+ τ)+αε f f (τ))+(1+ ε f) f (τ)
= (1+ εg)g(f (τ)+ τ)+(1+ ε f (1+(1+ εg)α)) f (τ)

By applying the symmetric transformations, we also obtain (gl ∗ f l)(τ) ≥ (1 −
εg)g(f (τ)+ τ)+(1− ε f (1+(1− εg)α)) f (τ). �

Lemma 6.5 Let f l be an ε f -approximation of TTF f and gl be an εg-approximation of
TTF g. Then min(f l,gl) is a max

{
ε f ,εg

}
-approximation of min(f ,g).

Proof. Let τ be a time, WLOG we assume that min(f l,gl)(τ) = f l(τ) and
min(f ,g)(τ) = g(τ). Then min(f l,gl)(τ) = f l(τ) ≤ gl(τ) ≤ (1 + εg)g(τ) and
min(f l,gl)(τ) = f l(τ)≥ (1− ε f) f (τ)≥ (1− ε f)g(τ). �

Lemma 6.6 Let →σ (s) and ←σ (t) be the forward/backward search spaces computed on
a TCH and →σ l(s) and ←σ l(t) on the same TCH with ε-approximated edge TTFs. In
both cases, stall-on-demand was only used with exact min-max values. Let α be the
maximum slope of all TTFs in →σ (s), ←σ (t), and αε < 1. Then

{
u
∣∣ (u,→δ (u)) ∈ →σ (s)

}
={

u
∣∣ (u,→δ l(u)) ∈ →σ l(s)} and

→
δ l(u) is an ε(1+α)/(1−αε)-approximation of

→
δ (u),

and the same holds for the backward search spaces.

Proof.
{

u
∣∣ (u, ·) ∈ →σ (s)

}
=
{

u
∣∣ (u, ·) ∈ →σ l(s)} holds trivially since exact and ap-

proximate search both use the same min-max values, the same for the backward search
spaces. WLOG we assume that the nodes are numbered 1..n by order of contraction,
node 1 being contracted first. For the forward search, we will prove via induction over
s (starting with the most important node n) that for each

→
δ l(u) in →σ l(s) there exists a

k ∈ N so that
→
δ l(u) is a ((1+ ε)

(
∑

k−1
i=0 (αε)i

)
−1)-approximation of

→
δ (u).

The base case holds trivially since for s = n,
→
δ (n) = {(n,0)}= →σ l(n).

164 Chapter 6. Batched Shortest Paths Computation

Inductive step: Let (u,
→
δ (u))∈ →σ (s), (u,

→
δ l(u))∈ →σ l(s), and N := {v | (s,v)∈ E,s<

v}. Further let c(s,v) be the exact TTF on the edge (s,v) and cl(s,v) its ε-approximation.
By definition of N,

→
δ (u) = min

{→
δv(u)∗ c(s,v)

∣∣ v ∈ N,(u,
→
δv(u)) ∈ →σ (v)

}
and →

δ
l(u) = min

{→
δv
l(u)∗ cl(s,v)

∣∣ v ∈ N,(u,
→
δv
l(u)) ∈ →σ l(v)

}
.

By induction hypothesis there exists k ∈ N so that
→
δv
l(u) is an ((1+ ε)

(
∑

k−1
i=0 (αε)i)−

1)-approximation of
→
δv(u). Also

→
δv(u) has maximum slope α and the edge TTF

cl(s,v) is an ε-approximation of c(s,v). So by Lemma 6.4,
→
δv
l(u) ∗ cl(s,v) is a

((1+ ε)
(

∑
k
i=0 (αε)i)−1)-approximation of

→
δv(u)∗ c(s,v) (k k+1).

Lemma 6.5 finally shows that the induction hypothesis holds for
→
δ l(u). So for any

TTF in any →σ l(s) there exists this k ∈ N, and with αε < 1 we follow limk→∞((1 +

ε)
(

∑
k−1
i=0 (αε)i

)
− 1) = ε(1+α)/(1−αε). This concludes the proof for the forward

case. The backward case is similar, except that the induction is over node u with (u, ·) ∈
←
σ (t), starts with the least important node, and uses N := {v | (u,v) ∈ E,v < u},

←
δ (u) = min

{←
δ (v)∗ c(u,v) | v ∈ N,(v,

←
δ (v)) ∈ ←σ (t)

}
and ←

δ
l(u) = min

{←
δ
l(v)∗ cl(u,v)

∣∣∣ v ∈ N,(v,
←
δ
l(v)) ∈ ←σ l(t)

}
.

�

6.2.5 On Demand Precomputation
We discussed five algorithms with different precomputation times in Section 6.2.2. Only
the first algorithm INTERSECT provides precomputation in Θ(|S|+ |T |). All further al-
gorithms are in Θ(|S| · |T |) as they precompute some data for each pair in S× T . To
provide a linear algorithm that benefits from the ideas of the further algorithms, we
can compute the additional data (cmin(s, t), crel(s, t), copt(s, t,τ) or table(s, t)) on de-
mand only for those pairs (s, t) that occur in queries. By that, our algorithm is in
Θ(|S|+ |T |+#queries).

While a profile query already computes all the additional data at the first occurrence
of (s, t), a time query does not. Depending on the additional precomputation time, we
should only compute the additional data after a certain number of time queries for that
pair occurred to improve the competitive ratio. This ratio is the largest possible ratio
between the runtime of an algorithm that knows all queries in advance and our algorithm
that does not (online algorithm). For just two different algorithms, e. g. INTERSECT

and TABLE, this problem is similar to the ski-rental problem [86]. Let it “cost” ti to

6.2. Time-dependent Travel Time Table Computation 165

answer a query using INTERSECT and tt using TABLE, and tc to compute the table cell.
Then computing the table cell on the query number b = btc/(ti− tt)c to this cell has a
competitive ratio < 2. In practice, we can predict the cost of ti and tt from the number of
necessary TTF evaluations, and the cost tc from the sum of the points of the TTFs

→
δ (u)

and
←
δ (u) of all (relevant) candidates u.

When we want to use more than two of the five algorithms online, Azar et al. [8] pro-
pose an algorithm with competitive ratio 6.83. Note that although it has a worse compet-
itive ratio, it may be still better in practice, as we can use more than two algorithms. The
algorithm distinguishes between preprocessing time and query time. It needs to decide
when to perform precomputation, and which algorithm to use on a cell. Let x and y be
positive constants satisfying 2/x≤ 1 and 1/x+2y≤ 1. Assume that we spent tc time on
the last precomputation, tq on answering queries since the last precomputation, and Tq on
answering queries in total for this cell. We will perform another precomputation before
the next query if and only if tq≥ y ·tc and there is an algorithm available with faster query
times that requires at most x ·Tq precomputation time. Among these algorithms we pick
the one with the fastest query time. The competitive ratio of this algorithm is 1+x+1/y.
This term is smallest under the above constraints for x = 1+

√
2 and y = 1/(2+

√
2),

resulting in a competitive ratio of 4+2
√

2≈ 6.83.

6.2.6 Experiments

Instances. Our main instance is a real-world time-dependent road network of Ger-
many (TD-GER) with 4.7 million nodes and 10.8 million edges, provided by PTV AG
for scientific use. It reflects the midweek (Tuesday till Thursday) traffic collected from
historical data, i. e., a high traffic scenario with about 8 % time dependent edges. Fur-
thermore, we verified the robustness of our algorithms on two other instances. The first
one is the same network of Germany, but now with Sunday traffic instead of midweek
(TD-GER-SUN). The second instance is a network of Western Europe (TD-EUR) with
about 18 million nodes and 42.6 million edges. It has been augmented with synthetic
time-dependent travel times using a high amount of traffic where all but local and rural
roads have time-dependent edge weights [112]. As there are many test results even for
a single instance, we will first discuss our algorithms in depth regarding our main in-
stance. Then, we will provide experimental results on our other two instances, and focus
the discussion on the robustness of our algorithms.

Environment. Our machine has two Intel Xeon X5550 processors (Quad-Core)
clocked at 2.67 GHz with 48 GiB of RAM and 2×8 MiB of Cache running SuSE
Linux 11.1. Our C++ code was compiled by GCC 4.3.2 using optimization level 3.

Basic setup. We choose S,T ⊆V uniformly at random for a size |S|= |T |. We approx-
imated the TTFs in the graph with εe, the TTFs of the search spaces with εs and the TTFs

166 Chapter 6. Batched Shortest Paths Computation

in the table with εt. We use lower and upper εp-bounds for pruning profile queries, or
just min-max-values if no εp is specified. The precomputation uses all 8 cores of our ma-
chine since it can be trivially parallelized and multi-core CPUs are standard these days.
We report the preprocessing time to compute the forward and backward search spaces as
search and the time to compute additional data (cmin, crel, copt or table) as link. We also
give the used RAM reported by the Linux kernel. The time (profile) query performances
are averages over 100 000 (1 000) queries selected uniformly at random and performed
on a single core. Depending on the algorithm, we also report some more detailed time
query statistics. Scan is the number of nodes in the search spaces we scanned during a
time query. Meet is the number of candidate nodes where forward and backward search
space met. Eval is the number of TTF evaluations. Succ is the number of successful
reductions of the tentative earliest arrival time due to another evaluated candidate.

The memory consumption of the input TCH is given in Table 6.1. It decreases sig-
nificantly when we use approximate edge TTFs.

Table 6.1: Memory consumption of the TCH for different edge approximations.

εe [%] - 0.1 1.0 10.0
TD-GER [MiB] 4 497 1 324 1 002 551
TD-GER-SUN [MiB] 1 340 641 531 412
TD-EUR [MiB] 10 175 4 132 3 387 2 516

Preprocessing time and search space size of the INTERSECT algorithm are in
Θ(|S|+ |T |) as expected, see Table 6.2. Note that the RAM requirements include the

Table 6.2: Performance of the INTERSECT algorithm.
preprocessing search spaces query

size εe εs εp search RAM [MiB] TTF point time scan meet eval succ profile
[%] [%] [%] [s] [MiB] # # [µs] # # # # [µs]

100 - - 0.1 7.5 6 506 1 639 172 2 757 5.17 310 19.6 9.97 3.92 1 329
500 - - 0.1 33.8 13 115 8 228 172 2 768 7.43 312 20.0 10.38 4.08 1 494

1 000 - - 0.1 68.0 21 358 16 454 173 2 754 7.97 313 19.9 10.28 4.04 1 412
1 000 - - - 53.1 20 830 15 897 173 2 754 7.99 313 19.9 10.28 4.04 7 633
1 000 1.0 - - 1.5 1 579 349 173 54.4 6.13 313 19.9 10.27 4.05 108.2
1 000 - 1.0 - 64.9 5 302 72 173 6.3 6.46 313 19.9 10.60 4.05 18.4
1 000 0.1 0.1 - 4.7 1 749 189 173 26.7 6.29 313 19.9 10.32 4.04 52.8
1 000 1.0 1.0 - 1.8 1 303 65 173 5.1 5.48 313 19.9 10.36 4.05 15.1
1 000 10.0 10.0 - 0.7 854 47 173 1.9 6.34 313 19.9 15.79 4.05 22.0

10 000 1.0 1.0 - 18.2 2 015 650 174 5.1 6.80 315 19.9 10.34 4.01 16.3

6.2. Time-dependent Travel Time Table Computation 167

Table 6.3: Performance of the MINCANDIDATE algorithm.
preprocessing search query

size εe εs search link RAM cmin space time scan meet eval succ profile
[%] [%] [s] [s] [MiB] [MiB] [MiB] [µs] # # # # [µs]

100 - - 6.0 0.0 6 481 1 1 583 3.11 310 19.6 3.65 1.04 6 941
1 000 - - 53.1 0.4 20 849 7 15 897 4.97 313 19.9 3.72 1.05 7 087
1 000 1.0 1.0 1.8 0.4 1 310 7 65 4.09 313 19.9 3.77 1.07 13.8

10 000 1.0 1.0 18.2 49.0 2 777 649 650 4.94 315 19.9 3.81 1.07 14.4

input TCH. The exact time query is two orders of magnitude faster than a standard TCH2

time query (720 µs). However, the TCH profile query (32.75 ms) is just 22 times slower
since most time is spent on computing the large resulting TTFs. Approximating the
edge TTFs (εe > 0) reduces preprocessing time and RAM, approximating search spaces
(εs > 0) reduces search space sizes. When we combine both to εe = εs = 1%, we re-
duce preprocessing time by a factor of 30 and search space size by 240. We can only
compare with TCH for approximated edge TTFs, as TCH computes the search spaces
at query time and does not approximate any intermediate result. For εe = 1%, we are
27 times faster than TCH (2.94 ms). But it pays off to approximate the search space
TTFs, for εe = εs = 0.1%, we are 56 times faster than TCH and even have smaller error
(Table 6.18). Usually we would expect that the query time is independent of the table
size, however, due to cache effects, we see an increase with increasing table size and a
decrease with increasing ε’s. Still the number of TTF evaluations is around 10 and thus
5 times large than the optimal (just 2).

By storing the minimal candidate (MINCANDIDATE, Table 6.3), we can reduce the
evaluations to 3.7, which also reduces the query time. However, the precomputation
is in Θ(|S| · |T |), but it only becomes significant for size 10 000 (or larger). The time
query is only about one third faster, as we still scan on average about 310 nodes in
the forward/backward search spaces. For exact profile queries, there is no advantage to
INTERSECT as we can afford εp-bound pruning at query time there.

Algorithm RELEVANTCANDIDATE (Table 6.4) makes scanning obsolete. It stores
1.2–3.4 candidates per source/target-pair, depending on used approximations. This is
significantly smaller than the 20 meeting nodes we had before, reducing the time query
by a factor of 2–4. But being in Θ(|S| · |T |) becomes already noticeable for size 1 000.
Again, the exact profile query does not benefit. Due to the knowledge of all relevant
candidates, we only need to store 12% of all computed search space TTFs for size 100.
This percentage increases naturally when the table size increases, or when we use worse
bounds for pruning (larger εp), allowing a flexible trade-off between preprocessing time
and space. Note that this algorithm can be used to make the INTERSECT algorithm more
space-efficient by storing only the required TTFs and dropping crel.

We reduce the time query below 1 µs for any tested configuration with the OPT-

2We compare ourselves to TCH as it is currently the fastest exact speed-up technique.

168 Chapter 6. Batched Shortest Paths Computation

Table 6.4: Performance of the RELEVANTCANDIDATE algorithm.
preprocessing search spaces query

size εe εs εp search link RAM crel [MiB] TTF point time eval profile
[%] [%] [%] [s] [s] [MiB] [MiB] # # [%] # [µs] # [µs]

100 - - 0.1 7.5 0.3 6 517 1 1.2 246 21 12 3 453 0.72 2.26 1 202
1 000 - - 0.1 68.0 59.7 35 550 32 1.2 3 565 40 23 2 690 1.29 2.27 1 412
1 000 - - 1.0 67.4 14.2 23 931 34 1.4 4 195 46 27 2 737 1.36 2.55 2 032
1 000 - - 10.0 65.9 8.8 22 369 49 3.3 8 965 82 47 3 277 2.00 3.71 7 484
1 000 - - - 53.1 6.1 20 879 49 3.4 9 343 86 50 3 264 2.00 3.72 7 651
1 000 1.0 1.0 - 1.8 5.0 1 400 46 3.0 31 82 47 5.5 1.02 3.76 10.5

10 000 1.0 1.0 - 18.2 651.3 9 310 4 605 3.0 415 110 63 5.6 1.71 3.80 11.7

Table 6.5: Performance of the OPTCANDIDATE algorithm.
preprocessing search spaces query

size εe εs εp search link RAM copt [MiB] TTF point time profile
[%] [%] [%] [s] [s] [MiB] [MiB] # # [%] # [µs] [µs]

100 - - 0.1 7.5 2.1 6 494 1 1.5 241 21 12 3 456 0.49 1 168
500 - - 0.1 33.8 53.7 13 101 10 1.5 1 608 33 19 2 946 0.73 1 391

1 000 - - 0.1 68.0 213.8 21 443 39 1.5 3 489 39 22 2 704 0.81 1 332
1 000 - - - 53.1 1 032.2 20 908 39 1.5 3 489 39 22 2 704 0.84 1 339
1 000 1.0 - - 1.5 19.4 1 666 37 1.4 72 39 23 49.5 0.56 21.6
1 000 - 1.0 - 64.9 7.1 5 318 39 1.5 17 41 23 6.0 0.51 3.5
1 000 0.1 0.1 - 4.7 11.5 1 822 39 1.5 42 39 22 25.9 0.54 9.8
1 000 1.0 1.0 - 1.8 6.3 1 385 38 1.5 15 41 24 4.9 0.48 3.0
1 000 10.0 10.0 - 0.7 7.6 963 62 3.1 19 68 39 2.0 0.49 5.7

10 000 1.0 1.0 - 18.2 788.3 7 741 3 775 1.5 226 63 36 5.0 0.90 3.5

CANDIDATE algorithm (Table 6.5),3 as we always just need two TTF evaluations. Exact
precomputation becomes very expensive due to the high number of TTF points, and
pruning with εp-bounds has a big impact by almost a factor 4. However, in the heuristic
scenario, precomputation is just around 25% slower than RELEVANTCANDIDATE (εp-
pruning brings no speed-up), but provides more than 80% smaller search spaces and 3
times faster profile queries.

Naturally the best query times are achieved with the TABLE algorithm (Table 6.6).
They are around a factor two smaller than OPTCANDIDATE, and up to 3 000 times faster
than a TCH time query, and 4 000 000 times faster than a time-dependent Dijkstra. Note
that we do not report profile query timings as they are a simple table look-up. The
larger precomputation time compared to OPTCANDIDATE comes from the additional
overhead to store the table. We cannot compute exact tables larger than size 500. But
practical cases of size 1 000 can be computed with less than 2 GiB of RAM when we use

3#copt > #crel is possible when candidates are optimal for several periods of time.

6.2. Time-dependent Travel Time Table Computation 169

Table 6.6: Performance of the TABLE algorithm.
preprocessing table query

size εe εs εp εt search link RAM [MiB] points time
[%] [%] [%] [%] [s] [s] [MiB] # [µs]

100 - - 0.1 - 7.5 1.9 7 638 1 086 7 672 0.25
500 - - 0.1 - 33.8 58.5 45 659 27 697 7 829 0.42
500 - - - - 26.6 266.7 45 532 27 697 7 829 0.42
500 1.0 - - - 0.8 4.8 1 924 427 117.6 0.26

1 000 1.0 - - - 1.5 19.0 3 625 1 689 116.3 0.32
1 000 1.0 1.0 - - 1.8 6.3 1 577 180 9.6 0.25
1 000 - - 0.1 1.0 68.0 298.2 21 489 110 4.6 0.25
1 000 0.1 0.1 - 0.1 4.7 12.3 2 112 270 16.0 0.26
1 000 1.0 1.0 - 1.0 1.8 6.7 1 484 94 3.4 0.23
1 000 10.0 10.0 - 10.0 0.7 7.1 1 017 76 2.1 0.22

10 000 1.0 1.0 - - 18.2 772.1 27 118 18 109 9.7 0.39
10 000 1.0 1.0 - 1.0 18.2 815.2 17 788 9 342 3.4 0.38

approximations (table TTFs are εt-approximations).
Compared to |S| · |T | = 500 · 500 exact TCH profile queries, taking 1023 s on 8

threads, our algorithm achieves a speed-up of 11. This speed-up increases for εe = 1% to
16 since there the duplicate work of the TCH queries has a larger share. And it increases
further for table size 1 000, our speed-up is then 18, as our search increases linearly and
only linking is quadratic in size. We were not able to compare ourselves to a plain single
source Dijkstra profile query, as our implementation of it runs out of RAM (48 GiB)
after around 30 minutes.

A visual comparison of all five algorithms is Figure 6.7. The vertical axis is relative
to the maximum compared value in each group. The exact values can be found in Ta-
bles 6.2–6.6. We see that the decrease for time and profile query are almost independent
of the size. However, the quadratic part for preprocessing time and space becomes very
visible for size = 10 000.

170 Chapter 6. Batched Shortest Paths Computation

0
m

a
x

preproc. time preproc. space time query profile query

size 1000

I M R O T I M R O T I M R O T I M R O T

0
m

a
x

size 10000

Figure 6.7: Comparison of the INTERSECT, MINCANDIATE, RELEVANTCANDIDATE,
OPTCANDIDATE and TABLE algorithm with εe = 1%, εs = 1%, εp = 0% and εt = 0%.
Preprocessing time is split into search (lower) and link (upper) and space is split into
TTFs (lower) and additional data (upper).

6.2. Time-dependent Travel Time Table Computation 171

Robustness. To assess the robustness of our algorithms on other inputs, we performed
additional experiments on TD-EUR and TD-GER-SUN. We restrict our selves to 20 000
time queries and 1 000 profile queries, otherwise the basic setup remains as for TD-GER.
Our evaluation begins with TD-EUR, a larger graph with more time-dependency. There
is one table of test results per algorithm, Tables 6.8–6.12. We achieve even better speed-
ups over TCH than for TD-GER. The exact profile query of the INTERSECT algorithm
has increased speed-up compared to TCH (382.12 ms), it is now 70 times faster. The
heuristic profile query with εe = 1% is even 78 times faster than TCH (105.72 ms). The
time queries are very time consuming for INTERSECT as there are 5 times more candidate
nodes and 4 times more TTF evaluations necessary. However, we increase the speed-up
of time queries for the OPTCANDIDATE algorithm, we are more than three orders of
magnitude faster than TCH (1.89 ms). We were not able to compute an exact 500 · 500
TABLE as more than 48 GiB RAM are necessary. So we compare our table computation
to TCH for size 100. 100 ·100 exact TCH profile queries, taking 478 s on 8 threads, are
9 times slower than our algorithm. For size 1 000 and εe = 1%, we obtain a speed-up of
64 compared to 1000 · 1000 TCH profile queries on 8 threads, taking 13215 s. This is
much larger than the speed-up of 16 for a comparable table on TD-GER.

Table 6.8: Performance of the INTERSECT algorithm on TD-EUR.
preprocessing search spaces query

size εe εs εp search RAM [MiB] TTF point time scan meet eval succ profile
[%] [%] [%] [s] [MiB] # # [µs] # # # # [µs]

100 - - 0.1 43.5 16 528 4 392 427 2 982 23.46 714 94.9 38.72 6.03 5 190
500 - - 0.1 198.2 33 545 21 428 434 2 856 27.72 738 96.1 39.12 5.94 5 466

1 000 1.0 - - 17.6 6 077 1 665 442 106.9 21.02 749 98.1 39.79 5.99 1 339.4
1 000 - 1.0 - 409.8 13 837 237 442 9.8 23.12 749 98.1 40.47 6.00 163.8
1 000 0.1 0.1 - 38.6 5 907 554 442 31.3 21.07 749 98.1 39.56 5.98 415.0
1 000 1.0 1.0 - 19.1 4 720 235 442 9.7 19.10 749 98.1 40.63 6.00 158.9
1 000 10.0 10.0 - 7.3 3 709 132 442 2.6 16.35 749 98.1 37.07 6.10 63.9

10 000 1.0 1.0 - 161.1 6 810 2 050 446 9.7 21.17 758 99.0 40.33 5.99 161.7

Table 6.9: Performance of the MINCANDIDATE algorithm on TD-EUR.
preprocessing search query

size εe εs search link RAM cmin space time scan meet eval succ profile
[%] [%] [s] [s] [MiB] [MiB] [MiB] [µs] # # # # [µs]

100 - - 40.1 0.0 16 408 1 4 246 13.96 714 94.9 23.55 1.35 33 397
1 000 1.0 1.0 19.1 1.1 4 725 7 235 15.01 749 98.1 25.28 1.40 140.5

10 000 1.0 1.0 161.1 86.5 7 342 488 2 050 16.10 758 99.0 25.09 1.39 143.2

172 Chapter 6. Batched Shortest Paths Computation

Table 6.10: Performance of the RELEVANTCANDIDATE algorithm on TD-EUR.
preprocessing search spaces query

size εe εs εp search link RAM crel [MiB] TTF point time eval profile
[%] [%] [%] [s] [s] [MiB] [MiB] # # [%] # [µs] # [µs]

100 - - 0.1 43.5 1.6 17 168 1 2.8 391 35 8 3 342 1.71 5.37 3 933
1 000 1.0 1.0 - 19.1 14.8 4 974 211 24.6 144 274 62 9.9 7.68 25.28 140.4

10 000 1.0 1.0 - 161.1 1 318.9 30 431 15 744 24.5 1 524 332 74 10.1 9.97 25.07 150.0

Table 6.11: Performance of the OPTCANDIDATE algorithm on TD-EUR.
preprocessing search spaces query

size εe εs εp search link RAM copt [MiB] TTF point time profile
[%] [%] [%] [s] [s] [MiB] [MiB] # # [%] # [µs] [µs]

100 - - 0.1 43.5 8.6 16 563 1 3.2 312 28 7 3 322 0.57 2 395
500 - - 0.1 198.2 222.4 33 645 17 3.4 1 988 43 10 2 767 0.73 2 452

1 000 1.0 - - 17.6 189.9 6 213 83 4.4 181 53 12 95.6 0.73 95.1
1 000 - 1.0 - 409.8 35.2 14 290 105 5.9 32 62 14 9.5 0.79 15.4
1 000 0.1 0.1 - 38.6 68.5 5 982 82 4.3 63 53 12 29.7 0.66 28.8
1 000 1.0 1.0 - 19.1 34.0 4 808 104 5.8 32 63 14 9.4 0.60 14.8
1 000 10.0 10.0 - 7.3 21.7 3 864 80 4.2 23 83 19 2.3 0.55 10.6

10 000 1.0 1.0 - 161.1 2 713.5 16 233 7 696 5.7 397 89 20 9.6 1.03 15.7

Table 6.12: Performance of the TABLE algorithm on TD-EUR.
preprocessing table query

size εe εs εp εt search link RAM [MiB] points time
[%] [%] [%] [%] [s] [s] [MiB] # [µs]

100 - - 0.1 - 43.5 7.1 16 636 832 5 877 0.24
500 1.0 - - - 8.7 45.8 6 122 741 206.3 0.28

1 000 1.0 - - - 17.6 184.5 9 884 2 980 207.4 0.34
1 000 1.0 1.0 - - 19.1 32.6 5 148 391 24.5 0.25
1 000 0.1 0.1 - 0.1 38.6 67.5 6 201 393 24.6 0.26
1 000 1.0 1.0 - 1.0 19.1 33.4 4 884 151 7.6 0.23
1 000 10.0 10.0 - 10.0 7.3 19.9 3 892 75 2.0 0.17

10 000 1.0 1.0 - 1.0 161.1 2 689.5 23 696 11 260 7.5 0.42

6.2. Time-dependent Travel Time Table Computation 173

Our experiments on TD-GER-SUN show the automatic adaptability of our algo-
rithms to easier instances. TD-GER-SUN has particularly simple TTFs, as the travel
times only slightly change over time, and even the exact graph requires little space (Ta-
ble 6.1). There is one table of test results per algorithm, Tables 6.13–6.17. We notice that
profile queries are one order of magnitude faster than in the midweek scenario. Still, they
benefit from εp-bound pruning, but not as much as before. Also, computing whole tables
is much faster and requires much less RAM. We need only 7 GiB RAM to compute an
exact 500 ·500 table, instead of 46 GiB for TD-GER. The reason is that the TTFs in the
table have more than 7 times fewer points. Even the computation of an exact 1000 ·1000
table is possible with less than 22 GiB RAM.

Table 6.13: Performance of the INTERSECT algorithm on TD-GER-SUN.
preprocessing search spaces query

size εe εs εp search RAM [MiB] TTF point time scan meet eval succ profile
[%] [%] [%] [s] [MiB] # # [µs] # # # # [µs]

100 - - 0.1 0.6 1 744 201 117 459 2.50 214 12.8 6.65 3.21 133
500 - - 0.1 2.5 2 518 979 117 449 4.08 214 12.7 6.79 3.28 151

1 000 - - 0.1 4.7 3 489 1 930 117 443 4.61 214 12.8 6.68 3.22 140
1 000 - - - 3.0 3 295 1 750 117 443 4.71 214 12.8 6.68 3.22 210
1 000 1.0 - - 0.3 815 87 117 16.4 3.55 214 12.8 6.73 3.22 10.9
1 000 - 1.0 - 4.3 1 605 34 117 2.8 3.56 214 12.8 6.83 3.23 5.3
1 000 0.1 0.1 - 0.8 902 65 117 10.8 3.58 214 12.8 6.69 3.22 7.6
1 000 1.0 1.0 - 0.4 764 33 117 2.5 3.31 214 12.8 6.87 3.23 5.2
1 000 10.0 10.0 - 0.3 649 30 117 1.8 3.98 214 12.8 11.15 3.25 14.0

10 000 1.0 1.0 - 3.4 1 079 281 119 2.5 4.59 216 12.8 6.86 3.23 6.2

Table 6.14: Performance of the MINCANDIDATE algorithm on TD-GER-SUN.
preprocessing search query

size εe εs search link RAM cmin space time scan meet eval succ profile
[%] [%] [s] [s] [MiB] [MiB] [MiB] [µs] # # # # [µs]

100 - - 0.3 0.0 1 722 1 182 1.70 214 12.8 2.16 1.01 192
1 000 - - 3.0 0.2 3 297 7 1 750 3.05 214 12.8 2.17 1.01 207
1 000 1.0 1.0 0.4 0.2 773 7 33 2.73 214 12.8 2.33 1.03 4.3

10 000 1.0 1.0 3.4 26.3 1 648 484 281 3.26 216 12.8 2.33 1.03 4.9

174 Chapter 6. Batched Shortest Paths Computation

Table 6.15: Performance of the RELEVANTCANDIDATE algorithm on TD-GER-SUN.
preprocessing search spaces query

size εe εs εp search link RAM crel [MiB] TTF point time eval profile
[%] [%] [%] [s] [s] [MiB] [MiB] # # [%] # [µs] # [µs]

100 - - 0.1 0.6 0.0 1 746 1 1.0 36 19 16 563 0.34 2.06 123
1 000 - - 0.1 4.7 7.1 5 150 31 1.1 590 37 32 471 0.92 2.07 138
1 000 - - 1.0 4.5 3.8 3 909 32 1.1 650 40 34 483 0.95 2.15 187
1 000 - - 10.0 4.7 3.5 3 793 32 1.2 784 44 38 525 0.94 2.17 220
1 000 - - - 3.0 3.0 3 365 32 1.2 785 44 38 525 0.88 2.17 220
1 000 1.0 1.0 - 0.4 2.8 852 34 1.4 13 47 40 2.5 0.54 2.33 2.0

10 000 1.0 1.0 - 3.4 312.1 5 382 2 503 1.4 157 67 57 2.6 1.02 2.33 2.5

Table 6.16: Performance of the OPTCANDIDATE algorithm on TD-GER-SUN.
preprocessing search spaces query

size εe εs εp search link RAM copt [MiB] TTF point time profile
[%] [%] [%] [s] [s] [MiB] [MiB] # # [%] # [µs] [µs]

100 - - 0.1 0.6 0.2 1 744 1 1.1 36 19 16 566 0.25 119
500 - - 0.1 2.5 5.4 2 550 9 1.1 256 30 26 502 0.54 136

1 000 - - 0.1 4.7 22.0 3 572 33 1.1 575 36 31 470 0.65 132
1 000 - - - 3.0 30.5 3 357 33 1.1 575 36 31 470 0.63 131
1 000 1.0 - - 0.3 3.8 886 32 1.1 27 37 31 16.4 0.46 5.4
1 000 - 1.0 - 4.3 3.3 1 638 33 1.1 11 37 32 2.6 0.38 1.4
1 000 0.1 0.1 - 0.8 3.4 971 32 1.1 19 37 31 9.9 0.45 3.0
1 000 1.0 1.0 - 0.4 3.1 834 33 1.1 11 38 32 2.4 0.38 1.4
1 000 10.0 10.0 - 0.3 4.9 737 52 2.4 15 57 48 1.9 0.43 3.6

10 000 1.0 1.0 - 3.4 333.2 4 852 2 411 1.1 127 56 47 2.5 0.80 1.8

Table 6.17: Performance of the TABLE algorithm on TD-GER-SUN.
preprocessing table query

size εe εs εp εt search link RAM [MiB] points time
[%] [%] [%] [%] [s] [s] [MiB] # [µs]

100 - - 0.1 - 0.6 0.2 1 909 154 1 083 0.14
500 - - 0.1 - 2.5 6.6 7 049 3 829 1 079 0.30

1 000 - - 0.1 - 4.7 27.5 21 193 14 986 1 056 0.38
500 - - - - 1.6 8.1 6 944 3 829 1 079 0.30
500 1.0 - - - 0.2 0.9 946 137 35.4 0.20

1 000 1.0 - - - 0.3 4.0 1 502 543 35.2 0.25
1 000 1.0 1.0 - - 0.4 3.1 948 108 4.5 0.19
1 000 - - 0.1 1.0 4.7 35.3 3 650 77 2.2 0.16
1 000 0.1 0.1 - 0.1 0.8 3.9 1 101 121 5.4 0.21
1 000 1.0 1.0 - 1.0 0.4 3.3 917 76 2.1 0.17
1 000 10.0 10.0 - 10.0 0.3 4.4 801 76 2.0 0.17

10 000 1.0 1.0 - 1.0 3.4 337.6 11 133 5 658 2.1 0.33

6.2. Time-dependent Travel Time Table Computation 175

Error Analysis. We analyze the observed errors and theoretical error bounds4 for size
1 000 in Table 6.18. Note that these error bounds are independent of the used algorithm.
The maximum slope5 for TD-GER is α = 0.433872. The average observed error is
always below the used ε’s, however, we still see the stacking effect. Our bound is about
a factor of two larger than the maximum observed error for the edge approximations (εe).
This is because our bound assumes that any error stacks during the linking of the TTFs,
but in practice, TTFs do not often significantly change. The same explanation holds for
the search space approximations (εs), although our bound is better since we only need
to link two TTFs. When we combine edge and search space approximations, the errors
roughly add up, as approximating an already approximated TTF introduces new errors.
Approximating the TTFs in the table (εt) gives the straight εt-approximation unless it
is based on already approximated TTFs. Our theoretical bounds are pretty tight for the
tested TCH instance, just around a factor of two larger than the max. observed errors.

For TD-EUR and TD-GER-SUN we observe similar average and maximum errors as
for TD-GER. However, there are significant differences for the theoretical bounds. The
maximum slope α of the TTFs in the search spaces on TD-EUR is at least6 5.82697,
resulting in very large upper bounds. In practice, we do not observe these large errors,
as only small parts of the TTFs have such big slopes. The big slopes may be an artifact
of the artificially created TTFs on this graph. However, in practice, such big slopes can
also occur, when e. g. ferries with time tables would be included. A more detailed error
model, not only based on the maximum slope α , is necessary to provide better theoretical
bounds in such a scenario. In contrast, we can provide very tight error bounds for TD-
GER-SUN, as the maximum slope is just α = 0.137686. This is due to the much “flatter”
TTFs on Sunday, as very little time-dependency exists.

Table 6.18: Observed errors from our queries together with the theoretical error bounds.
εe [%] 1.0 - 0.1 1.0 10 - 0.1 1.0 10
εs [%] - 1.0 0.1 1.0 10 - 0.1 1.0 10

graph εt [%] - - - - - 1.0 0.1 1.0 10

TD-
GER

avg. error [%] 0.08 0.12 0.014 0.18 2.1 0.17 0.023 0.30 3.1
max. error [%] 0.89 0.98 0.169 1.75 16.9 1.00 0.266 2.66 24.9

theo. bound [%] 2.07 1.44 0.350 3.55 41.0 1.00 0.450 4.58 55.1

TD-
EUR

avg. error [%] 0.10 0.22 0.025 0.24 2.7 0.30 0.038 0.38 4.8
max. error [%] 0.87 1.31 0.155 1.77 15.0 1.00 0.228 2.75 22.4

theo. bound6 [%] 52.55 6.89 5.412 60.85 3 399.4 1.00 5.517 62.46 3 749.4
TD-

GER-
SUN

avg. error [%] 0.05 0.13 0.014 0.15 1.8 0.17 0.023 0.26 2.8
max. error [%] 0.78 0.96 0.149 1.55 16.2 1.00 0.237 2.33 24.1

theo. bound [%] 1.30 1.14 0.243 2.45 26.5 1.00 0.344 3.48 39.2

4Note that εp > 0 used for pruning does not cause errors.
5It is only required for the theoretical error bounds, and not used in our algorithms.
6 The slope is only the maximum over all search spaces computed during the experiments. Computing

the exact slope would take more than a week.

176 Chapter 6. Batched Shortest Paths Computation

6.3 Ride Sharing

In the ride sharing scenario, we want to match a driver (with a car), and a passenger
(without a car) so that they can share some part of their journey, and both have an eco-
nomical advantage of this cooperation. There exist a number of web sites that offer ride
sharing matching services to their customers. Unfortunately, as far as we know, all of
them suffer from limitations in their method of matching. Only a very small and limited
subset of all the possible locations is actually modeled. Furthermore, a match is only
based on the proximity of the starting locations of driver and passenger, and on their
destinations. Sometimes, some intermediate stops are given beforehand. The economic
advantage is largely neglected. Consider the following example to visualize this. Anne
and Bob both live in Germany. Anne, the driver, is from Karlsruhe and wants to go to
Berlin. Bob on the other hand lives in Frankfurt and would like to travel to Leipzig.
Taking the fastest route in our example, Anne drives from Karlsruhe via Nürnberg to
Berlin and is never getting close enough to team up with Bob. However, there is a path
from Karlsruhe to Berlin via Frankfurt, which also passes by the city of Leipzig and
is only about one percent longer than the shortest path. We propose to match a driver
and passenger, so that the detour of the driver to serve the passenger is minimized. This
detour is usually directly linked to the economic advantage. Such a matching algorithm
only becomes feasible by employing fast batched shortest paths algorithms. In principle,
we compute the detours for all offering drivers, and pick the minimum. Additionally, we
can prune some computations by limiting the maximum allowed detour.

6.3.1 Matching Definition

For many services an offer only fits a request iff origin and destination locations are
identical. We call such a situation a perfect fit. Origin and destination can only be chosen
from a limited set of points, for example all larger cities and points-of-interest such as
airports. Some services offer an additional radial search around origin and destination
and fixed way-points along the route. Usually, only the driver is able to define way-
points along her route. The existence of these additions shows the demand for better
route matching techniques that allow a small detour and intermediate stops. We call that
kind of matching a reasonable fit. However, previous approaches obviously used only
features of the database systems they had available to compute matches. And we showed
in the previous section that the previous approaches are not flexible and miss possibly
interesting matches.

We present an algorithmic solution to the situation at hand that leads to better results
independent of the user’s level of cooperation or available database systems. For that,
we lift the restriction of a limited set of origin and destination points. Unfortunately, the
probability of perfect fits is close to zero in this setting. But since we want to compute
reasonable fits, our approach considers intermediate stops where driver and passenger

6.3. Ride Sharing 177

might meet and depart later on. More precisely, we adjust the drivers route to pick up
the passenger by allowing an acceptable detour (Definition 6.7).

Definition 6.7 Let G be a static graph (Section 2.2.1). We say that an offer o = (s, t) and
a request g = (s′, t ′) form a reasonable fit iff there exists a path P = 〈s, . . . ,s′, . . . , t ′, . . . , t〉
in G with c(P)≤ µ(s, t)+ ε ·µ(s′, t ′).

The ε in Definition 6.7 depicts the maximal detour that is reasonable. Applying the ε

to the passengers path gives the driver an incentive to pick up the passenger. A natural
choice is ε ≤ 0.5. This stems from a simple pricing scheme we know from algorithmic
game theory. The so-called fair sharing rule [114] simply states that players who share
a ride split costs evenly for the duration of the ride. Additionally, we say that drivers get
compensated for their detours directly by passengers using the savings from the shared
ride. Implicitly, we give the driver an incentive to actually pick the passengers up at their
start s′ and to drop them off at their destination t ′. Formally, we have that a match is
economically worthwhile iff there exists an ε for which

µ(s,s′)+µ(s′, t ′)+µ(s′, t ′)+µ(t ′, t)−µ(s, t)≤ ε ·µ(s′, t ′) .

It is easy to see that any reasonable passenger will not pay more for the drivers detour
than the gain for the shared ride which is at most 1

2 · µ(s
′, t ′). Therefore, we conclude

ε ≤ 0.5. Figure 6.19 details the distances of the argument:

s

s′

t

t ′

Figure 6.19: Request (s′, t ′) and matching offer (s, t) with detour. The solid lines sym-
bolize the distances that are driven, while the dashed one stands for the shortest path of
the driver that is actually not driven at all in a matched ride.

6.3.2 Matching Algorithm
This section covers the algorithm to find all reasonable fits to an offer. We even solve
the more general problem of computing all detours.

For a dataset of k offers oi = (si, ti), i=1..k, and a single request g = (s′, t ′), we
need to compute the 2k+ 1 shortest path distances µ(s′, t ′), µ(si,s′) and µ(t ′, ti). The
detour for offer oi is then µ(si,s′) + µ(s′, t ′) + µ(t ′, ti)− µ(si, ti). A naïve algorithm
would do a backward one-to-all search from s′ using Dijkstra’s algorithm and a forward

178 Chapter 6. Batched Shortest Paths Computation

one-to-all search from t ′ to compute µ(si,s′) and µ(t ′, ti). Another search returns the
distance µ(s′, t ′). We cannot prune the Dijkstra search early, as the best offer need not
depart/arrive near the source/target of the request, so that each search takes several sec-
onds on large road networks. In Section 6.3.3 we show that the running time of our
algorithm is faster by several orders of magnitude.

To compute the distances, we use the technique described in Section 6.1.1. We
store the forward search space from each si, i=1..k, in forward buckets (6.4) to com-
pute µ(si,s′) using (6.7). And we store the backward search space from each ti, i=1..k,
in backward buckets (6.5) to compute µ(t ′, ti) using (6.6).

However, in the buckets, we store references to the offer oi instead of the source node
si or target node ti. More precisely, our forward bucket for a node u is

→
β (u) :=

{
(i,
→
δi(u)) | (u,

→
δi(u)) ∈ →σ (si)

}
. (6.8)

Here,
→
δi(u) denotes the distance from si to u computed by the forward search from si.

To compute all µ(si,s′) for the request, we compute ←σ (s′), then scan the bucket of
each node in ←σ (s′) and compute all µ(si,s′) simultaneously as described in Section 6.1.1.

Symmetrically, we compute and store backward buckets

←
β (u) :=

{
(i,
←
δi(u)) | (u,

←
δi(u)) ∈ ←σ (ti)

}
(6.9)

to accelerate the computation of all µ(t ′, ti). The single distance µ(s′, t ′) is computed
separately by computing the search spaces from s′ and t ′ in the opposite directions.
Backward and forward buckets are stored in main memory and accessed as our main
data structure and running queries on that data structure is easy.

Adding and Removing Offers. To add or remove an offer o = (s, t), we only need to
update the forward and backward buckets. To add the offer, we first compute →σ (s) and
←
σ (t). We then add these entries to their corresponding forward/backward buckets. To
remove the offer, we need to remove its entries from the forward/backward buckets.

We make no decision on the order in which to store the entries of a bucket. This
makes adding an offer very fast, but removing it requires scanning the buckets. Scanning
all buckets is prohibitive as there are too many entries. Instead, it is faster to compute
→
σ (s) and ←σ (t) again to obtain the set of meeting nodes whose buckets contain an entry
about this offer. We then just need to scan those buckets and remove the entries. Also,
we can omit removing offers by just having a separate bucket for each day. We mark
obsolete offers so that they will be ignored for any follow-up requests, and delete the
whole bucket once the day of the bucket is in the past.

Constraints. In reality, offers and requests have constraints. For example, they specify
a departure time window or they have restrictions on smoking, gender, etc. In this case,

6.3. Ride Sharing 179

we need to extend the definition of a reasonable fit to meet these constraints by intro-
ducing additional indicator variables. As we already compute the detours of all offers,
we can just filter the ones that violate the constraints of the request. Furthermore, our
algorithm can potentially take advantage of these constraints by storing offers in differ-
ent buckets depending on their constraints. This way, we reduce the number of bucket
entries that are scanned during a request, reducing the time to match a request as the
bucket scans take the majority of the time.

Algorithmic Optimizations. We reduce the request matching time by pruning bucket
scans. We can omit scanning buckets when we limit the maximum detour to ε times
the cost of the passengers shortest route, as stated in Definition 6.7. We exploit the fact
that we need to obtain →σ (s′) and ←σ (t ′) for the computation of µ(s′, t ′). We compute the
distance µ(s′, t ′) before the bucket scanning, and additionally keep →σ (s′) and ←σ (t ′) that
we obtained during this search. Then we can apply Lemma 6.8. It can be applied if a
node u appears in both backward search ←σ (s′), ←σ (t ′), or in both forward search spaces
→
σ (s′), →σ (t ′). In this case, we can compute a lower bound on the detour of all offers in
the bucket of u by using the triangle inequality, see Figure 6.20. If this lower bound is
larger than the detour allowed by ε , we prune the bucket.

u

s′ t ′

si
ti

←
δ s′
(u)

µ(s ′, t ′)

←
δt ′(u)

→
δi(u)

Figure 6.20: The difference
←

δs′(u)+µ(s′, t ′)−
←
δt ′(u) is a lower bound on a detour via u.

Lemma 6.8 Let (u,
←

δs′(u))∈
←
σ (s′) and (u,

←
δt ′(u))∈

←
σ (t ′). We will not miss a reasonable

fit when we omit scanning forward bucket
→
β (u) only if

←
δs′(u)+ µ(s′, t ′) >

←
δt ′(u)+ ε ·

µ(s′, t ′).

Let (u,
→
δt ′(u)) ∈

→
σ (t ′) and (u,

→
δs′(u)) ∈

→
σ (s′). We will not miss a reasonable fit when

we omit scanning backward bucket
←
β (u) only if

→
δt ′(u)+µ(s′, t ′)>

→
δs′(u)+ ε ·µ(s′, t ′).

Proof. Let (i,
→
δi(u)) ∈

→
β (u) be a pruned offer. If the path from si to s′ via node u is

not a shortest path, another meeting node will have si in its bucket, see (6.8). Therefore,
WLOG we assume that

→
δi(u)+

←
δs′(u) = µ(si,s′). Let P = 〈si, . . . ,s′, . . . , t ′, . . . , ti〉 be a

path, then

180 Chapter 6. Batched Shortest Paths Computation

c(P) ≥ µ(si,s′)+µ(s′, t ′)+µ(t ′, ti)
=

→
δi(u)+

←
δs′(u)+µ(s′, t ′)+µ(t ′, ti)

Lemma 6.8
>

→
δi(u)+

←
δt ′(u)+ ε ·µ(s′, t ′)+µ(t ′, ti)

→
δi (u)≥µ(si,u),

←
δt′(u)≥µ(u,t ′)
≥ (µ(si,u)+µ(u, t ′)+µ(t ′, ti))+ ε ·µ(s′, t ′)

4-inequality
≥ µ(si, ti)+ ε ·µ(s′, t ′)

Therefore, P is not a reasonable fit. The proof is completely symmetric for omitting
the scan of

←
β (u). �

6.3.3 Experiments
Environment. Experiments have been done on one core of a single AMD Opteron
Processor 270 clocked at 2.0 GHz with 8 GiB main memory and 2×1 MiB L2 cache,
running SuSE Linux 11.1 (kernel 2.6.27). The program was compiled by the GNU C++
compiler 4.3.2 using optimization level 3.

Instances. We use a graph of Germany derived from the publicly available data of
OpenStreetMap, consisting of 6 344 491 nodes and 13 513 085 directed edges. The edge
weights are travel times computed for the OpenStreetMap car speed profile7. We use
OpenStreetMap as source of our graph, as there are no licensing issues with using the
data for non-academic purposes, for example to setup a website using our algorithm.
Contraction hierarchies (aggressive approach [59]) are used as bi-directed, non goal-
directed speed-up technique. To test our algorithm, we obtained a dataset of real-world
ride sharing offers from Germany available on the web. We matched the data against a
list of cities, islands, airports and the like, and ended up with about 450 unique places.
We tested the data and checked that the lengths of the journeys are exponentially dis-
tributed. This validates assumptions from the field of transportation science. We as-
sumed that requests would follow the same distribution and chose our offers from that
dataset as well.

To extend the dataset to our approach of arbitrary origin and destination locations,
we applied perturbation to the node locations of the dataset. For each source node we
unpacked the node’s forward search space in the contraction hierarchy up to a distance of
3 000 seconds of travel time. From that unpacked search space we randomly selected a
new starting point. Likewise we unpacked the backward search space of each destination
node up to the distance and picked a new destination node. We observed that perturbation
preserved the distribution of the original dataset.

Figure 6.21 compares the original node locations on the left to the result of the node
perturbation in the middle. The right side shows a population density plot of Germany8

to support the validity of the perturbation.
7See: http://wiki.openstreetmap.org/wiki/OpenRouteService
8Picture is an extract of an image available at episcangis.hygiene.uni-wuerzburg.de

6.3. Ride Sharing 181

Figure 6.21: original node locations (left), perturbed node locations (middle), population
density (right)

We evaluated the performance of our algorithm for different numbers of offers where
source and target are picked at random or from our un-/perturbed real-world dataset, see
Table 6.22. The size required for the bucket entries is linear with the number of offers, as
a forward/backward search space has at most a few hundred nodes. The time to add an
offer o = (s, t) is independent of the number of offers, the main time is spent computing
→
δ (s) and

←
δ (t). However, removing an offer requires scanning the buckets, and therefore

the more offers are in the database the more expensive it is. For our real-world offers, we
have just 450 different source/target nodes, so that the bucket entries are clustered in only
a few buckets, this still holds when we perturb the data. Of course, the bucket entries are
more evenly distributed for completely random offers, the buckets are therefore smaller
and removing an offer takes less time. We report the time for matching a request for
different values of ε . Even with no further optimization (ε = ∞), we can handle large
datasets with 100 000 offers within 45 ms. In comparison, the fastest speedup technique

Table 6.22: Performance of our algorithm for different types of offers/requests, numbers
of offers and max. detours ε .

#offers bucket add remove match request [ms]
size offer offer ε =

type [MiB] [ms] [ms] 0.0 0.05 0.1 0.2 0.3 0.4 0.5 1 ∞

perturbed 1 000 3 0.27 0.00 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.9
perturbed 10 000 28 0.24 0.29 0.9 1.0 1.1 1.3 1.5 1.6 1.8 2.7 4.1
perturbed 100 000 279 0.24 0.30 4.4 5.2 6.1 8.1 10.2 12.1 14.0 25.1 43.4
unperturbed 1 000 3 0.26 0.27 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.9 1.0
unperturbed 10 000 32 0.26 0.32 1.1 1.2 1.3 1.6 1.7 1.9 2.1 2.8 4.3
unperturbed 100 000 318 0.27 6.26 5.6 6.7 7.9 10.4 12.4 14.5 16.1 26.3 44.6
random 1 000 3 0.24 0.25 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.9 1.0
random 10 000 31 0.25 0.30 1.1 1.2 1.3 1.5 1.7 1.9 2.1 3.5 4.3
random 100 000 306 0.26 0.32 6.0 6.7 7.8 10.1 12.6 15.4 18.5 34.9 45.1

182 Chapter 6. Batched Shortest Paths Computation

l
l

l

l

l

l

l

l

l

0 0.05 0.1 0.2 0.3 0.4 0.5 1 ∞∞

0
1

0
2

0
3

0
4

0

Max. detour εε

M
a

tc
h

 r
e

q
u

e
s
t

ti
m

e
 [

m
s
] l

random

unperturbed

perturbed

Figure 6.23: Match request performance for 100 000 offers.

today, Transit Node Routing (TNR) [22, 14] requires 1,9 µs9 for each of the 2n + 1
queries and would take about 380 ms for the largest dataset whereas our algorithm is 8.4
times faster. For a realistic ε = 0.5, we get a further speed-up of about 3. Figure 6.23
visualizes the performance for different ε . It mainly depends on ε and our algorithm is
fairly robust against the different ways to pick source and target nodes.

Our method is also faster than TNR when we look at preprocessing. Although TNR
does not need to add and store offers, our algorithm based on CH is still faster. The pre-
processing of CH is one order of magnitude faster and has no space overhead, whereas
TNR would require more than 1 GiB on our graph of Germany. This is more than enough
time to insert even 100000 offers and more than enough space to store the bucket entries,
as Table 6.22 indicates.

We varied the allowed detour and investigated what influence it has on the number
of matches that can be made. A random but fixed sample of 1 000 requests was matched
against databases of various sizes. Table 6.24 and Figure 6.25 report on these experi-
ments. The unperturbed data presents the currently used algorithms, where you are able
to do city-to-city queries. For a realistic database size of 10 000 entries10 and maximum
allowed detour of ε = 0.1 we improve the matching rate to 0.84. This is a lot more than
the 0.718 matching rate without detours. As expected, the matching rate increases with
the number of offers.

9This query time is on the European road network, but since the number of access nodes should be the
same on Germany, we can expect a similar query time there.

10The database size of 10 000 entries is a realistic case and closely resembles the current daily
amount of matches made by a known German ride sharing service provider, see: http://www.ea-
media.net/geschaftsfelder/europealive/geschaftsfelder.html

6.3. Ride Sharing 183

Table 6.24: Request matching rate for different values of maximum allowed detour.
UNPERTURBED PERTURBED

ε = ε =
#offers 0 0.05 0.1 0.2 0.5 0 0.05 0.1 0.2 0.5

1000 0.248 0.281 0.370 0.558 0.865 0.003 0.028 0.096 0.271 0.715
10000 0.718 0.755 0.840 0.917 0.989 0.006 0.093 0.248 0.569 0.914

100000 0.946 0.963 0.981 0.993 1.000 0.029 0.289 0.537 0.793 0.988

0.0 0.1 0.2 0.3 0.4 0.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Max. detour ε

F
ra

c
ti
o
n
 o

f
m

a
tc

h
e
d
 r

e
q
u
e
s
ts

100000

10000

1000

(a) Unperturbed

0.0 0.1 0.2 0.3 0.4 0.5

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Max. detour ε

F
ra

c
ti
o
n
 o

f
m

a
tc

h
e
d
 r

e
q
u
e
s
ts

100000

10000

1000

(b) Perturbed

Figure 6.25: Fraction of rides matched for a given detour.

Table 6.26: Detour sizes relative to the passengers route length for the best answer
achieved using radial search and using our algorithm.

#offers radial search detour smallest detour
1 000 0.806 0.392

10 000 0.467 0.227
100 000 0.276 0.128

184 Chapter 6. Batched Shortest Paths Computation

The more realistic scenario with the perturbed data, where offers and requests are
not only city-to-city, but point-to-point, becomes only practically possible with our new
algorithm. The probability to find a perfect match in this scenario is close to zero, it is
necessary to allow at least a small detour to find some matches. The ε required to find a
match becomes larger, as we now also include intra-city detours and not only inter-city
detours. Still, with ε = 0.2 we achieve a matching rate of 0.569, and for the maximum
reasonable detour of ε = 0.5, we match 0.914 of all requests, that is 20% more than the
0.718 possible with a city-to-city perfect matching algorithm (unperturbed, ε = 0).

We also tested the quality of our algorithm against radial search. In the radial search
setting, each request is matched against the offer with the smallest sum of Euclidean
distances w. r. t. the origin and destination location of the request. This mimics radial
search functions (with user supplied radii) offered in some current ride sharing systems.
Table 6.26 reports the results. The average detour of all matches is less than half the
detour that is experienced with radial search, which shows the performance of our ap-
proach. On the other hand, these numbers show the inferiority of radial search.

6.4. Closest Point-of-Interest Location 185

6.4 Closest Point-of-Interest Location

Large point-of-interest (POI) databases are a crucial part of navigation systems and ex-
tend the usability beyond path directions. With them, the user is able to get along in
unknown areas by listing the closest gas stations, garages, or even Italian restaurants.
Fast computation of them is important for an interactive system. Dijkstra’s algorithm
can only efficiently compute POI that are very close to a node. Computing POI that are
farther away, or close POI along a shortest path requires much more time. We will use
techniques inspired by the ideas of Section 6.1 to accelerate both types of POI compu-
tations. We compute from each POI x the search space and store an entry in a bucket
for each reached node u containing the computed distance. By ordering the buckets by
ascending distance, we can prune scanning the buckets once the remaining entries be-
long to POI that are not close enough. Computing the closest POI along a shortest path
is related to the ride sharing algorithm (Section 6.3) but in a different setup.

Our algorithm works on a static graph G = (V,E) as introduced in Section 2.2.1. The
set of POI is given as set X ⊆V of nodes.

6.4.1 POI close to a Node

For a node s and a distance `, we want to compute the set of close POI (Definition 6.9).

Definition 6.9 Let X ⊆ V be a set of POI. The POI within distance ` of a node s is the
set PND(s, `) := {x ∈ X | µ(s,x)≤ `} (POI Node Distance).

For small distance `, a local Dijkstra algorithm can efficiently compute this set. It
stops as soon as the minimum key in the priority queue is above `. But Dijkstra’s algo-
rithm is inefficient if it settles a lot of non-POI nodes. We propose an algorithm based
on the previous batched shortest paths computation techniques, but now we only have a
single source s. We precompute for each POI x ∈ X the backward search space and store
it in backward buckets

←
β (u) at the reached nodes u as described in Section 6.1.1.

At query time, we are given node s and distance `, and we compute PPD(s, `) us-
ing (6.10).

PND(s, `) =
{

x
∣∣∣ ∃(u,→δ (u)) ∈ →σ (s) : ∃(x,

←
δx(u)) ∈

←
β (u) :

→
δ (u)+

←
δx(u)≤ `

}
(6.10)

Remember that
←
δx(u) denotes the distance from u to x computed by the backward

search from x, see Figure 6.27.

Lemma 6.10 Equation (6.10) is correct.

186 Chapter 6. Batched Shortest Paths Computation

s u

←
β (u)

x

→
δ (u)

←
δx(u)

Figure 6.27: Computing the distance from source node s to POI x by scanning the back-
ward bucket at each node u reached by the forward search from s. The path obtained
by scanning the backward bucket is represented by a dashed edge, as this path is not
actually traversed.

Proof. Let A be the set PND(s, `) from Definition 6.9 and B be the set from (6.10).
We need to prove that A = B.

⊆: Let x ∈ A. Then µ(s,x) ≤ `. By (6.6) we know that ∃(u,
→
δ (u)) ∈ →σ (s) :

∃(x,
←
δx(u)) ∈

←
β (u) with

→
δ (u)+

←
δx(u) = µ(s,x)≤ `, and therefore x ∈ B.

⊇: Let x ∈ B. Then there is a u such that (u,
→
δ (u)) ∈ →σ (s),(x,

←
δx(u)) ∈

←
β (u) and

→
δ (u)+

←
δx(u) ≤ `. Again by (6.6) we know that

→
δ (u)+

←
δx(u) ≥ µ(s,x) and therefore

µ(s,x)≤ `⇒ x ∈ A. �

We will store the buckets
←
β (u) as arrays, and we sort them ascending by

←
δx(u).

This allows to skip scanning a remaining bucket if
→
δ (u) +

←
δx(u) > `. The resulting

Algorithm 6.3 efficiently computes PND(s, `). It computes the forward search space
from node s and intersects them with the backward search spaces stored in the buckets.
The main part of the algorithm is spent scanning the buckets in Lines 5–7. But this is
very fast, as scanning consecutive pieces of main memory is cache-efficient. Also note
that we could easily not only compute the set of POI, but also their distance from source
node s. We just need to store for each POI the smallest observed distance

→
δ (u)+

←
δx(u)

when we add x to the set of close POI in Line 7.

Algorithm 6.3: PoiNodeDistance(s, `)
input : source node s, distance `
output : PND(s, `)

1 compute →σ (s); // forward search space
2 Y := /0; // set of close POI
3 foreach (u,

→
δ (u)) ∈ →σ (s) ascending by

→
δ (u) do // loop over reached nodes

4 if
→
δ (u)> ` then break; // prune remaining nodes

5 foreach (x,
←
δx(u)) ∈

←
β (u) ascending by

←
δx(u) do // scan bucket

6 if
→
δ (u)+

←
δx(u)> ` then break; // prune remaining bucket

7 Y := Y ∪{x}; // node x is close POI

8 return Y

6.4. Closest Point-of-Interest Location 187

6.4.2 POI close to a Path
Definition 6.11 describes the set of POI close to the shortest path between a source node
s and a target node t. We deliberately say the shortest path although there are potential
several shortest paths, as we define a POI to be close in the sense that it requires only a
small detour ` compared to the shortest-path distance from s to t.

Definition 6.11 Let X ⊆V be a set of POI. The POI within detour ` between source node
s and target node t are the set PPD(s, t, `) := {x ∈ X | µ(s,x)+µ(x, t)≤ µ(s, t)+ `}
(POI Path Distance).

Computing the POI close to a path is much harder than computing the ones close
to a node. Such POI can be far away from the source and target node, and also from a
shortest path between them. This problem is similar to Section 6.3, where we want to
compute detours. However, here we have a set of POI that we need to match to a path,
instead of a set of drivers that needs to be matched to passengers. A naïve algorithm
would perform a forward Dijkstra search from s and a backward Dijkstra search from t,
both limited to the distance µ(s, t)+ `. Thus, this search is very expensive, as it has to
depend on the shortest-path length between s and t and not only on the detour `.

To engineer a faster algorithm, we compute forward and backward search spaces
from each POI x and store their entries into forward buckets

→
β (u) and backward buck-

ets
←
β (u) as described in Section 6.1.1. That means that we store additional forward

buckets compared to Section 6.4.1. These forward buckets are necessary to compute the
distances from the POI to the target node t.

At query time, we are given nodes s, t and distance `, and we compute PPD(s, `)
using (6.11).

PPD(s, t, `) =

x

∣∣∣∣∣∣∣
∃(u,

→
δ (u)) ∈ →σ (s) : ∃(x,

←
δx(u)) ∈

←
β (u),

∃(v,
←
δ (v)) ∈ ←σ (t) : ∃(x,

→
δx(v)) ∈

→
β (v) :

→
δ (u)+

←
δx(u)+

→
δx(v)+

←
δ (v)≤ µ(s, t)+ `

 (6.11)

Note that
←
δx(u) denotes the distance from u to x computed by the backward search

from x, and
→
δx(v) denotes the distance from x to v computed by the forward search from

x, see Figure 6.28.

Lemma 6.12 Equation (6.11) is correct.

Proof. Let A be the set from the definition of PPD(s, t, `) and B be the set from (6.11).
We need to prove that A = B.
⊆: Let x∈A. Then µ(s,x)+µ(x, t)≤ µ(s, t)+`. By (6.6) we know that ∃(u,

→
δ (u))∈

→
σ (s) : ∃(x,

←
δx(u)) ∈

←
β (u) with

→
δ (u) +

←
δx(u) = µ(s,x). And by (6.7) we know that

∃(v,
←
δ (v)) ∈ ←σ (t) : ∃(x,

→
δx(v)) ∈

→
β (v) with

→
δx(v)+

←
δ (v) = µ(x, t). Therefore, x ∈ B.

188 Chapter 6. Batched Shortest Paths Computation

s

u

←
β (u)

x

v

→
β (v)

t

→
δ (u)

←
δx(u)

→
δx(v) ←

δ (v)

Figure 6.28: Computing the distance via POI x between source node s and target node t
by scanning the backward bucket at each node u reached by the forward search from s,
and by scanning the forward bucket at each node v reached by the backward search from
t. The paths obtained by scanning the buckets are represented by dashed edges, as these
paths are not actually traversed.

⊇: Let x∈ B. Then there are nodes u,v such that (u,
→
δ (u))∈ →σ (s),(x,

←
δx(u))∈

←
β (u),

(v,
←
δ (v))∈ ←σ (t),(x,

→
δx(v))∈

→
β (v) with

→
δ (u)+

←
δx(u)+

→
δx(v)+

←
δ (v)≤ µ(s, t)+`. Again

by (6.6) and (6.7) we know that
→
δ (u) +

←
δx(u) ≥ µ(s,x),

→
δx(v) +

←
δ (v) ≥ µ(x, t) and

therefore µ(s,x)+µ(x, t)≤ µ(s, t)+ `⇒ x ∈ A. �

Our Algorithm 6.4 based on (6.11) first computes PND(s,µ(s, t)+ `) including the
distances from s to the POI. Then it scans the backward buckets of the nodes reached by

Algorithm 6.4: PoiPathDistance(s, t, `)
input : source node s, target node t, distance `
output : PPD(s, t, `)

1 compute →σ (s) and ←σ (t); // forward and backward search space
2 Y := /0; // set of close POI
3
→
d := 〈∞, . . . ,∞〉; // tentative distances µ(s, ·)

4 `+ := µ(s, t)+ `; // maximum path length via POI
5 foreach (u,

→
δ (u)) ∈ →σ (s) ascending by

→
δ (u) do // loop over forward nodes

6 if
→
δ (u)> `+ then break; // prune remaining nodes

7 foreach (x,
←
δx(u)) ∈

←
β (u) ascending by

←
δx(u) do // scan bucket

8 if
→
δ (u)+

←
δx(u)> `+ then break; // prune rest of bucket

9
→
d [x] := min

(→
d [x],

→
δ (u)+

←
δx(u)

)
; // update distance from s

10 foreach (u,
←
δ (u)) ∈ ←σ (t) ascending by

←
δ (u) do // loop over backward nodes

11 if
←
δ (u)> `+ then break; // prune remaining nodes

12 foreach (x,
→
δx(u)) ∈

→
β (u) ascending by

→
δx(u) do // scan bucket

13 if
→
δx(u)+

←
δ (u)> `+ then break; // prune rest of bucket

14 if
→
d [x]+

→
δx(u)+

←
δ (u)≤ `+ then Y := Y ∪{x}; // node x is close POI

15 return Y

6.4. Closest Point-of-Interest Location 189

a backward search form t to obtain distances from the POI to t. If such a distance plus
the previously computed distance from s to this POI is within our bound µ(s, t)+ `, we
add the POI to our tentative set of close POI. However, the pruning technique used for
ride sharing (Section 6.3.2) cannot be applied, as a POI is a single node and not a path.
Computing the detour to each POI in PPD(s, t, `) can be done similarly to Algorithm 6.3
by storing the smallest observed detour when we add x to the set of close POI in Line 14.

6.4.3 k-closest POI

The algorithms of Sections 6.4.1 and 6.4.2 compute the POI subject to a distance `.
But we can also compute the k-closest POI. To compute them, we modify the previous
algorithms. We keep the found POI in a maximum priority queue with their distance.
If there are more than k POI in the queue, we remove the one with the largest distance
(delete max). The distance ` is obtained from the maximum value of the priority queue,
once there are k POI in it. As we use ` for pruning, we should try to obtain a low value
as fast as possible.

POI close to a Node. The k-closest POI are not necessarily unique, as there can be
POI with identical distance from the source node s. Formally, we want to compute a set
PNC(s,k) of k-closest POI to a node s given by Definition 6.13.

Definition 6.13 Let X ⊆ V be a set of POI. A set PNC(s,k) (POI Node Closest) of k-
closest POI to a node s has the properties

PNC(s,k)⊆ X (6.12)

|PNC(s,k)|= min(k, |{x ∈ X | µ(s,x)< ∞}|) (6.13)

∀x ∈ X \PNC(s,k) : µ(s,x)≥max{µ(s,y) | y ∈ PNC(s,k)} (6.14)

Our algorithm will return an arbitrary set fulfilling the above properties. However,
it requires only small changes to the algorithm to additionally compute all POI with
distance of the kth POI. To compute a set PNC(s,k), we modify the previous algorithm
(Section 6.4.1). The resulting Algorithm 6.3 efficiently computes PNC(s,k). Note that
the maximum priority queue does not only hold the k-closest POI, but also the shortest-
path distance from s to t via each POI. So we could additionally return the detours in
Line 11 with almost no overhead.

While the correctness of Algorithm 6.3 directly followed from Lemma 6.10, the cor-
rectness of Algorithm 6.5 is not so straightforward and we will prove it in Lemma 6.14.

Lemma 6.14 Algorithm 6.5 computes a set PNC(s,k) that fulfills (6.12), (6.13), and
(6.14).

190 Chapter 6. Batched Shortest Paths Computation

Algorithm 6.5: PoiNodeClosest(s, k)
input : source node s, cardinality k
output : PNC(s,k)

1 compute →σ (s);
2 Y := /0; // maximum priority queue holding the k-closest POI
3 ` := ∞; // maximum distance
4 foreach (u,

→
δ (u)) ∈ →σ (s) ascending by

→
δ (u) do // loop over reached nodes

5 if
→
δ (u)> ` then break; // prune remaining nodes

6 foreach (x,
←
δx(u)) ∈

←
β (u) ascending by

←
δx(u) do // scan bucket

7 if
→
δ (u)+

←
δx(u)> ` then break; // prune rest of bucket

8 Y .update
(→

δ (u)+
←
δx(u), x

)
; // update distance of POI

9 if |Y |> k then Y .deleteMax(); // remove POI with maximum distance
10 if |Y |= k then ` := Y .max(); // update maximum detour

11 return {x | (·,x) ∈ Y}; // return k-closest POI

Proof. (6.12) holds by the choice of nodes inserted into Y .
Due to the check in Line 9, |Y | ≤ k. The case |Y | < k can only happen if this check

always failed. Thus, ` = ∞ and the algorithm computes all POI reachable from s. So
(6.13) also holds.

Let x ∈ X \ {x | (·,x) ∈ Y} with µ(s,x) < ∞. By the correctness of Algorithm 6.3
based on Lemma 6.10, we know that all nodes y ∈ X with µ(s,y) < ∞ and µ(s,y) ≤ `
have been inserted into Y with distance µ(s,y). If x has been inserted into Y , we
know that µ(s,x) ≥ max{µ(s,y) = δ | (δ ,y) ∈ Y} by the definition of a maximum pri-
ority queue. Assume that x has not been inserted into Y . Lines 7 and 10 ensure that
max{µ(s,y) = δ | (δ ,y) ∈ Y} ≤ `. As x has not been inserted, we can follow that
µ(s,x)> `≥max{µ(s,y) | (·,y) ∈ Y}, and (6.14) holds.

POI close to a Path. Formally, we want to compute a set PPC(s, t,k) of k-closest POI
to a path given by its source node s and target node t following Definition 6.15.

Definition 6.15 Let X ⊆ V be a set of POI. A set PPC(s, t,k) (POI Path Closest) of k
POI within smallest detour between source node s and target node t has the properties

PPC(s, t,k)⊆ X (6.15)

|PPC(s, t,k)|= min(k, |{x ∈ X | µ(s,x)+µ(x, t)< ∞}|) (6.16)

∀x ∈ X \PPC(s, t,k) : µ(s,x)+µ(x, t)≥max{µ(s,y)+µ(y, t) | y ∈ PPC(s, t,k)}
(6.17)

6.4. Closest Point-of-Interest Location 191

To compute a set PPC(s, t,k), we modify the previous algorithm (Section 6.4.2). The
resulting Algorithm 6.3 efficiently computes PPC(s,k). The observing reader may note
that we need more modifications than for Algorithm 6.5 that only computes nodes close
to a node. Additionally to adding the maximum priority queue, we also combine the
loops over the forward and backward search space. The reason is that when we want
to add a POI to the maximum priority queue, we need to have a tentative distance from
the source node to the POI, and a tentative distance from the POI to the target. The
first distance is computed by looping over the forward search space, the second distance
is computed by looping over the backward search space. By combining the loop over
forward and backward search space we find some initial POI faster, and once we have
k POI, we start pruning by setting `+ to a finite value in Line 17. However, combining
forward and backward search requires to store another array of tentative distances, one
for the distances from s to the POI as before, and a new one for the distances from the
POI to t. Note again, that the maximum priority queue does not only hold the k-closest
POI, but also the shortest-path distance from s to t via each POI.

Algorithm 6.6: PoiPathClosest(s,t,k)
input : source node s, target node t, cardinality k
output : PPC(s, t,k)

1 compute →σ (s) and ←σ (t); // forward and backward search space
2 Y := /0; // maximum priority queue holding the k-closest POI
3 `+ := ∞; // maximum path length via POI
4
→
d := 〈∞, . . . ,∞〉; // tentative distances µ(s, ·)

5
←
d := 〈∞, . . . ,∞〉; // tentative distances µ(·, t)
// Merge both search spaces to loop over them by distance.

6 S :=
{
(→,u,

→
δ (u)) | (u,

→
δ (u)) ∈ →σ (s)

}
∪
{
(←,u,

←
δ (u)) | (u,

←
δ (u)) ∈ ←σ (t)

}
;

7 foreach (∼,u,
∼
δ (u)) ∈ S ascending by

∼
δ (u) do

8 if
∼
δ (u)> `+ then break; // prune remaining nodes

// negation changes direction: ¬←=→ and ¬→=←
9 foreach (x,

¬∼
δx (u)) ∈

¬∼
β (u) ascending by

¬∼
δx (u) do // scan bucket

10 d :=
∼
δ (u)+

¬∼
δx (u); // tentative distance from or to POI

11 if d > `+ then break; // prune rest of bucket
12 if

∼
d [x]> d then // decrease tentative distance

13
∼
d [x] := d; // update distance

14 if
¬∼
d [x] 6= ∞ and d +

¬∼
d [x]≤ `+ then // detour found

15 Y .update
(
d +

¬∼
d [x], x

)
; // update distance of POI

16 if |Y |> k then Y .deleteMax(); // remove farthest POI
17 if |Y |= k then `+ := Y .max(); // update maximum length

18 return {x | (·,x) ∈ Y}; // return k-closest POI

192 Chapter 6. Batched Shortest Paths Computation

Lemma 6.16 Algorithm 6.6 computes a set PPC(s, t,k) that fulfills (6.15), (6.16), and
(6.17).

Proof. (6.15) holds by the choice of nodes inserted into Y .
Due to the check in Line 16, |Y | ≤ k. The case |Y |< k can only happen if this check

always failed. Thus, `+ = ∞ and the algorithm computes all POI reachable from s and t.
So (6.16) also holds.

Let x ∈ X \ {x | (·,x) ∈ Y} with µ(s,y) + µ(y, t) < ∞. By the correctness of Al-
gorithm 6.4 based on Lemma 6.12, we know that all nodes y ∈ X with µ(s,y) +
µ(y, t) < ∞ and µ(s,y) + µ(y, t) ≤ `+ have been inserted into Y with distance
µ(s,y) + µ(y, t). If x has been inserted into Y , we know that µ(s,x) + µ(x, t) ≥
max{µ(s,y)+µ(y, t) = δ | (δ ,y) ∈ Y} by the definition of a maximum priority queue.
Assume that x has not been inserted into Y . Lines 14 and 17 ensure that
max{µ(s,y)+µ(y, t) = δ | (δ ,y) ∈ Y} ≤ `+. As x has not been inserted, we can follow
that µ(s,x)+µ(x, t)> `+ ≥max{µ(s,y)+µ(y, t) | y ∈ PPC(s, t,k)}, and (6.17) holds.

6.4. Closest Point-of-Interest Location 193

6.4.4 Experiments

Instance. Our experiments have been performed on a real-world road network of Ger-
many with 4.4 million nodes and 10.7 million directed edges, provided by PTV AG for
scientific use. We do not provide experiments for a larger instance, as the query time for
the Dijkstra-based algorithms would be too large.

Environment. Experiments have been done on one core of a single AMD Opteron
Processor 270 clocked at 2.0 GHz with 8 GiB main memory and 2×1 MiB L2 cache,
running SuSE Linux 11.1 (kernel 2.6.27). The program was compiled by the GNU C++
compiler 4.3.2 using optimization level 3. We use CH (aggressive approach [59]) as
bidirected and non-goaldirected speed-up technique.

Basic setup. The numbers are averages over 1 000 queries. We report results for dif-
ferent fractions of POI. The POI have been picked uniformly at random. For the POI
computation close to a node, we pick the node uniformly at random. For the POI com-
putation close to a shortest path, we either pick the source and target node uniformly at
random, and report results for different fractions of POI. Or we pick source and target
node with a certain shortest-path distance and 1% POI. We select them by repeatedly
picking a source node uniformly at random, running Dijkstra’s algorithm, and taking the
first settled node with distance larger or equal to the desired shortest-path distance as
target.

10 30 60 180

1
0

1
0
0

1
0

0
0

distance [min]

sp
ee

d
−

u
p

0.5%

1%

2%

Figure 6.29: Time speed-up of our new algorithm to compute POI close to a node. Each
line corresponds to a fixed fraction of POI. The vertical axis has logarithmic scale.

194 Chapter 6. Batched Shortest Paths Computation

POI close to a Node. In Table 6.30, we compare the performance of a simple algo-
rithm based on Dijkstra’s algorithm to our new algorithm. As expected, the runtime of
Dijkstra’s algorithm only depends on distance ` and not on the fraction of POI. That
is because it settles all nodes within distance ` independent of their belonging to the
set of POI. Its performance is only good to find very close POI within 10–30 minutes.
Beyond that, the computational time is too high, as the increases is quadratic in `. But
even for 10 minutes distance, our new algorithm has a speed-up of more than 10, see
also Figure 6.29. Also, our new algorithm depends much less on the distance `, even
the computation of all POI within 3 hours is done within milliseconds. However, the
query time also depends on the fraction of POI, as with more POI, there are more bucket
entries to scan. So the speed-up of our algorithm increases with increasing distance `,
but as expected decreases with the fraction of POI.

Table 6.30: Performance of algorithms that compute all POI close to a node.
(a) comparison

time [ms] settled nodes [×103]
distance ` [min] = distance ` [min] =

method POI 10 30 60 180 10 30 60 180

Dijkstra
0.5% 1.4 26 147 1 588 2.4 41 201 1 807

1% 1.4 26 147 1 587 2.4 41 201 1 807
2% 1.4 26 147 1 589 2.4 41 201 1 807

CH +
buckets

0.5% 0.10 0.14 0.26 1.41 0.02 0.07 0.12 0.26
1% 0.10 0.16 0.35 2.46 0.02 0.07 0.12 0.26
2% 0.10 0.18 0.53 4.53 0.02 0.07 0.12 0.26

(b) time speed-up

fraction distance ` [min] =
of POI 10 30 60 180

0.5% 14 185 575 1 127
1% 14 169 421 645
2% 13 143 278 350

(c) scanned bucket entries [×103]

fraction distance ` [min] =
of POI 10 30 60 180

0.5% 0.05 1.2 8.8 113
1% 0.09 2.4 17.6 226
2% 0.16 4.8 35.0 452

6.4. Closest Point-of-Interest Location 195

POI close to a Path. Computing the POI with small detour compared to the shortest-
path distance between a source and target node is much harder than computing the POI
close to a node, see Table 6.32. This is because we need for each POI the shortest-path
distance from the source and to the target of the path, and thus we cannot prune the
Dijkstra with the detour distance but also need to add the shortest-path distance. There-
fore, the runtime of a Dijkstra based algorithm is quite large, and increases with path
length and detour, but again is independent of the number of POI. Our new algorithm is
much faster, but the runtime increases with detour, number of POI, and path length. For
random queries, speed-up does not increase much with increasing detour, but is already
very high for small detours, see also Figure 6.31. The shortest-path distance of a random
source target pair is around 209 minutes, and therefore already very long. We see that for
shorter paths, the speed-up still increases with the detour. However, for very long paths
plus long detours, the speed-up of our algorithm slightly decreases as we then need to
scan over almost all bucket entries.

10 30 60 180

0
1
0
0

0
2
0

0
0

detour [min]

sp
ee

d
−

u
p

0.5% 1% 2%

(a) fraction of POI

10 30 60 180

detour [min]

60

180

300

(b) path [min]

Figure 6.31: Time speed-up of our new algorithm to compute POI close to a path. The
vertical axis has non-logarithmic scale.

196 Chapter 6. Batched Shortest Paths Computation

Table 6.32: Performance of algorithms that compute all POI with small detour to a path.
(a) comparison

time [ms] settled nodes [×103]
fraction detour ` [min] = detour ` [min] =

method of POI 10 30 60 180 10 30 60 180

Dijkstra
0.5% 4 628 5 319 6 185 8 421 4 741 5 332 6 134 8 154

1% 4 686 5 359 6 254 8 409 4 741 5 332 6 134 8 154
2% 4 664 5 355 6 261 8 428 4 741 5 332 6 134 8 154

CH +
buckets

0.5% 2.0 2.3 2.9 4.4 0.34 0.34 0.34 0.34
1% 4.0 4.8 5.9 9.1 0.34 0.34 0.34 0.34
2% 8.5 10.1 12.3 18.9 0.34 0.34 0.34 0.34

path [min]

Dijkstra
60 399 737 1 432 5 328 575 965 1 719 5 624

180 3 833 4 609 5 789 8 661 4 048 4 754 5 777 8 337
300 7 357 7 900 8 485 9 215 7 229 7 663 8 121 8 731

CH +
buckets

60 0.8 1.2 1.8 5.2 0.34 0.34 0.34 0.34
180 3.3 4.1 5.2 8.7 0.34 0.34 0.34 0.34
300 5.9 6.8 7.9 10.5 0.34 0.34 0.34 0.34

(b) time speed-up

fraction detour ` [min] =
of POI 10 30 60 180

0.5% 2 336 2 275 2 168 1 921
1% 1 164 1 123 1 068 926
2% 547 530 510 445

path [min]
60 474 627 798 1 025

180 1 157 1 132 1 119 996
300 1 237 1 170 1 079 879

(c) scanned bucket entries [×103]

fraction detour ` [min] =
of POI 10 30 60 180

0.5% 176 203 243 378
1% 353 406 486 757
2% 707 813 974 1 515

path [min]
60 33 57 104 404

180 269 327 418 736
300 565 617 689 869

6.4. Closest Point-of-Interest Location 197

k-closest POI to a Node. In Table 6.33, we compare the performance of a simple
algorithm based on Dijkstra’s algorithm to our new algorithm. The simple algorithm
stops as soon as k POI are found, and therefore its query time increases with k. Also, as
the expected number of settled nodes until k POI are found depends on the fraction of
POI in the graph, the query time decreases with increasing fraction of POI. Due to the
nature of Dijkstra’s algorithm, it finishes once k POI have been settled. In contrary, our
new algorithm almost only depends on the number k and is independent of the fraction
of POI in the graph. That is because the most time is used scanning the buckets, and
we scan an almost constant number of bucket entries per found POI. So we achieve
best speed-up with a small fraction of POI and a large k, see also Figure 6.34. Also note
that the number of scanned bucket entries increases superlinearly with k. That is because
with a larger k, we need to consider a lot of bucket entries that give a suboptimal distance
from source node to POI. Almost any scanned bucket entry gives a distance to a POI that
needs to be considered, and we need to access the maximum priority queue holding the
k closest POI for it.

Table 6.33: Performance of algorithms that compute the k-closest POI to a node. POI
that are not pruned by the maximum detour of the maximum priority queue are consid-
ered. A POI can be considered multiple times for entries in different buckets.

(a) comparison

time [ms] settled nodes [×103] POI considerations
fraction k = k = k =

method of POI 10 100 1 k 10 k 10 100 1 k 10 k 10 100 1 k 10 k

Dijkstra
0.5% 1.2 11.1 133 1 662 2.0 20.0 201 2 001 10 100 1.00 k 10 k

1% 0.6 5.4 62 786 1.0 10.0 100 1 002 10 100 1.00 k 10 k
2% 0.4 2.8 29 368 0.5 5.0 50 500 10 100 1.00 k 10 k

CH +
buckets

0.5% 0.10 0.14 0.49 4.61 0.03 0.06 0.13 0.27 35 545 9.22 k 141 k
1% 0.09 0.13 0.48 4.71 0.02 0.04 0.10 0.22 32 472 7.92 k 126 k
2% 0.09 0.13 0.46 4.70 0.02 0.03 0.08 0.17 29 418 6.74 k 111 k

(b) time speed-up

fraction k =
of POI 10 100 1 k 10 k

0.5% 12 79 271 361
1% 7 41 130 167
2% 4 21 63 78

(c) scanned bucket entries

fraction k =
of POI 10 100 1 k 10 k

0.5% 46 575 9.29 k 141 k
1% 41 495 7.98 k 126 k
2% 36 436 6.78 k 111 k

k-closest POI to a Path. In Table 6.36, we compare the performance of a simple algo-
rithm based on a bidirectional Dijkstra algorithm to our new algorithm. Even computing
just the 10 closest POI takes several seconds with the simple algorithm. The query time
increases with increasing k, and also with decreasing fraction of POI, as we need to settle

198 Chapter 6. Batched Shortest Paths Computation

10 100 1000 10000

1
0

1
0
0

5
5

0
5

0
0

k =

sp
ee

d
−

u
p

0.5%

1%

2%

Figure 6.34: Time speed-up of our new algorithm to compute the k-closest POI to a
node. Each line corresponds to a fixed fraction of POI. Both axis have logarithmic scale.

10 100 1000 10000

0
1

0
0
0

2
0
0
0

k =

sp
ee

d
−

u
p

0.5% 1% 2%

(a) fraction of POI

10 100 1000 10000

k =

60

180

300

(b) path [min]

Figure 6.35: Time speed-up of our new algorithm to compute the k-closest POI to a path.
The vertical axis has non-logarithmic scale.

6.4. Closest Point-of-Interest Location 199

more nodes. Our new algorithm has an increasing query time with k, but also with the
fraction of POI, as the buckets contain more entries. Interestingly, a lot of bucket entries
get pruned by the maximum distance of our maximum priority queue. This is different
than for the k-closest POI to a node, where almost no bucket entry got pruned. The
speed-up of our algorithm drops significantly for larger k, arguably due to cache-effects
as the maximum priority queue is large and gets accessed a lot. But the speed-up still
remains significantly above 500, see also Figure 6.35.

Table 6.36: Performance of algorithms that compute the k-closest POI to a path. POI that
are not pruned by the maximum detour of the maximum priority queue are considered.
A POI can be considered multiple times for entries in different buckets.

(a) comparison

time [ms] settled nodes [×103] POI considerations
fract. k = k = k =

method of POI 10 100 1 k 10 k 10 100 1 k 10 k 10 100 1 k 10 k

Dijkstra
0.5% 4 379 4 566 5 356 8 878 4 502 4 667 5 359 8 533 44 334 2.16 k 12.2 k

1% 4 351 4 481 4 940 7 587 4 472 4 602 5 006 7 339 46 369 2.50 k 14.5 k
2% 4 320 4 440 4 727 6 340 4 451 4 552 4 805 6 223 47 403 2.87 k 17.3 k

CH +
buckets

0.5% 1.96 2.17 3.05 7.13 0.34 0.34 0.34 0.34 121 768 4.72 k 29.8 k
1% 4.06 4.35 5.62 12.41 0.34 0.34 0.34 0.34 137 892 5.40 k 34.2 k
2% 9.25 10.22 12.14 23.64 0.34 0.34 0.34 0.34 154 1 029 6.30 k 39.5 k

path [min]

Dijkstra
60 290 372 1 029 6 331 443 544 1 297 6 595 34 219 1.31 k 10.5 k

180 3 472 3 658 4 169 7 303 3 728 3 880 4 327 7 059 46 368 2.39 k 13.2 k
300 7 038 7 159 7 486 8 524 6 991 7 092 7 315 8 113 49 422 3.07 k 17.5 k

CH +
buckets

60 0.65 0.82 1.85 9.90 0.34 0.34 0.34 0.34 73 460 3.22 k 28.1 k
180 3.42 3.74 5.04 11.96 0.34 0.34 0.34 0.34 132 833 4.98 k 31.5 k
300 6.74 7.05 8.57 15.54 0.34 0.34 0.34 0.34 160 1 077 6.46 k 38.2 k

(b) time speed-up

fraction k =
of POI 10 100 1 000 10 000

0.5% 2 229 2 107 1 758 1 246
1% 1 072 1 030 879 612
2% 467 434 390 268

path [min]
60 446 453 557 640

180 1 015 978 827 611
300 1 044 1 016 873 549

(c) scanned bucket entries

fraction k =
of POI 10 100 1 k 10 k

0.5% 171 k 180 k 213 k 399 k
1% 340 k 353 k 394 k 625 k
2% 676 k 696 k 749 k 1 017 k

path [min]
60 27 k 35 k 89 k 525 k

180 254 k 268 k 314 k 581 k
300 547 k 560 k 590 k 704 k

200 Chapter 6. Batched Shortest Paths Computation

Precomputation. The precomputation of the buckets takes time and space roughly
linear in the number of POI, as you can see in Table 6.37. Per 10k POI on the German
road network, the precomputation takes about 2 seconds and requires about 7 MiB per
direction. Computing the POI close to a node requires only backward buckets, as we
are only interested in the distance to the POI. But to compute POI close to paths, we
require also forward buckets, thus doubling the precomputation effort. Note that the
precomputation can be easily parallelized.

Table 6.37: Precomputation performance.
close to a node close to a path

fraction POI time bucket entries time bucket entries
of POI [×103] [s] [×106] [MiB] [s] [×106] [MiB]

0.5% 22 4.1 1.9 14 7.4 3.9 29
1% 44 8.0 3.8 29 14.7 7.7 59
2% 88 15.9 7.6 58 29.3 15.4 118

6.5. Concluding Remarks 201

6.5 Concluding Remarks

Review. The basic idea of precomputing and storing search spaces is useful to effi-
ciently solve a variety of problems. We used the idea to present new efficient algorithm
for three different problems.

The first problem is the computation of a time-dependent travel time table. We
present five different algorithms with different trade-offs between preprocessing time,
space and query time. An important ingredient is the efficient exact intersection of for-
ward and backward search spaces using approximate TTFs. The computation of addi-
tional data speeds up the queries, but usually increases precomputation time and space.
A large impact on the precomputation time and space has the computation of approxi-
mate instead of exact TTFs. We are able to reduce time by more than one and space by
more than two orders of magnitude with an average error of less than 1%. Furthermore,
we provide theoretical error bounds and showed that these bounds are also applicable
for TCH queries on approximate TTFs.

The second contribution in this chapter is an algorithmic solution to efficiently com-
pute detours to match ride sharing offers and request. Our algorithm is the first one
feasible in practice, even for large datasets, with matching times of a few milliseconds.
As a match with small detour is potentially far away from source and target, basic prun-
ing techniques fail. Still, we are able to efficiently prune the computation by additionally
computing search spaces in the other direction than required to compute the detours.

Finally, we present a new simple but efficient algorithm to compute POI close to a
node or the shortest path of a pair of nodes. The computation of POI in a very small
radius of ten minutes is accelerated by more than one order of magnitude compared to
Dijkstra’s algorithm. For larger radii, the speed-up increases to three orders of magni-
tude. The computation of POI close to the shortest path benefits the most from our new
technique, it takes now milliseconds instead of seconds.

Future Work. Our time-dependent algorithm is an important step to a time-dependent
transit node routing algorithm [14]. Transit node routing is currently among the fastest
speedup techniques for time-independent road networks and essentially reduces the
shortest path search to a few table look-ups. Our algorithms can either compute or com-
pletely replace such tables. The algorithms to the other two problems are currently not
time-dependent, it would be interesting to adapt them to the time-dependent scenario.
However, equally interesting would be an adaption to flexible scenarios (Chapter 5).

Additionally, the ride sharing problem contains an abundance of interesting open
problems. Incorporating car switching and multiple passengers per car will bring new
and interesting algorithmic challenges. An adaption of the algorithm to the shared taxi
system of developing countries will be very interesting as well.

We see that precomputing search spaces is an efficient concept to solve application-
oriented problems. It would be interesting to see what other problems can be addressed

202 Chapter 6. Batched Shortest Paths Computation

in addition to the ones presented in this thesis, especially with regard to nontrivial en-
hancements such as the pruning used for ride sharing.

A new CH-based algorithm for one-to-all computation on GPUs [40] is able to com-
pute the shortest-path distances within a few milliseconds on continental-sized road net-
works. It can be used when the buckets grow too large. Our ride sharing algorithm is
sufficiently fast when dealing with 100 000 offers, but for more offers, this GPU-based
algorithm can be used to compute the detours, the idea of detour computation stays the
same. The computation of close POI can also benefit from this new GPU-based algo-
rithm in case that POI within a very large distance should be computed, or there are
a lot of POI in the graph. However, most commonly, the distances are small and the
fraction of POI in the graph is low, and our algorithm will be faster and more resource-
efficient. Furthermore, compared to the GPU-based algorithm, our algorithm allows a
mobile implementation based on mobile CH [126].

Also very recent results [1] show that the search spaces of CH can be additionally
downsized. This downsizing can directly increase the performance of all algorithms
presented in this chapter, especially when a large number of search spaces is stored.

References. Section 6.2 is based on a conference paper [66] which the author of this
thesis published together with Peter Sanders. Section 6.3 is based on a technical re-
port [63] and a conference paper [64] published together with Dennis Luxen, Sabine
Neubauer, Peter Sanders, and Lars Volker. Section 6.4 has not been published before.
Some wordings of these articles are used in this thesis.

7
Discussion

7.1 Conclusion

Advanced route planning is a vast field of research. While some of its problems can be
solved by just applying basic route planning algorithms, other problems impose signifi-
cant challenges. We addressed some of these challenges and presented the most efficient
algorithms in the areas of public transportation, flexible queries, and batched shortest-
path computation. These algorithms are significantly more advanced than basic route
planning algorithms, as they require new models, new algorithmic ingredients, or even
completely new algorithmic ideas. All of our algorithms were designed, implemented
and evaluated following the paradigm of algorithm engineering.

Our fully realistic public transportation routing algorithm is the first and only one
able to route efficiently in very large and poorly structured networks. Based on the con-
cept of transfer patterns it allows a fast and scalable query algorithm. Precomputing
the transfer patterns is done using a hierarchical hub-station approach, that is augmented
by heuristic ingredients to cope with the irregularities contained in every realistic public
transportation network. The resulting algorithm is used on a major public transportation
website. Furthermore, we showed how to efficiently contract public transportation net-
works in the scenario with realistic transfer durations using a new station graph model.

The adaption of Dijkstra’s algorithm or A∗ search to flexible queries on road networks
is rather simple as no precomputation is performed. However, with precomputation, ma-
jor algorithmic augmentations are required to support flexible queries. We augmented
the concept of node contraction to the scenarios with two edge weights and edge re-
strictions. An important ingredient is to store information with shortcuts to prune their
relaxation depending on the current query parameters. Augmenting ALT to flexible sce-
narios required the computation of feasible lower bounds. To tighten the lower bounds in
dependence of the query parameters, we additionally computed landmarks and distances
for some selected query parameters. The resulting algorithms achieve a speed-up of over
three orders of magnitude over Dijkstra’s algorithm, with preprocessing time of a few
hours on continental-sized road networks.

204 Chapter 7. Discussion

Besides that, we looked at several problems requiring batched shortest-path com-
putations. We show a new algorithm for time-dependent travel time computation that
efficiently uses approximations. Instead of computing a whole travel time table, we
provide an interface to such a table and present various algorithms to implement this
interface. One of these algorithms has precomputation complexity linear in the number
of rows plus columns of the table, and constant query time. Also, we are the first to pro-
vide approximation guarantees for time-dependent speed-up techniques by successfully
addressing the problem of stacked errors of chained travel time functions. Furthermore,
we generalize the idea of search space precomputation to develop new algorithmic ap-
proaches to ride sharing and point-of-interest location. We efficiently find matches with
small detour, without relying on restricted common databases or spatial data structures.

7.2 Future Work
We summarize the future work discussed at the end of Chapters 4–6. The transfer pat-
terns approach for routing in public transportation networks is very successful except for
its very high precomputation time. It would be desirable to further reduce this time, and
maybe even perform an exact precomputation. This requires new ideas to address the
irregularities of public transportation networks. Also, the computed transfer patterns can
be used to propose some good connections independent of the departure time.

Our flexible scenarios should be combined into a single algorithm, and also extended
to further scenarios such as time-dependency. Then, they can be used to augment algo-
rithms that where previously designed for basic speed-up techniques, especially when
relying on node contraction. For example, we could use them to augment our batched
shortest-path algorithms to flexible scenarios.

The batched shortest-paths algorithms presented in this theses follow the concept of
search space precomputation. It would be interesting to find more applications where this
concept can be applied, especially when nontrivial enhancements are required. Also, the
time-dependent travel time table algorithm can be used to build a time-dependent transit
node routing algorithm to further speed up arbitrary time-dependent one-to-one queries.

7.3 Outlook
In the long run, our goal should be to build the ultimate route planning system. All
the different aspects of route planning should be combined into a single flexible, multi-
modal, multi-criteria, dynamic, and time-dependent system. It should be able to effi-
ciently answer single shortest-path queries, batched shortest-path queries, and even be
able to compute alternative routes. We think this thesis is an important step towards such
an ultimate route planner, but we also know that there is still a long way to go. And
most likely, we have to make some clever compromises along the way. We should not
only concentrate on developing efficient algorithms to a given problem, but reconsider

7.3. Outlook 205

the problem definition as well. Of course, redefining the problem must not give the idea
behind the initial problem definition away. The resulting algorithms must still produce
good practical results. This pragmatic philosophy to solve problems therefore focuses
on the usability of the algorithms in practice, and not necessarily on exact mathemati-
cal definitions. This allows us to trade some functionality for more efficient algorithms.
In this thesis, we already made such trade-offs, namely the heuristic transfer patterns
computation in Section 4.2, and the linear combination of multiple edge weights instead
of Pareto-optimality in Section 5.2. Although, from an academic viewpoint, it would
be desirable not make such compromises, they often have indispensable advantages in
practice. We showed that in both cases, our resulting algorithms became significantly
more efficient, without really affecting the quality of the query results. Nevertheless, we
should always strive to avoid as many compromises as possible. Recent history shows us
that this can lead to even more efficient algorithms: Todays fastest speed-up techniques
for basic route planning in road networks are all exact.

As important intermediate goals towards the ultimate route planning system, we
identify

• the creation of an ultimate route planning system restricted to road networks,

• a fully realistic route planning algorithm with fast precomputation for public trans-
portation, for example by enhancing the transfer patterns precomputation (Sec-
tion 4.2), and

• developing efficient approaches to multi-modal problems.

Especially multi-modal problems are difficult, as not only efficient algorithms are
missing, but also formal definitions of the desired solutions that are efficiently com-
putable. The only efficient algorithm we are aware of just works for special combina-
tions, such as the combination of walking and (not fully realistic) public transportation
[42, 119]. But for interesting cases like the combination of car and public transportation,
no efficient algorithms are known.

206 Chapter 7. Discussion

Bibliography
[1] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. A

Hub-Based Labeling Algorithm for Shortest Paths on Road Networks. Technical
Report MSR-TR-2010-165, Microsoft Research, 2010.

[2] Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck.
Alternative Routes in Road Networks. In Festa [56], pages 23–34.

[3] Ittai Abraham, Amos Fiat, Andrew V. Goldberg, and Renato F. Werneck. High-
way Dimension, Shortest Paths, and Provably Efficient Algorithms. In Moses
Charikar, editor, Proceedings of the 21st Annual ACM–SIAM Symposium on Dis-
crete Algorithms (SODA’10), pages 782–793. SIAM, 2010.

[4] Proceedings of the 9th Workshop on Algorithm Engineering and Experiments
(ALENEX’07). SIAM, 2007.

[5] Jacob M. Anthonisse. The rush in a directed graph. Technical Report BN 9/71,
Stichting Mathematisch Centrum, 2e Boerhaavestraat 49 Amsterdam, Oct 1971.

[6] Proceedings of the 3rd Workshop on Algorithmic Methods and Models for Opti-
mization of Railways (ATMOS’03), volume 92 of Electronic Notes in Theoretical
Computer Science, 2004.

[7] Proceedings of the 10th Workshop on Algorithmic Approaches for Transportation
Modeling, Optimization, and Systems (ATMOS’10), OpenAccess Series in Infor-
matics (OASIcs), 2010.

[8] Yossi Azar, Y. Bartal, E. Feuerstein, Amos Fiat, Stefano Leonardi, and A. Rosen.
On Capital Investment. Algorithmica, 25(1):22–36, 1999.

[9] Hannah Bast. Car or Public Transport – Two Worlds. In Susanne Albers, Helmut
Alt, and Stefan Näher, editors, Efficient Algorithms, volume 5760 of Electronic
Notes in Theoretical Computer Science, pages 355–367. Springer, 2009.

[10] Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Har-
relson, Veselin Raychev, and Fabien Viger. Fast Routing in Very Large Public
Transportation Networks using Transfer Patterns. In Proceedings of the 18th An-
nual European Symposium on Algorithms (ESA’10), Lecture Notes in Computer
Science, pages 290–301. Springer, 2010.

[11] Holger Bast, Stefan Funke, and Domagoj Matijevic. TRANSIT - Ultrafast
Shortest-Path Queries with Linear-Time Preprocessing. In Demetrescu et al. [48].

[12] Holger Bast, Stefan Funke, and Domagoj Matijevic. Ultrafast Shortest-Path
Queries via Transit Nodes. In Demetrescu et al. [49], pages 175–192.

208 Bibliography

[13] Holger Bast, Stefan Funke, Domagoj Matijevic, Peter Sanders, and Dominik
Schultes. In Transit to Constant Shortest-Path Queries in Road Networks. In
ALENEX’07 [4], pages 46–59.

[14] Holger Bast, Stefan Funke, Peter Sanders, and Dominik Schultes. Fast Routing in
Road Networks with Transit Nodes. Science, 316(5824):566, 2007.

[15] Gernot Veit Batz, Daniel Delling, Peter Sanders, and Christian Vetter. Time-
Dependent Contraction Hierarchies. In Proceedings of the 11th Workshop on
Algorithm Engineering and Experiments (ALENEX’09), pages 97–105. SIAM,
April 2009.

[16] Gernot Veit Batz, Robert Geisberger, Sabine Neubauer, and Peter Sanders. Time-
Dependent Contraction Hierarchies and Approximation. In Festa [56], pages 166–
177.

[17] Gernot Veit Batz, Robert Geisberger, and Peter Sanders. Time Dependent Con-
traction Hierarchies - Basic Algorithmic Ideas. Technical report, ITI Sanders,
Faculty of Informatics, Universität Karlsruhe (TH), 2008.

[18] Gernot Veit Batz, Robert Geisberger, Peter Sanders, and Christian Vetter. Mini-
mum Time-Dependent Travel Times with Contraction Hierarchies. Submitted to
JEA, 2011.

[19] Reinhard Bauer, Tobias Columbus, Bastian Katz, Marcus Krug, and Dorothea
Wagner. Preprocessing Speed-Up Techniques is Hard. In Proceedings of the 7th
Conference on Algorithms and Complexity (CIAC’10), volume 6078 of Lecture
Notes in Computer Science, pages 359–370. Springer, 2010.

[20] Reinhard Bauer and Daniel Delling. SHARC: Fast and Robust Unidirectional
Routing. In Ian Munro and Dorothea Wagner, editors, Proceedings of the 10th
Workshop on Algorithm Engineering and Experiments (ALENEX’08), pages 13–
26. SIAM, April 2008.

[21] Reinhard Bauer and Daniel Delling. SHARC: Fast and Robust Unidirectional
Routing. ACM Journal of Experimental Algorithmics, 14(2.4):1–29, August 2009.
Special Section on Selected Papers from ALENEX 2008.

[22] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik
Schultes, and Dorothea Wagner. Combining Hierarchical and Goal-Directed
Speed-Up Techniques for Dijkstra’s Algorithm. In McGeoch [104], pages 303–
318.

[23] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik
Schultes, and Dorothea Wagner. Combining Hierarchical and Goal-Directed

Bibliography 209

Speed-Up Techniques for Dijkstra’s Algorithm. ACM Journal of Experimental
Algorithmics, 15(2.3):1–31, January 2010. Special Section devoted to WEA’08.

[24] Richard Bellman. On a Routing Problem. Quarterly of Applied Mathematics,
16:87–90, 1958.

[25] Annabell Berger, Daniel Delling, Andreas Gebhardt, and Matthias Müller–
Hannemann. Accelerating Time-Dependent Multi-Criteria Timetable Information
is Harder Than Expected. In Proceedings of the 9th Workshop on Algorithmic Ap-
proaches for Transportation Modeling, Optimization, and Systems (ATMOS’09),
Dagstuhl Seminar Proceedings, 2009.

[26] Annabell Berger and Matthias Müller–Hannemann. Subpath-Optimality of Multi-
Criteria Shortest Paths in Time- and Event-Dependent Networks. Technical Re-
port 1, University Halle-Wittenberg, Institute of Computer Science, 2009.

[27] Olli Bräysy and Michel Gendreau. Vehicle Routing Problem with Time Windows,
Part I: Route Construction and Local Search Algorithms. Transportation Science,
39(1):104–118, February 2005.

[28] Olli Bräysy and Michel Gendreau. Vehicle Routing Problem with Time Windows,
Part II: Metaheuristics. Transportation Science, 39(1):119–139, February 2005.

[29] Gerth Brodal and Riko Jacob. Time-dependent Networks as Models to Achieve
Fast Exact Time-table Queries. In ATMOS’03 [6], pages 3–15.

[30] Edith Brunel, Daniel Delling, Andreas Gemsa, and Dorothea Wagner. Space-
Efficient SHARC-Routing. In Festa [56], pages 47–58.

[31] Tom Caldwell. On Finding Minimum Routes in a Network With Turn Penalties.
Communications of the ACM, 4(2), 1961.

[32] Tobias Columbus. On the Complexity of Contraction Hierarchies, 2009. Student’s
thesis - Karlsruhe Institute of Technology - ITI Wagner.

[33] K. Cooke and E. Halsey. The Shortest Route Through a Network with Time-
Dependent Intermodal Transit Times. Journal of Mathematical Analysis and Ap-
plications, 14(3):493–498, 1966.

[34] Joseph C. Culberson and Jonathan Schaeffer. Pattern Databases. Computational
Intelligence, 14(3):318–334, 1998.

[35] George B. Dantzig. Linear Programming and Extensions. Princeton University
Press, 1962.

[36] Jonathan Dees. Computing Alternative Routes in Road Networks. Master’s thesis,
Karlsruhe Institut für Technologie, Fakultät für Informatik, April 2010.

210 Bibliography

[37] Daniel Delling. Time-Dependent SHARC-Routing. In ESA’08 [55], pages 332–
343. Best Student Paper Award - ESA Track B.

[38] Daniel Delling. Engineering and Augmenting Route Planning Algorithms. PhD
thesis, Universität Karlsruhe (TH), Fakultät für Informatik, 2009.

[39] Daniel Delling. Time-Dependent SHARC-Routing. Algorithmica, July 2009.
Special Issue: European Symposium on Algorithms 2008.

[40] Daniel Delling, Andrew V. Goldberg, Andreas Nowatzyk, and Renato F. Werneck.
PHAST: Hardware-Accelerated Shortest Path Trees. Technical Report MSR-TR-
2010-125, Microsoft Research, 2010.

[41] Daniel Delling and Giacomo Nannicini. Bidirectional Core-Based Routing in Dy-
namic Time-Dependent Road Networks. In Seok-Hee Hong, Hiroshi Nagamochi,
and Takuro Fukunaga, editors, Proceedings of the 19th International Symposium
on Algorithms and Computation (ISAAC’08), volume 5369 of Lecture Notes in
Computer Science, pages 813–824. Springer, December 2008.

[42] Daniel Delling, Thomas Pajor, and Dorothea Wagner. Accelerating Multi-Modal
Route Planning by Access-Nodes. In Amos Fiat and Peter Sanders, editors,
Proceedings of the 17th Annual European Symposium on Algorithms (ESA’09),
volume 5757 of Lecture Notes in Computer Science, pages 587–598. Springer,
September 2009.

[43] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner. Engi-
neering Route Planning Algorithms. In Jürgen Lerner, Dorothea Wagner, and
Katharina A. Zweig, editors, Algorithmics of Large and Complex Networks, vol-
ume 5515 of Lecture Notes in Computer Science, pages 117–139. Springer, 2009.

[44] Daniel Delling and Dorothea Wagner. Landmark-Based Routing in Dynamic
Graphs. In Demetrescu [47], pages 52–65.

[45] Daniel Delling and Dorothea Wagner. Pareto Paths with SHARC. In Jan Vahren-
hold, editor, Proceedings of the 8th International Symposium on Experimental
Algorithms (SEA’09), volume 5526 of Lecture Notes in Computer Science, pages
125–136. Springer, June 2009.

[46] Daniel Delling and Dorothea Wagner. Time-Dependent Route Planning. In Ravin-
dra K. Ahuja, Rolf H. Möhring, and Christos Zaroliagis, editors, Robust and On-
line Large-Scale Optimization, volume 5868 of Lecture Notes in Computer Sci-
ence, pages 207–230. Springer, 2009.

[47] Camil Demetrescu, editor. Proceedings of the 6th Workshop on Experimen-
tal Algorithms (WEA’07), volume 4525 of Lecture Notes in Computer Science.
Springer, June 2007.

Bibliography 211

[48] Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson, editors. 9th
DIMACS Implementation Challenge - Shortest Paths, November 2006.

[49] Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson, editors. The
Shortest Path Problem: Ninth DIMACS Implementation Challenge, volume 74 of
DIMACS Book. American Mathematical Society, 2009.

[50] Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Nu-
merische Mathematik, 1:269–271, 1959.

[51] John F. Dillenburg, Ouri Wolfson, and Peter C. Nelson. The Intelligent Travel As-
sistant. In ITSS 2002: Proceedings of the 5h International Conference on Intelli-
gent Transportation Systems, pages 691–696. IEEE Computer Society, September
2002.

[52] Yann Disser, Matthias Müller–Hannemann, and Mathias Schnee. Multi-Criteria
Shortest Paths in Time-Dependent Train Networks. In McGeoch [104], pages
347–361.

[53] Alberto V. Donati, Roberto Montemanni, Norman Casagrande, Andrea E. Rizzoli,
and Luca M. Gambardella. Time dependent vehicle routing problem with a multi
ant colony system. European Journal of Operational Research, 185:1174–1191,
2008.

[54] Stuart E. Dreyfus. An Appraisal of Some Shortest-Path Algorithms. Operations
Research, 17(3):395–412, 1969.

[55] Proceedings of the 16th Annual European Symposium on Algorithms (ESA’08),
volume 5193 of Lecture Notes in Computer Science. Springer, September 2008.

[56] Paola Festa, editor. Proceedings of the 9th International Symposium on Experi-
mental Algorithms (SEA’10), volume 6049 of Lecture Notes in Computer Science.
Springer, May 2010.

[57] Lester R. Ford, Jr. Network Flow Theory. Technical Report P-923, Rand Corpo-
ration, Santa Monica, California, 1956.

[58] Linton Clarke Freeman. A Set of Measures of Centrality Based Upon Betweeness.
Sociometry, 40:35–41, 1977.

[59] Robert Geisberger. Contraction Hierarchies. Master’s thesis, Universität Karl-
sruhe (TH), Fakultät für Informatik, 2008. http://algo2.iti.uni-karlsruhe.
de/documents/routeplanning/geisberger_dipl.pdf.

[60] Robert Geisberger. Contraction of Timetable Networks with Realistic Transfers.
Technical report, ITI Sanders, Faculty of Informatics, Universität Karlsruhe (TH),
2009.

http://algo2.iti.uni-karlsruhe.de/documents/routeplanning/geisberger_dipl.pdf
http://algo2.iti.uni-karlsruhe.de/documents/routeplanning/geisberger_dipl.pdf

212 Bibliography

[61] Robert Geisberger. Contraction of Timetable Networks with Realistic Transfers.
In Festa [56], pages 71–82.

[62] Robert Geisberger, Moritz Kobitzsch, and Peter Sanders. Route Planning with
Flexible Objective Functions. In Proceedings of the 12th Workshop on Algorithm
Engineering and Experiments (ALENEX’10), pages 124–137. SIAM, 2010.

[63] Robert Geisberger, Dennis Luxen, Sabine Neubauer, Peter Sanders, and Lars
Volker. Fast Detour Computation for Ride Sharing. Technical report, ITI Sanders,
Faculty of Informatics, Universität Karlsruhe (TH), 2009.

[64] Robert Geisberger, Dennis Luxen, Peter Sanders, Sabine Neubauer, and Lars
Volker. Fast Detour Computation for Ride Sharing. In ATMOS’10 [7].

[65] Robert Geisberger, Michael Rice, Peter Sanders, and Vassilis Tsotras. Route Plan-
ning with Flexible Edge Restrictions. Submitted to JEA, 2011.

[66] Robert Geisberger and Peter Sanders. Engineering Time-Dependent Many-to-
Many Shortest Paths Computation. In ATMOS’10 [7].

[67] Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Con-
traction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks.
In McGeoch [104], pages 319–333.

[68] Frank Geraets, Leo G. Kroon, Anita Schöbel, Dorothea Wagner, and Christos
Zaroliagis. Algorithmic Methods for Railway Optimization, volume 4359 of Lec-
ture Notes in Computer Science. Springer, 2007.

[69] Andrew V. Goldberg and Chris Harrelson. Computing the Shortest Path: A*
Search Meets Graph Theory. In Proceedings of the 16th Annual ACM–SIAM
Symposium on Discrete Algorithms (SODA’05), pages 156–165. SIAM, 2005.

[70] Andrew V. Goldberg, Haim Kaplan, and Renato F. Werneck. Reach for A*: Ef-
ficient Point-to-Point Shortest Path Algorithms. In Proceedings of the 8th Work-
shop on Algorithm Engineering and Experiments (ALENEX’06), pages 129–143.
SIAM, 2006.

[71] Andrew V. Goldberg, Haim Kaplan, and Renato F. Werneck. Better Landmarks
Within Reach. In Demetrescu [47], pages 38–51.

[72] Andrew V. Goldberg and Renato F. Werneck. Computing Point-to-Point Shortest
Paths from External Memory. In Proceedings of the 7th Workshop on Algorithm
Engineering and Experiments (ALENEX’05), pages 26–40. SIAM, 2005.

Bibliography 213

[73] Ronald J. Gutman. Reach-Based Routing: A New Approach to Shortest Path
Algorithms Optimized for Road Networks. In Proceedings of the 6th Workshop on
Algorithm Engineering and Experiments (ALENEX’04), pages 100–111. SIAM,
2004.

[74] Antonin Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching. In
Proceedings of the 1984 ACM SIGMOD international conference on Management
of data, pages 47–57. ACM Press, 1984.

[75] Horst W. Hamacher, Stefan Ruzika, and Stevanus A. Tjandra. Algorithms
for time-dependent bicriteria shortest path problems. Discrete Optimization,
3(3):238–254, September 2006.

[76] P. Hansen. Bricriteria Path Problems. In Günter Fandel and T. Gal, editors,
Multiple Criteria Decision Making – Theory and Application –, pages 109–127.
Springer, 1979.

[77] Peter E. Hart, Nils Nilsson, and Bertram Raphael. A Formal Basis for the Heuris-
tic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science
and Cybernetics, 4:100–107, 1968.

[78] Stephan Hartwig and Michael Buchmann. Empty Seats Travelling. Technical
report, Nokia Research Center, 2007.

[79] Hideki Hashimoto, Mutsunori Yagiura, and Toshihide Ibaraki. An Iterated Local
Search Algorithm for the Time-Dependent Vehicle Routing Problem with Time
Windows. Discrete Optimization, 5:434–456, 2008.

[80] Moritz Hilger. Accelerating Point-to-Point Shortest Path Computations in Large
Scale Networks. Master’s thesis, Technische Universität Berlin, 2007.

[81] Moritz Hilger, Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling. Fast
Point-to-Point Shortest Path Computations with Arc-Flags. In Demetrescu et al.
[48].

[82] Martin Holzer, Frank Schulz, Dorothea Wagner, and Thomas Willhalm. Com-
bining Speed-up Techniques for Shortest-Path Computations. ACM Journal of
Experimental Algorithmics, 10(2.5):1–18, 2006.

[83] Martin Holzer, Frank Schulz, and Thomas Willhalm. Combining Speed-up Tech-
niques for Shortest-Path Computations. In Proceedings of the 3rd Workshop on
Experimental Algorithms (WEA’04), volume 3059 of Lecture Notes in Computer
Science, pages 269–284. Springer, 2004.

214 Bibliography

[84] Soumia Ichoua, Michel Gendreau, and Jean-Yves Potvin. Vehicle Dispatching
with Time-Dependent Travel Times. European Journal of Operational Research,
144:379–396, 2003.

[85] Soojung Jung and Ali Haghani. Genetic Algorithm for the Time-Dependent Vehi-
cle Routing Problem . Journal of the Transportation Research Board, 1771:164–
171, 2001.

[86] Richard M. Karp. On-Line Algorithms Versus Off-Line Algorithms: How Much
is it Worth to Know the Future? In Proceedings of the IFIP 12th World Computer
Congress on Algorithms, Software, Architecture - Information Processing ’92,
pages 416–429. ACM Press, 1992.

[87] Richard M. Karp and James B. Orlin. Parameter Shortest Path Algorithms with
an Application to Cyclic Staffing. Discrete Applied Mathematics, 2:37–45, 1980.

[88] Hanno Kersting. Algorithm Engineering in der Praxis am Fallbeispiel eines VRP.
Master’s thesis, Karlsruhe Institute of Technology, 2010.

[89] Tim Kieritz. Distributed Parallel Time Dependent Contraction Hierarchies. Mas-
ter’s thesis, Karlsruhe Institute of Technology, 2009.

[90] Tim Kieritz, Dennis Luxen, Peter Sanders, and Christian Vetter. Distributed Time-
Dependent Contraction Hierarchies. In Festa [56].

[91] Emil Klafszky. Determination of shortest path in a network with time-dependent
edge-lengths. Mathematische Operationsforschung Statistik, 3(4):255–257, 1972.

[92] Sebastian Knopp. Efficient Computation of Many-to-Many Shortest Paths. Mas-
ter’s thesis, Universität Karlsruhe (TH), Fakultät für Informatik, October 2006.

[93] Sebastian Knopp, Peter Sanders, Dominik Schultes, Frank Schulz, and Dorothea
Wagner. Fast Computation of Distance Tables using Highway Hierarchies. Tech-
nical report, Universität Karlsruhe (TH), Fakultät für Informatik, 2006.

[94] Sebastian Knopp, Peter Sanders, Dominik Schultes, Frank Schulz, and Dorothea
Wagner. Computing Many-to-Many Shortest Paths Using Highway Hierarchies.
In ALENEX’07 [4], pages 36–45.

[95] Moritz Kobitzsch. Route Planning with Flexible Objective Functions. Master’s
thesis, Karlsruhe Institute of Technology, 2009.

[96] Ekkehard Köhler, Rolf H. Möhring, and Heiko Schilling. Acceleration of Shortest
Path and Constrained Shortest Path Computation. In WEA’05 [140], pages 126–
138.

Bibliography 215

[97] Ulrich Lauther. An Extremely Fast, Exact Algorithm for Finding Shortest Paths in
Static Networks with Geographical Background. In Geoinformation und Mobil-
ität - von der Forschung zur praktischen Anwendung, volume 22, pages 219–230.
IfGI prints, 2004.

[98] Ulrich Lauther. An Experimental Evaluation of Point-To-Point Shortest Path Cal-
culation on Roadnetworks with Precalculated Edge-Flags. In Demetrescu et al.
[48].

[99] Jun Long. Developing high performance extensible transportation planning algo-
rithm based on OSGI. Master’s thesis, Karlsruhe Institute of Technology, 2009.

[100] Ronald Prescott Loui. Optimal Paths in Graphs with Stochastic or Multidimen-
sional Weights. Communications of the ACM, 26(9):670–676, 1983.

[101] Chryssi Malandraki and Mark S. Daskin. Time Dependent Vehicle Routing Prob-
lems: Formulations, Properties and Heuristic Algorithms. Transportation Sci-
ence, 26(3):185–200, 1992.

[102] Patrice Marcotte and Sang Nguyen, editors. Equilibrium and Advanced Trans-
portation Modelling. Kluwer Academic Publishers Group, 1998.

[103] Ernesto Queiros Martins. On a Multicriteria Shortest Path Problem. European
Journal of Operational Research, 26(3):236–245, 1984.

[104] Catherine C. McGeoch, editor. Proceedings of the 7th Workshop on Experimen-
tal Algorithms (WEA’08), volume 5038 of Lecture Notes in Computer Science.
Springer, June 2008.

[105] Rolf H. Möhring. Verteilte Verbindungssuche im öffentlichen Personenverkehr –
Graphentheoretische Modelle und Algorithmen. In Patrick Horster, editor, Ange-
wandte Mathematik insbesondere Informatik, Beispiele erfolgreicher Wege zwis-
chen Mathematik und Informatik, pages 192–220. Vieweg, 1999.

[106] Rolf H. Möhring, Heiko Schilling, Birk Schütz, Dorothea Wagner, and Thomas
Willhalm. Partitioning Graphs to Speed Up Dijkstra’s Algorithm. In WEA’05
[140], pages 189–202.

[107] Rolf H. Möhring, Heiko Schilling, Birk Schütz, Dorothea Wagner, and Thomas
Willhalm. Partitioning Graphs to Speedup Dijkstra’s Algorithm. ACM Journal of
Experimental Algorithmics, 11(2.8):1–29, 2006.

[108] Matthias Müller–Hannemann and Mathias Schnee. Finding All Attractive Train
Connections by Multi-Criteria Pareto Search. In Algorithmic Methods for Railway
Optimization [68], pages 246–263.

216 Bibliography

[109] Matthias Müller–Hannemann, Frank Schulz, Dorothea Wagner, and Christos
Zaroliagis. Timetable Information: Models and Algorithms. In Algorithmic Meth-
ods for Railway Optimization [68], pages 67–90.

[110] Matthias Müller–Hannemann and Karsten Weihe. Pareto Shortest Paths is Of-
ten Feasible in Practice. In Proceedings of the 5th International Workshop on
Algorithm Engineering (WAE’01), volume 2141 of Lecture Notes in Computer
Science, pages 185–197. Springer, 2001.

[111] Karl Nachtigall. Time depending shortest-path problems with applications to rail-
way networks. European Journal of Operational Research, 83(1):154–166, 1995.

[112] Giacomo Nannicini, Daniel Delling, Leo Liberti, and Dominik Schultes. Bidi-
rectional A* Search for Time-Dependent Fast Paths. In McGeoch [104], pages
334–346.

[113] Sabine Neubauer. Space Efficient Approximation of Piecewise Linear Func-
tions, 2009. Student Research Project. http://algo2.iti.kit.edu/download/
neubauer_sa.pdf.

[114] Noam Nisan, Tim Roughgarden, Éva Tardos, and Vijay V. Vazirani, editors. Al-
gorithmic Game Theory. Cambridge University Press, 2007.

[115] Masyuku Ohta, Kosuke Shinoda, Yoichiro Kumada, Hideyuki Nakashima, and
Itsuki Noda. Is Dial-a-Ride Bus Reasonable in Large Scale Towns? — Evaluation
of Usability of Dial-a-Ride Systems by Simulation —. In Multiagent for Mass
User Support - First International Workshop, volume 3012 of Lecture Notes in
Computer Science, pages 105–119. Springer, 2004.

[116] Ariel Orda and Raphael Rom. Shortest-Path and Minimum Delay Algorithms in
Networks with Time-Dependent Edge-Length. Journal of the ACM, 37(3):607–
625, 1990.

[117] Ariel Orda and Raphael Rom. Minimum Weight Paths in Time-Dependent Net-
works. Networks, 21:295–319, 1991.

[118] James B. Orlin, Neal E. Young, and Robert Tarjan. Faster Parametric Shortest
Path and Minimum Balance Algorithms. Networks, 21(2):205–221, 1991.

[119] Thomas Pajor. Multi-Modal Route Planning. Master’s thesis, Universität Karl-
sruhe (TH), Fakultät für Informatik, 2009. Online available at http://i11www.
ira.uka.de/extra/publications/p-mmrp-09.pdf.

[120] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis.
Towards Realistic Modeling of Time-Table Information through the Time-
Dependent Approach. In ATMOS’03 [6], pages 85–103.

http://algo2.iti.kit.edu/download/neubauer_sa.pdf
http://algo2.iti.kit.edu/download/neubauer_sa.pdf
http://i11www.ira.uka.de/extra/publications/p-mmrp-09.pdf
http://i11www.ira.uka.de/extra/publications/p-mmrp-09.pdf

Bibliography 217

[121] Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Effi-
cient Models for Timetable Information in Public Transportation Systems. ACM
Journal of Experimental Algorithmics, 12(2.4):1–39, 2007.

[122] Michael Rice and Vassilis Tsotras. Graph Indexing of Road Networks for Shortest
Path Queries with Label Restrictions. In Proceedings of the 37th International
Conference on Very Large Databases (VLDB 2011), 2011. To appear.

[123] Peter Sanders and Dominik Schultes. Highway Hierarchies Hasten Exact Short-
est Path Queries. In Proceedings of the 13th Annual European Symposium on
Algorithms (ESA’05), volume 3669 of Lecture Notes in Computer Science, pages
568–579. Springer, 2005.

[124] Peter Sanders and Dominik Schultes. Engineering Highway Hierarchies. In Pro-
ceedings of the 14th Annual European Symposium on Algorithms (ESA’06), vol-
ume 4168 of Lecture Notes in Computer Science, pages 804–816. Springer, 2006.

[125] Peter Sanders and Dominik Schultes. Robust, Almost Constant Time Shortest-
Path Queries in Road Networks. In Demetrescu et al. [48].

[126] Peter Sanders, Dominik Schultes, and Christian Vetter. Mobile Route Planning.
In ESA’08 [55], pages 732–743.

[127] Dennis Schieferdecker. Systematic Combination of Speed-Up Techniques for ex-
act Shortest-Path Queries. Master’s thesis, Universität Karlsruhe (TH), Fakultät
für Informatik, January 2008.

[128] Heiko Schilling. Route Assignment Problems in Large Networks. PhD thesis,
Technische Universität Berlin, 2006.

[129] Dominik Schultes. Route Planning in Road Networks. PhD thesis, Universität
Karlsruhe (TH), Fakultät für Informatik, February 2008. http://algo2.iti.
uka.de/schultes/hwy/schultes_diss.pdf.

[130] Dominik Schultes and Peter Sanders. Dynamic Highway-Node Routing. In
Demetrescu [47], pages 66–79.

[131] Frank Schulz, Dorothea Wagner, and Karsten Weihe. Dijkstra’s Algorithm On-
Line: An Empirical Case Study from Public Railroad Transport. In Proceedings
of the 3rd International Workshop on Algorithm Engineering (WAE’99), volume
1668 of Lecture Notes in Computer Science, pages 110–123. Springer, 1999.

[132] Frank Schulz, Dorothea Wagner, and Karsten Weihe. Dijkstra’s Algorithm On-
Line: An Empirical Case Study from Public Railroad Transport. ACM Journal of
Experimental Algorithmics, 5(12):1–23, 2000.

http://algo2.iti.uka.de/schultes/hwy/schultes_diss.pdf
http://algo2.iti.uka.de/schultes/hwy/schultes_diss.pdf

218 Bibliography

[133] Robert E. Tarjan and Michael L. Fredman. Fibonacci heaps and their uses in
improved network optimization algorithms. Journal of the ACM, 34(3):596–615,
July 1987.

[134] Dirk Theune. Robuste und effiziente Methoden zur Lösung von Wegproblemen.
PhD thesis, Universität Paderborn, 1995.

[135] Mikkel Thorup. Integer Priority Queues with Decrease Key in Constant Time and
the Single Source Shortest Paths Problem. In Proceedings of the 35th Annual
ACM Symposium on the Theory of Computing (STOC’03), pages 149–158, June
2003.

[136] Christian Vetter. Parallel Time-Dependent Contraction Hierarchies, 2009. Student
Research Project. http://algo2.iti.kit.edu/download/vetter_sa.pdf.

[137] Christian Vetter. Fast and Exact Mobile Navigation with OpenStreetMap Data.
Master’s thesis, Karlsruhe Institute of Technology, 2010.

[138] Lars Volker. Route Planning in Road Networks with Turn Costs, 2008.
Student Research Project. http://algo2.iti.uni-karlsruhe.de/documents/
routeplanning/volker_sa.pdf.

[139] Dorothea Wagner and Thomas Willhalm. Geometric Speed-Up Techniques for
Finding Shortest Paths in Large Sparse Graphs. In Proceedings of the 11th Annual
European Symposium on Algorithms (ESA’03), volume 2832 of Lecture Notes in
Computer Science, pages 776–787. Springer, 2003.

[140] Proceedings of the 4th Workshop on Experimental Algorithms (WEA’05), volume
3503 of Lecture Notes in Computer Science. Springer, 2005.

[141] Thomas Willhalm. Engineering Shortest Paths and Layout Algorithms for Large
Graphs. PhD thesis, Universität Karlsruhe (TH), Fakultät für Informatik, 2005.

[142] Stephan Winter. Modeling Costs of Turns in Route Planning. GeoInformatica,
6(4):345–361, 2002.

[143] Yun Hui Wu, Lin Jie Guan, and Stephan Winter. Peer-to-Peer Shared Ride Sys-
tems. In GeoSensor Networks, volume 4540 of Lecture Notes in Computer Sci-
ence, pages 252–270. Springer, August 2006.

[144] Xin Xing, Tobias Warden, Tom Nicolai, and Otthein Herzog. SMIZE: A spon-
taneous Ride-Sharing System for Individual Urban Transit. In Proceedings of
the 7th German Conference on Multiagent System Technologies (MATES 2009),
volume 5774 of Lecture Notes in Computer Science, pages 165–176. Springer,
September 2009.

http://algo2.iti.kit.edu/download/vetter_sa.pdf
http://algo2.iti.uni-karlsruhe.de/documents/routeplanning/volker_sa.pdf
http://algo2.iti.uni-karlsruhe.de/documents/routeplanning/volker_sa.pdf

Index
A* search . 13, 48
access station . 86
ALT. .14, 48
approximate TTF 157
arc flags. .15
arrival connection . 58
arrival node . 38, 90

bidirectional . 43
bounded approximate search 157
buckets . 154

candidate node . 157
CHALT . 50
CHASE . 15
connecting arrival query 95
connection . 36
consistent connection 36, 89
consistent potentials 49
contraction . 43
contraction hierarchies (CH) 14
Core-ALT (CALT).15, 49
critical arrival . 55
critical departure . 55

departure node 38, 90
detour . 177
Dijkstra’s algorithm.12, 42
direct-connection query.82
downward path . 46

earliest arrival problem (EAP) 17, 58
edge . 31
edge difference . 45
edge reduction . 45
elementary connection.35

feasible potential .48
FIFO property .17, 32
flexible graph . 33
flexible query 113, 134

global search . 86
graph . 31

highway hierarchies (HH) 13
highway-node routing (HNR) 13
hop limit . 45
hub station . 86

landmark .48
lazy update . 46
link operation . 32, 66
local search . 45, 86
local search walking query 96
location-to-location query 91
lower bound . 157

maximum threshold 134
min-max search . 157
minima operation 33, 66
minimum candidate 160
minimum threshold 134
minimum transfer duration 36

necessity interval 115
node . 31
node contraction . 43
node order . 44
node priority . 45

optimal candidate 160

parameter value . 33
Pareto-Dijkstra . 21
Pareto-optimal . 20
Pareto-SHARC . 21
path . 31
path threshold . 134
penalty . 40
perfect fit . 176
POI . 185
potential . 48
profile query . 17, 58
profile search . 156

query constraint parameters 134

220 Index

query graph . 85
query interface . 156

reach . 13
reached . 42
REAL . 15
reasonable fit . 177
relax . 42
relevant candidate221

search graph . 47
search space . 153
settled . 42
SHARC. .15
shortcut . 13, 43
shortest path . 31
shortest-path distance 32
source . 31
stall-on-demand . 47
station graph model 20, 53
station-to-station query 81
stop event . 35

target . 31
threshold function vector 34
time query . 17, 58
time-dependent Dijkstra 156
time-dependent graph 37
time-dependent model 19
time-expanded graph 38
time-expanded model 19
train route . 19
train-route node .38
transfer node . 37, 39
transfer pattern . 83
transit node routing (TNR) 14
travel time function (TTF) 17, 32
travel time profile17, 33
travel time table . 156

unreached . 42
up-down path . 47
upper bound . 157

upward path . 46

vehicle routing problem (VRP) 22
via walking. .88

waiting chain . 39
witness path . 45
witness restrictions137
witness search . 45

List of Notation
→ (e) — forward flag of edge e in search graph G∗ . 47
← (e) — backward flag of edge e in search graph G∗ . 47
∼ — current search direction, either→ or← . 48
¬ ∼ — opposite of the search direction ∼, ¬←=→ and ¬→=← 48
f < g — f (τ) is smaller than g(τ) for all departure times τ 33
f > g — f (τ) is larger than g(τ) for all departure times τ 33
f ≤ g — f (τ) is not larger than g(τ) for all departure times τ 33
f ≥ g — f (τ) is not smaller than g(τ) for all departure times τ 33
afa′ — minimum threshold vector of a and a′ (edge restrictions) 134
aga′ — maximum threshold vector of a and a′ (edge restrictions) 134
a� a′ — threshold vector a′ weakly dominates a (edge restrictions) 135
a� a′ — threshold vector a is non-dominated by a′ (edge restrictions) 135

a(e) — threshold vector of edge e (edge restrictions) 134
a(P) — threshold vector of path P (edge restrictions) 134
a∗(e) — witness path threshold vector of shortcut e (edge restrictions) . . . 138
ac(S) — (tentative) set of dominant arrival connections of station S 59
arr(P) — arrival time of connection P . 36

→
β (u) — bucket containing forward search space entries at node u . . . 154, 178
←
β (u) — bucket containing backward search space entries at node u . 154, 178
B — set of stations of a timetable . 35

c — the edge weight function . 31
c(e) — the weight of the edge e . 31
c(P) — the length of the path P . 31
c(u,v) — the weight of the edge (u,v) . 31
c(u,v) — travel time function of edge (u,v) . 32
c(u,v,τ) — travel time from node u to node v when departing at time τ32
c(1)(e) — 1st weight of edge e in the flex. scenario with mult. edge weights 113
c(2)(e) — 2nd weight of edge e in the flex. scenario with mult. edge weights113
cmin(s, t) — minimum candidate for source node s and target node t 160
con(S) — (tentative) set of dominant connections of station S 60
copt(s, t,τ) — optimal candidate for source s, target t and departure time τ160
cp(e) — weight of edge e for param. p (mult. edge weights)113
cp(P) — length of path P for param. p (mult. edge weights) 113
crel(s, t) — set of relevant candidates for source node s and target node t 160
C — set of elementary connections of a timetable . 35

d(c) — duration of elementary connection c . 36
d(P) — duration of connection P . 36

222 List of Notation

dep(P) — departure time of connection P . 36
δ — (tentative) shortest-path distance . 47
δ (u) — (tentative) distance of node u . 42
→
δ (u) — (tentative) distance of node u in forward search 47
→
δ (u) — TTF of node u in forward search . 158
→
δ ↓(u) — lower ε-bound of TTF

→
δ (u) . 158

→
δ ↑(u) — upper ε-bound of TTF

→
δ (u) . 158

←
δ (u) — (tentative) distance of node u in backward search.47
←
δ (u) — TTF of node u in backward search . 158
←
δ ↓(u) — lower ε-bound of TTF

←
δ (u) . 158

←
δ ↑(u) — upper ε-bound of TTF

←
δ (u) . 158

E — the edge set of a graph G . 31
→
E — set of upward edges of upward graph

→
G . 47

←
E — set of downward edges of downward graph

←
G47

E∗ — edge set of search graph G∗ . 47
Ep — edge set of graph Gp with query parameter p 33
εe — approximation factor for edge TTFs . 162
εp — approximation factor for lower/upper bounds used for pruning . . 166
εs — approximation factor for search space TTFs 162
εt — approximation factor for table TTFs . 163

f — travel time function . 32
f ↓ — lower bound of TTF f .157
f ↑ — upper bound of TTF f .157
f l — approximation of TTF f . 157

G — a graph . 31
→
G — upward graph . 47
←
G — downward graph . 47
G∗ — search graph . 47
Gp — static graph from flexible graph G with query parameter p 33

k — desired number of closest POI . 189

m — the number of edges of a graph G .31

n — the number of nodes of a graph G . 31
ndep(P) — next departure time of the last train of conn. P at station Sa(P) 55
NI(e) — parameter interval for which edge e is necessary 115
NS — set of stations nearby station S where we can walk to transfer88

p — query parameter of flexible scenario . 33

List of Notation 223

p — query parameter to linearly combine two edge weights 113
p — query constraint parameters (edge restrictions) 134
p(P) — penalty of a connection P . 40
parr(Q) — previous arrival time of the first train of conn. P at station Sd(P) . . 55
P — a path. .31
PNC(s,k) — set of k-closest POI to node s . 189
PND(s, `) — set of POI within distance ` of node s . 185
PPC(s, t,k) — set of k POI with smallest detour from node s to node t 191
PPD(s, t, `) — set of POI within detour ` from source node s to target node t . . . 187
φp — lower bound on shortest-path distance for parameter value p 118

RZ — set of stations within reasonable walking distance of location Z . . . 91

s — source node . 32
s′ — source node of ride sharing request . 177
si — source node of ride sharing offer i . 177
sta(P) — stopping time of the last train of connection P at station Sa(P) 55
std(P) — stopping time of the first train of connection P at station Sd(P) . . . 55
S — set of source nodes. .156
Sa — arrival node for station S in the query graph . 90
Sa(c) — arrival station of elementary connection c . 35
Sa(P) — arrival station of connection P . 36
Sa@τ — arrival node for station S at time τ in the time-expanded graph 38
Sd — departure node for station S in the query graph 90
Sd(c) — departure station of elementary connection c .35
Sd(P) — departure station of connection P . 36
Sd@τ — departure node for station S at time τ in the time-exp. graph 38
SrR — train-route node for station S and train route R in time-dep. graph . 38
St — transfer node for station S in the time-dependent graph 37
St@τ — a transfer node for station S at time τ . 39
→
σ (s) — forward search space of source node s . 153
←
σ (t) — backward search space of target node t . 153

t — target node . 32
t ′ — target node of ride sharing request . 177
table(s, t) — table cell with the travel time profile for source s and target t 161
ti — target node of ride sharing offer i . 177
transfer(S) — minimum transfer duration at station S . 36
T — set of target nodes . 156
τ — departure time . 32
τa(c) — arrival time of elementary connection c . 35
τd(c) — departure time of elementary connection c .35

µ(s, t) — shortest-path distance between source node s and target node t . . . 32

224 List of Notation

µ(s, t) — travel time profile from s to t . 33
µ(s, t,τ) — shortest-path length from s to t for departure time τ 33
µp(s, t) — shortest-path distance from s to t for query parameter p 34
µp(s, t) — shortest-path dist. from s to t for constraints p (edge restrictions) 134
µp(s, t) — shortest-path dist. from s to t for param. p (mult. edge weights) . 113

V — the node set of a graph G . 31
Vp — node set of graph Gp with query parameter p 33

walk(S,T) — walking cost from station S to station T . 88
walko(Z,Z′) — oracle for walking cost from location Z to location Z′ 91

X — set of POI nodes . 185

Za(c) — arrival stop event of elementary connection c 35
Za(P) — arrival stop event of connection P . 36
Zd(c) — departure stop event of elementary connection c 35
Zd(P) — departure stop event of connection P . 36
ZS — set of stop events for a station S of a timetable 35

Zusammenfassung
Routenplanung umfasst eine Vielzahl interessanter Probleme, die sich algorithmisch
lösen lassen. Gewöhnlich wird dazu ein Verkehrsnetz durch einen gewichteten Gra-
phen modelliert, in dem die optimale Lösung des Problems durch kürzeste Wege be-
schrieben wird. Typische Verkehrsnetze sind Straßennetze oder öffentliche Verkehrs-
netze. Der klassische Algorithmus zur Berechnung von kürzesten Wegen ist der Al-
gorithmus von Dijkstra. Doch dieser ist zu langsam für sehr große Graphen, wie bei-
spielsweise ein kontinentales Straßennetz mit etwa 100 Millionen Kanten. Deswegen
wurden in den letzten Jahren immer schnellere Algorithmen entwickelt. Während ei-
nem Vorberechnungsschritt sammeln diese Algorithmen zusätzliche Daten, mit deren
Hilfe sich die Berechnung kürzester Wege zwischen beliebigen Start- und Zielknoten
beschleunigen lassen. Oftmals wird von diesen Algorithmen jedoch nur ein sehr einfa-
ches Kürzeste-Wege-Problem betrachtet: den kürzesten Weg in einem Graphen mit reell-
wertigen, nicht-negativen Kantengewichten zwischen einem beliebigen Start- und einem
beliebigen Zielknoten zu berechnen. Der verwendete Graph repräsentiert Straßenkreu-
zungen als Knoten und Straßen als Kanten. Das Gewicht einer Kante ist gewöhnlich
die durchschnittliche Reisezeit auf der repräsentierten Straße oder die Länge der Straße.
Doch dadurch lässt sich nur ein eingeschränktes Modell der Wirklichkeit erzeugen. Er-
weiterte praxisrelevante Probleme müssen weitere Eigenschaften berücksichtigen. Dazu
gehören zeitabhängige Kantengewichte, Verbote für gewisse Fahrzeuge auf gewissen
Straßen oder mehrere Start- und Zielknoten. Einige der existierenden schnellen Algo-
rithmen können für einige dieser erweiterten Probleme zwar theoretisch eingesetzt wer-
den, sind aber gewöhnlich nicht mehr effizient genug. Deswegen ist es wichtig, neue
algorithmische Bauteile oder sogar vollkommen neue algorithmische Ideen zur Lösung
dieser erweiterten Probleme zu entwickeln. Die dadurch neu entstandenen Algorithmen
haben einen direkten Praxisbezug und werden auch schon teilweise in der Praxis einge-
setzt. Der Fokus dieser Arbeit liegt auf den folgenden drei erweiterten Problemgebieten:
öffentliche Verkehrsnetze, flexible Anfragen und Serienberechnung kürzester Wege. Im
Folgenden wird jedes dieser Problemgebiete genauer beschrieben:

Öffentliche Verkehrsnetze, wie beispielsweise Bahn- und Busnetze, sind inhärent er-
eignisbasiert. Deren zeitabhängige Modellierung ist deswegen notwendig. Auch gibt es
darin eine geringere hierarchische Struktur als in Straßennetzen, was die Effizienz von
schnellen Algorithmen für Straßennetze deutlich reduziert. In realistischeren Szenarien
ist deren Einsatz sogar nicht praktikabel, da keine zufriedenstellenden Laufzeiten er-
zielt werden können. Diese Arbeit analysiert zum einen die mangelnde Effizienz und
zeigt Lösungsmöglichkeiten auf. Zum anderen entwickelt sie einen neuen Algorithmus
speziell für öffentliche Verkehrsnetze. Das Konzept der Knotenkontraktion ist sehr effi-
zient für Straßennetze. Eine Anwendung auf Graphen von öffentlichen Verkehrsnetzen
war bisher aufgrund der Modellierung einzelner Haltestellen durch mehrere Knoten in-
effizient. Der Vorteil dieser Modellierung lag in vereinfachten Kantengewichten. Ein
neu entwickeltes Modell, welches nur einen Knoten pro Haltestelle besitzt und parallele

226 Zusammenfassung

Kanten vermeidet, steigert die Effizienz der Kontraktion. Weitere algorithmische Bau-
teile machen diese noch effizienter. Ein komplett neuer Algorithmus für einen völlig rea-
listischen Routenplaner für öffentliche Verkehrsnetze basiert auf der Idee von Umstei-
gemustern: die Folge von Haltestellen an denen umgestiegen wird. Gewöhnlich reicht
schon eine kleine Menge von Umsteigemustern aus, um alle optimalen Verbindungen
zwischen zwei Haltestellen, unabhängig vom Abfahrtszeitpunkt, zu beschreiben. Somit
stellt die Traversierung dieser Umsteigemuster einen effizienten Anfragealgorithmus dar.
Das Hauptproblem ist die Berechnung der Umsteigemuster. Eine Berechnung aller op-
timalen Verbindungen zwischen allen Paaren von Haltestellen verbietet sich aus Lauf-
zeitgründen. Deswegen wurden Heuristiken für eine praktikable Berechnung entwickelt.
Der resultierende Algorithmus ist in der Lage, Anfragen zwischen zwei Positionen, nicht
notwendigerweise Haltestellen, effizient zu beantworten. Selbst für strukturschwache
Netzwerke mit Hunderttausenden von Haltestellen beträgt die Antwortzeit nur 50 ms.

Der Begriff flexible Anfrage bezieht sich auf die Berechnung eines kürzesten Weges
zwischen einem Start- und einem Zielknoten unter Berücksichtigung weiterer Anfra-
geparameter. Mögliche Anfrageparameter können beispielsweise die zugrunde liegende
Kantenfunktion wählen (z. B. schnellste oder kürzeste Route) oder Verbote berücksich-
tigen (z. B. Fahrzeuge mit wassergefährdender Ladung). Obwohl der Algorithmus von
Dijkstra sich leicht an solche Anfrageparameter anpassen lässt, trifft das im Allgemei-
nen nicht für schnellere, vorberechnungsbasierte Algorithmen zu. Theoretisch könnte
die Vorberechnung separat für jeden möglichen Wert durchgeführt werden, den der An-
frageparameter annehmen kann. Praktisch ist dies jedoch äußerst ineffizient. Deshalb
wurden Algorithmen entworfen, welche eine gemeinsame Vorberechnung durchführen.
Gewöhnlich ist es einfach, kleine Verbesserungen gegenüber dem theoretischen Ansatz
zu erzielen. Die Herausforderung bestand darin, Algorithmen zu entwerfen, die nicht viel
schlechter als die schnellen unflexiblen Algorithmen sind. Des Weiteren speichert eine
gemeinsame Vorberechnung alle Daten, um Anfragen mit beliebig gewählten Anfrage-
parametern zu beantworten. Für die Beantwortung einer einzelnen Anfrage mit festem
Wert der Anfrageparameter ist jedoch im Allgemeinen nur ein Teil dieser Daten not-
wendig. Dies lässt sich ausnutzen, um die Antwortzeit einer Anfrage zu reduzieren. Ein
weiteres Problem stellt die Klassifikation von Straßen und Straßenkreuzungen dar. Au-
tobahnen sind beispielsweise sehr wichtig für die Berechnung schnellster Routen, aber
weniger wichtig für kürzeste. Die sogenannte „Hierarchie“ des Netzes ändert sich mit
dem Wert der Anfrageparameter. Dadurch wird die Effizient der vorherigen Algorith-
men deutlich beeinflusst und es wurden neue Techniken zur Kompensation entwickelt.
Die schnellsten entwickelten Algorithmen sind eine Kombination aus hierarchischen und
zielgerichteten Techniken, welche Anfragen innerhalb von Millisekunden beantworten
können.

Bei der Serienberechnung kürzester Wege werden viele Start- und Zielknoten gleich-
zeitig betrachtet. Das klassische Problem dazu ist die Berechnung einer Distanztabelle
zwischen einer Startknotenmenge S und einer Zielknotenmenge T . Theoretisch kann
jeder der vorherigen Algorithmen solch eine Tabelle berechnen. Viel schnellere Algo-

Zusammenfassung 227

rithmen sind aber möglich, indem man ausnutzt, dass die kürzesten Wege Distanzen
zwischen allen Paaren in S×T berechnet werden müssen. Distanztabellen sind beispiels-
weise wichtig bei der Lösung von Logistikproblemen und im Lieferkettenmanagement.
Diese Arbeit beschreibt einen effizienten Algorithmus zur Berechnung zeitabhängiger
Tabellen. Die Distanz, in diesem Falle die Reisezeit, ist dabei eine Funktion über die
Abfahrtszeit, genauso wie die Kantengewichte des Graphen. Da ein Feld der Tabelle
nun eine Funktion statt eine einzelne Zahl repräsentieren muss, spielt der Speicherver-
brauch eine große Rolle. Durch die Approximation dieser Funktionen lässt sich der Spei-
cherverbrauch um Größenordnungen reduzieren. Es existiert ein Kompromiss zwischen
dem erlaubten Fehler und dem Speicherverbrauch. Auch sind die Basisoperationen zur
Berechnung kürzester Wege auf Reisezeitfunktionen deutlich komplexer und langsamer
als die entsprechenden Operationen für reellwertige Kantengewichte. Durch zusätzli-
che Berechnungsschritte gelingt es, die Anzahl dieser langsamen Operationen zu redu-
zieren. Außerdem gibt es weitere praxisrelevante Probleme, die eine Serienberechnung
kürzester Wege erfordern, sich aber vom Problem der Distanztabellenberechnung unter-
scheiden. Durch Analyse der Problemstruktur lassen sich dafür effiziente Algorithmen
konstruieren. Ein Algorithmus zur Vermittlung von Fahrgemeinschaften ist beispiels-
weise in der Lage, das Angebot mit dem kleinsten Umweg zu finden. Eine Anfrage auf
einer Datenbank von tausenden von Angeboten kann damit innerhalb von Millisekunden
beantwortet werden. Ein weiteres Beispiel ist die schnelle Berechnung der nächstgelege-
nen Sonderziele. Selbst für kleine Suchradien sind deutliche Verbesserungen gegenüber
dem Algorithmus von Dijkstra möglich.

	Introduction
	Motivation
	Basic Route Planning
	Advanced Route Planning
	Time-dependency in Road Networks
	Public Transportation
	Flexible Queries in Road Networks
	Batched Shortest Paths Computation

	Main Contributions
	Overview
	Public Transportation
	Flexible Queries in Road Networks
	Batched Shortest Paths Computation

	Outline

	Fundamentals
	Graphs and Paths
	Road Networks
	Static Scenario
	Time-dependent Scenario
	Flexible Scenario

	Public Transportation Networks
	Time-dependent Graph
	Time-expanded Graph

	Basic Concepts
	Dijkstra's Algorithm
	Node Contraction
	Preprocessing
	Query

	A* Search
	Landmarks (ALT)
	Bidirectional A*

	Combination of Node Contraction and ALT

	Public Transportation
	Routing with Realistic Transfer Durations
	Central Ideas
	Station Graph Model
	Query
	Node Contraction
	Algorithms for the Link and Minima Operation
	Experiments

	Fully Realistic Routing
	Central Ideas
	Query
	Basic Algorithm
	Hub Stations
	Walking between Stations
	Location-to-Location Query
	Walking and Hubs
	Further Refinements
	Heuristic Optimizations
	Experiments

	Concluding Remarks

	Flexible Queries in Road Networks
	Central Ideas
	Multiple Edge Weights
	Node Contraction
	A* Search using Landmarks (ALT)
	Query
	Experiments

	Edge Restrictions
	Preliminaries
	Node Contraction
	A* Search using Landmarks (ALT)
	Query
	Experiments

	Concluding Remarks

	Batched Shortest Paths Computation
	Central Ideas
	Buckets
	Further Optimizations

	Time-dependent Travel Time Table Computation
	Preliminaries
	Five Algorithms
	Computation of Search Spaces
	Approximate Travel Time Functions
	On Demand Precomputation
	Experiments

	Ride Sharing
	Matching Definition
	Matching Algorithm
	Experiments

	Closest Point-of-Interest Location
	POI close to a Node
	POI close to a Path
	k-closest POI
	Experiments

	Concluding Remarks

	Discussion
	Conclusion
	Future Work
	Outlook

	Bibliography
	Index
	List of Notation
	Zusammenfassung

